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 A B S T R A C T

With the increasing integration of renewable energy, tidal energy stands out for its high predictability, making 
it a valuable asset for stable power grid operation. However, accurate forecasting remains a critical challenge. 
Conventional deep learning models, despite their success in general time-series analysis, often struggle to 
preserve the inherent periodic features of tidal data, leading to reduced prediction accuracy and suboptimal 
grid scheduling. To address this gap, we propose Veliformer, a novel periodicity-preserving forecasting model. 
At its core, Veliformer introduces an innovative mask modeling technique. Unlike conventional methods that 
predict masked data points, our approach reconstructs the complete original sequence by learning to aggregate 
information from multiple, differently masked versions of the series. This unique reconstruction process is 
specifically designed to maintain the integrity of the underlying periodic structure of tidal energy, enabling the 
model to accurately capture both deterministic cycles and stochastic fluctuations. When applied to the optimal 
power flow (OPF) of tidal energy systems, Veliformer reduces power generation costs. Our theoretical analysis 
shows that the model preserves periodicity through masked sequence reconstruction. Numerical experiments 
demonstrate Veliformer’s superior performance in optimizing power systems and reducing prediction errors 
compared to other popular models. The mask modeling mechanism enhances Veliformer’s prediction accuracy 
by an average of 4.91%, further highlighting its effectiveness in handling tidal energy forecasting.
1. Introduction

In recent years, the development of renewable energy sources has 
received increasing attention due to the growing demand for energy 
conservation. Renewable energy is characterized as sustainable and 
non-polluting, which can solve the problems of energy supply and 
environmental pollution [1]. Among renewable energy sources, wind 
and solar power have been widely integrated into modern power 
grids [2,3]. With the maturity of tidal power generation technology, 
tidal energy has also garnered significant attention. Derived from the 
gravitational forces of the Earth, Moon, and Sun, the total global tidal 
energy potential is estimated at 2,700 GW, with approximately 2% (54 
GW) being exploitable [4]. Compared to other renewable sources, tidal 
energy is more influenced by astronomical factors, resulting in clear 
and stable periodic patterns. This inherent predictability provides a re-
liable basis for grid scheduling and energy planning. As the potential for 
tidal energy exploitation grows, the expanding market makes accurate 
forecasting and the optimization of scheduling strategies increasingly 
important (see in Fig.  1, data source: Global Market Insights, 2025).
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The integration of tidal energy into modern power systems presents 
a unique challenge, primarily centered around minimizing operational 
costs while ensuring security and economy, a task addressed by Optimal 
Power Flow (OPF). OPF is a critical tool for determining the optimal 
dispatch in a power network to minimize operational costs under given 
safety and performance constraints. Tidal energy is characterized by a 
highly predictable semidiurnal (approximately 12-hour) cycle, resulting 
in two pronounced power peaks and troughs each day. In OPF-based 
scheduling, tidal generation is thus modeled as a source with large, 
predictable but rapid fluctuations. The grid must accommodate these 
swings by coordinating other controllable generators to ramp up or 
down, ensuring real-time supply–demand balance [5]. The complexity 
in OPF arises not from unpredictability, but from the need to eco-
nomically and securely manage these dramatic, periodic swings. Even 
small errors in short-term tidal power forecasting – such as phase or 
amplitude mismatches – can lead to significant deviations in dispatch 
plans, increasing reliance on costly reserves and increasing operational 
costs [6]. Therefore, enhancing prediction accuracy while preserving 
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Fig. 1. Wave and tidal energy market size 2022 to 2032 (USD Million).

the inherent periodicity of tidal energy is critical for effective and 
economical grid operation.

While accurate forecasting is a recognized prerequisite for OPF, 
recent advancements in renewable energy forecasting have largely 
focused on challenges pertinent to wind and solar power, such as 
managing uncertainty and stochastic variability. For instance, Ref. [7] 
demonstrated the use of a binary prediction market to achieve proba-
bilistic renewable energy forecasts, leveraging aggregated probabilities 
to enhance forecasting precision. To improve forecasting accuracy in 
wind power systems, Ref. [8] proposed a robust ensemble learning 
method that combined random forests and quantile arrays. Addition-
ally, advanced machine learning techniques explored to enhance the 
adaptability of forecasting models. Ref. [9] presented an adaptive prob-
abilistic wind power forecasting method, incorporating offline meta-
learning for model training and online learning for real-time updates, 
showcasing flexibility across different lead times. Moreover, hybrid 
models integrating signal processing techniques like Singular Spectrum 
Analysis (SSA) with intelligent systems have been effectively applied to 
short-term wind speed forecasting [10]. For more robust interval pre-
dictions, Ref. [11] introduced a multi-objective optimization approach 
to construct wind power prediction intervals. Similarly, multi-objective 
optimization has been effectively utilized to enhance short-term power 
load forecasting models [12]. Despite these significant advancements, 
the core focus of these methods remains on handling unpredictability. 
Consequently, they do not adequately address the unique challenge 
of preserving the strong, deterministic periodic features inherent in 
tidal energy, as their mechanisms may inadvertently smooth out or 
misinterpret these crucial patterns.

Addressing this specific gap, a few recent studies have attempted 
to forecast tidal energy more explicitly. However, even these targeted 
efforts exhibit limitations in robustly preserving periodicity. For exam-
ple, the hybrid point-interval forecasting system proposed in Ref. [13], 
despite incorporating sophisticated techniques like mode decomposi-
tion and attention mechanisms to capture complex patterns, does not 
guarantee the explicit preservation of fundamental tidal frequencies 
throughout its modeling pipeline. The interaction between decomposed 
modes and attention weights, or subtle shifts in data distribution, 
could inadvertently dampen or distort these vital periodic components. 
Likewise, while the use of deep neural networks with environmental 
variables [14] or Long Short-Term Memory (LSTM) networks for short-
term tidal height forecasting [15] has demonstrated promise in terms 
of regression accuracy, their architectural designs do not inherently 
enforce the maintenance of the underlying temporal structure. Standard 
recurrent or deep feed-forward layers, if not specifically structured 
or regularized for periodicity, can struggle to distinguish between 
2 
true periodic signals and aperiodic noise, particularly when dealing 
with long sequences or the non-stationary effects of environmental 
variables. Consequently, these models may capture average trends but 
falter in accurately predicting the timing and magnitude of periodic 
fluctuations.

To overcome the aforementioned limitations, we propose Veli-
former, a novel deep learning model that incorporates a unique pre-
training strategy designed to retain the natural periodicity of tidal 
energy data. Pre-training aims to learn the features of the data by train-
ing the model on large-scale data, and we summarize the differences in 
common approaches in Table  1. Based on this comparison, we selected 
masked modeling as the foundation for Veliformer. However, typical 
masking techniques, which reconstruct masked portions from visible 
data, can disrupt the temporal continuity crucial for time series [16]. 
To solve this, Veliformer introduces a novel objective: reconstructing 
the original from multiple, differently masked versions of it. This forces 
the model to learn the underlying periodic structure and temporal 
dependencies, rather than simply interpolating missing points. By ap-
plying this periodicity-preserving pre-training method to the powerful 
Transformer architecture, Veliformer is able to capture both long-range 
dependencies and the fundamental periodic patterns of tidal energy.

Based on the above insights, this paper proposes Veliformer to 
optimize tidal energy integration with the dual objectives of minimiz-
ing operational costs and maintaining system security. The specific 
contributions are as follows:

(1) To tackle the issue of periodicity preservation, Veliformer in-
troduces a pre-training method that reconstructs the original series 
from multiple neighboring masked time series. This technique retains 
periodic features and enhances the accuracy of tidal energy power 
prediction when applied to the Transformer model.

(2) Veliformer is applied within the Optimal Power Flow (OPF) 
framework for power systems that integrate tidal energy. By leveraging 
deep learning techniques, Veliformer effectively minimizes operational 
costs while ensuring system security.

(3) A comprehensive comparative analysis is conducted between 
Veliformer and several popular deep learning models. The experimental 
results demonstrate Veliformer’s superior performance in predicting 
tidal power generation, further underscoring its distinct advantages in 
both prediction accuracy and overall system optimization.

2. Method

2.1. Optimal power flow model with tidal energy

The Optimal Power Flow problem is a typical nonlinear program-
ming challenge. Before describing the problem in detail, we introduce 
the vector 𝐱 to denote the time series of active power. The input 
vector 𝐱𝜏 (𝐭) represents a mini-batch of time series samples. Each sample 
is a 𝜏 × 𝐶 matrix, where 𝜏 denotes the number of time points and 
𝐶 denotes the number of observed variables. The input vector 𝐱(𝐭)
represents the 𝑡th row of the mini-batch matrix. We denote 𝐱(𝐭) as 
𝐱(𝐭) =

{

𝑥1(𝑡),… , 𝑥𝑐 (𝑡),… , 𝑥𝐶 (𝑡)
}

, where 𝑡 ∈ [1, 𝑇 ]. And we express 
the scalar average of each vector 𝐱(𝐭) as 𝑥̄(𝑡) = 1

𝐶
∑𝐶

𝑐=1 𝑥𝑐 (𝑡). The 
vector 𝐱𝜏𝐜 (𝐭) represents the 𝑐th column, containing 𝜏 scalars, and is 
denoted as 𝐱𝜏𝐜 (𝐭) =

{

𝑥𝑐 (𝑡 − 𝜏 + 1), 𝑥𝑐 (𝑡 − 𝜏 + 2),… , 𝑥𝑐 (𝑡)
}

. Then, We can 
slice this mini-batch data into 𝐱𝜏 (𝐭) = {

𝐱𝜏1(𝐭),… , 𝐱𝜏𝐜 (𝐭),… , 𝐱𝜏𝐂(𝐭)
}

, where 
𝑐 ∈ [1, 𝐶]. The mathematical formulation of the AC optimal power flow 
problem adopted in this work is consistent with standard formulations 
in power systems literature [19], which can be described as follows: 
min 𝑓 (𝐱)
 s.t. ℎ𝑎(𝐱) = 0, 𝑎 = 1, 2,… , 𝐴,

𝑔 ≤ 𝑔𝑏(𝐱) ≤ 𝑔̄, 𝑏 = 1, 2,… , 𝐵,
(1)

where 𝐱 is the decision variable, 𝑓 (𝐱) is the objective function with 
respect to the variable 𝐱, ℎ𝑎(𝐱) characterizes all equality constraints 
on the variable 𝐱, and 𝑔 (𝐱) characterizes all inequality constraints 
𝑏
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Table 1
Comparison of different pre-training methods.
 Type Description Advantages Disadvantages

 Masked Modeling [16] A pre-training method where parts of 
the input data are randomly masked, 
and the model learns to predict the 
masked parts.

Encourages the model to understand 
context and develop a deeper 
understanding of the data structure.

Can be computationally intensive and 
requires substantial data to avoid 
bias in predictions.

 

 Contrastive Learning [17] Learns by comparing pairs or sets of 
inputs to understand which features 
make two inputs similar or different.

Effective in learning robust features 
and useful for tasks requiring 
fine-grained distinction between 
inputs.

Requires careful design of the 
contrast sets and can be less effective 
if the negative examples are not well 
chosen.

 

 Self-Supervised Learning [18] The model learns by creating its own 
supervision signals from the data, 
such as predicting missing parts of 
data or solving puzzles generated 
from the data itself.

Reduces the need for labeled data 
and improves generalization by 
leveraging inherent data structures.

Can be challenging to design 
effective self-supervision tasks and 
may require significant 
computational resources.

 

on the variable 𝐱. 𝑔 and 𝑔̄ are the upper and lower bounds of the 
inequality constraints, respectively. 𝐴 and 𝐵 denote the number of 
equality constraints and inequality constraints respectively.

The objective function 𝑓 (𝐱) can be determined according to the 
problem to be solved. In this paper, our goal is to evaluate the overall 
economic benefits of tidal energy projects when enhanced with high-
precision forecasting models. Therefore, we adopt a cost function based 
on the Levelized Cost of Energy (LCOE) framework, which annualizes 
both capital and operational costs to assess the long-term impact of 
different scheduling strategies [20]. The function is defined as: 

𝑓 (𝐱) =
CAPEX ⋅ 𝐹𝐶𝑅 + OPEX + 𝐶battery

AEP
. (2)

Here, CAPEX, OPEX, and FCR denote the capital expenditure, operating 
expenditure, and capital recovery factor of the power plant, respec-
tively. AEP represents the annual energy production, which depends on 
the power output 𝐱 over time. This formulation allows us to assess the 
impact on the average unit generation cost, rather than focusing solely 
on short-term fuel savings [21]. Furthermore, the term 𝐶battery repre-
sents the cost related to the energy storage system. Energy storage is an 
essential enabling technology for managing the high variability of tidal 
energy, allowing for peak shaving and valley filling. Including its cost is 
crucial to fully exploit the scheduling flexibility and economic potential 
brought by high-precision forecasting [22]. The detailed calculations 
for each component are provided as follows: 

𝐹𝐶𝑅 =
(1 + 𝑟)𝑙 ⋅ 𝑟
(1 + 𝑟)𝑙 − 1

. (3)

Where 𝑟 refers to the discount rate, and 𝑙 denotes the economic lifespan 
of the power plant. 
𝐶𝐴𝑃𝐸𝑋 = 𝐶upfront + 𝐶TCTs + 𝐶𝐸𝐼 + 𝐶install + 𝐶offshore . (4)

In this equation, 𝐶upfront  represents the upfront investment cost. 𝐶𝑇𝐶𝑇 𝑠, 
𝐶𝐸𝐼 , 𝐶install , and 𝐶offshore  correspond to the costs of the tidal current 
system, power units, installation, and offshore construction, respec-
tively. 
𝑂𝑃𝐸𝑋 = 𝐶0 + 𝐶𝐹𝑅 + 𝐶𝐹𝑀 . (5)

Where 𝐶0, 𝐶𝑅, and 𝐶𝑀  denote the initial operation cost, maintenance 
cost, and repair cost, respectively. 
𝐶battery = 𝜅 ⋅

(

𝑃 ch
total + 𝑃 dis

total
)

+ 𝛾 ⋅ SoC2. (6)

Where 𝜅 is a constant related to the cost per unit of charge and 
discharge power, 𝑃 ch

total and 𝑃 dis
total are the total charge and discharge 

powers of the storage system, respectively. 𝛾 is a constant related to 
the degradation cost due to cycling. And SoC is the state of charge of 
the battery, which is related to the degradation cost.

The nodal power balance equations ℎ(𝐱) is the tidal current equation 
of the following form: 
𝑃𝐺𝑘 − 𝑃𝐷𝑘 − 𝑃𝑘

(

𝑉𝑒, 𝑉𝑓
)

= 0,
( ) (7)
𝑄𝐺𝑘 −𝑄𝐷𝑘 −𝑄𝑘 𝑉𝑒, 𝑉𝑓 = 0,

3 
where 𝑘 = 1, 2,… , 𝑛; 𝑃𝐺𝑘, 𝑄𝐺𝑘 are the active and reactive generator 
outputs connected at node 𝑘; 𝑃𝐷𝑘, 𝑄𝐷𝑘 are the active and reactive loads 
connected at node 𝑘; 𝑃𝑘, 𝑄𝑘 are the active and reactive power injections 
at node 𝑘; 𝑉𝑒, 𝑉𝑓  are the real and imaginary part of the voltages at 
nodes.

The inequality constraint 𝑔(𝐱) mainly includes the generator’s active 
and reactive power output constraints: 
𝑃min
𝐺𝑘 ≤ 𝑃𝐺𝑘 ≤ 𝑃max

𝐺𝑘 ,

𝑄min
𝐺𝑘 ≤ 𝑄𝐺𝑘 ≤ 𝑄max

𝐺𝑘 .
(8)

Nodal voltage amplitude constraint: 
𝑉 min
𝑘 ≤ 𝑉𝑘 ≤ 𝑉 max

𝑘 , (9)

and the line transmission power constraint: 
𝑃min
𝑘𝑗 ≤ 𝑃𝑘𝑗 ≤ 𝑃max

𝑘𝑗 ,
𝑃min
𝑗𝑘 ≤ 𝑃𝑗𝑘 ≤ 𝑃max

𝑗𝑘 .
(10)

Where 𝑃min 𝐺𝑘 , 𝑃max 𝐺𝑘
(

𝑄min 
𝐺𝑘 , 𝑄max 

𝐺𝑘
) represent the lower and upper limits 

of generator 𝑘’s active (reactive) output; 𝑉 min
𝑘  is the lower limit of the 

voltage amplitude at node 𝑘. Similarly, 𝑉 max
𝑘  is the upper limit of the 

voltage amplitude at node 𝑘; 𝑃𝑘𝑗 , 𝑃𝑗𝑘 denote the active power flowing 
from node 𝑘 to node 𝑗 and the active power flowing from node 𝑗 to 
node 𝑘, respectively; 𝑃𝑘𝑗

min , 𝑃𝑘𝑗
max (

𝑃min
𝑗𝑘 , 𝑃max

𝑗𝑘

)

 are the upper and 
lower limits of the active power of line 𝑘𝑗 (𝑗𝑘) respectively.

Energy storage capacity constraints: 
𝐸min ≤ 𝐸𝑡 ≤ 𝐸max. (11)

Charging and discharging Power Constraints: 
0 ≤ 𝑃 ch

𝑡 ≤ 𝑃 ch
max,

0 ≤ 𝑃 dis
𝑡 ≤ 𝑃 dis

max.
(12)

Where 𝐸𝑡 is the energy state of charge (SoC) at time 𝑡. 𝐸min and 𝐸max
are the minimum and maximum energy storage limits, respectively. 
𝑃 ch
𝑡  and 𝑃 dis

𝑡  represent the charging and discharging powers of the 
energy storage at time 𝑡. 𝑃 ch

max and 𝑃 dis
max are the maximum charging and 

discharging power limits, respectively.

2.2. OPF solution methodology

To solve the OPF problem (1) formulated in Section 2.1, we em-
ploy a standard Primal–Dual Interior-Point Method, a well-established 
and robust algorithm for nonlinear constrained optimization problems 
in power systems [23]. The core idea of this method is to convert 
the original problem with inequality constraints into a sequence of 
equality-constrained problems by introducing slack variables and a log-
arithmic barrier function. At each iteration, the Karush–Kuhn–Tucker 
(KKT) conditions are solved using a Newton–Raphson method to find 
the search direction for all variables. For a detailed mathematical 
derivation of this standard method as implemented in our study, please 
refer to Appendix  A.
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Fig. 2. Architecture of Veliformer, which reconstructs the original time series by adaptively aggregating multiple masked versions of the series. The aggregation 
process is driven by series-wise similarities.
2.3. Modeling based on masked mechanism

The richness of time series features is crucial for improving pre-
diction accuracy. In this paper, we enhance the diversity of training 
data by adopting a masking mechanism, which significantly improves 
the accuracy of the prediction model. Specifically, we reconstruct the 
original time series from multiple adjacent masked time series. The 
overall framework of Veliformer is illustrated in Fig.  2.

Next, we describe the detailed process of modeling based on the 
masking mechanism. First, we need to generate the masked series. 𝐱𝐢
represents a mini-batch of 𝑁 time series samples. We can generate a set 
of mask series for each sample 𝐱𝐢 by randomly masking a portion of time 
points in the time dimension. The detailed formulation is presented as 
follows: 
{

𝐱𝐣𝐢
}𝑀

𝑗=1
=
{

Mask𝑟(𝐱𝐢)
}𝑀
𝑗=1

=
{

(

𝑚𝑐 (𝑡)𝑗 ⋅ 𝑥𝑐 (𝑡)
)𝐶,𝜏
𝑐=1,𝑡=1

}𝑀

𝑗
.

(13)

Eq. (13) denotes the generation of 𝑀 random masked series for each 𝐱𝐢. 
𝑀 is the hyperparameter of the number of masked time series, which 
indicates how many different random masked series are generated 
for each 𝐱𝐢. And 𝐱̄𝐣𝐢 denotes the 𝑗th masked time series of 𝐱𝐢. 𝑚𝑐 (𝑡)𝑗

is a random binary variable generated using a geometric distribution 
satisfying the following conditions: 

𝑚𝑐 (𝑡)𝑗 =
{

0,  with probability 𝑟,
1,  with probability 1 − 𝑟,

(14)

where 𝑟 denotes the masking part, 𝑟 is a decimal number between 0 ∼ 1, 
which indicates the proportion of the masked part in the total data 
length. The detailed procedure is summarized in Algorithm 1. Finally, 
a total of 𝑁 ∗ (𝑀 +1) series can be obtained by randomly masking the 
𝑁 time series and adding the original series. That is, 

 =
𝑁
⋃

𝑖=1

(

{

𝐱𝐢
}

∪
{

𝐱𝐣𝐢
}𝑀

𝑗=1

)

. (15)

Then  is passed through an encoder to get , and  is passed 
through a projection layer to get .  is a feature vector of  , and 
the role of  is to learn the similarity between features. The following 
equations formally describe the transformations from  to  and from 
 to . 

 =
⋃𝑁

𝑖=1

(

{

𝐳𝐢
}

∪
{

𝐳𝐣𝐢
}𝑀

𝑗=1

)

= Encoder(),

 =
⋃𝑁

𝑖=1

(

{

𝐬𝐢
}

∪
{

𝐬𝐣
}𝑀

)

=  Projector ().
(16)
𝐢 𝑗=1

4 
Algorithm 1 Geometric Masking
1: Input: 𝐱𝐢 (The original time series to be masked), 𝑙𝑚 (The average 
length of the masking subsequence), 𝑟 (The ratio of the series to be 
masked)

2: Output: 𝑚𝑎𝑠𝑘𝑒𝑑_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 (The series with random masking ap-
plied)

3: Mask Generation:
4: 𝐿 ← length of 𝐱𝐢
5: 𝑘𝑒𝑒𝑝_𝑚𝑎𝑠𝑘 ← array of True values with length 𝐿
6: 𝑝𝑚 ← 1∕𝑙𝑚
7: 𝑝𝑢 ← 𝑝𝑚 × 𝑟∕(1 − 𝑟)
8: 𝑝 ← [𝑝𝑚, 𝑝𝑢]
9: Generate a random number between 0 and 1
10: if the random number is greater than 𝑟 then
11:  Set 𝑠𝑡𝑎𝑡𝑒 ← 1
12: else
13:  Set 𝑠𝑡𝑎𝑡𝑒 ← 0
14: end if
15: for each 𝑖 from 0 to 𝐿 − 1 do
16:  𝑘𝑒𝑒𝑝_𝑚𝑎𝑠𝑘[𝑖] ← 𝑠𝑡𝑎𝑡𝑒
17:  if random value < 𝑝[𝑠𝑡𝑎𝑡𝑒] then
18:  𝑠𝑡𝑎𝑡𝑒 ← 1 − 𝑠𝑡𝑎𝑡𝑒
19:  end if
20: end for
21: 𝑚𝑎𝑠𝑘𝑒𝑑_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 ← 𝐱𝐢 × 𝑘𝑒𝑒𝑝_𝑚𝑎𝑠𝑘
22: return 𝑚𝑎𝑠𝑘𝑒𝑑_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒

The encoder used in this paper is transformer and the projection layer 
is a simple MLP. Fig.  3 further details the Veliformer’s reconstruction 
pipeline, showcasing how encoded and projected series representations 
are processed through similarity learning, aggregation, and a final 
decoder to yield the reconstructed original time series.

Using the series-level representation of the similarity between
weighted aggregation, we get 

𝐑 = Sim(),
𝐑𝐮,𝐯 =

𝐮𝐯⊤
cos ‖𝐯‖‖𝐮‖ ,

(17)

where 𝐑 is the pairwise similarity matrix of (𝑁×(𝑀+1)) input samples 
in the series representation space, with matrix size (𝑁 ×(𝑀 +1))× (𝑁 ×
(𝑀+1)). 𝐮 and 𝐯 are feature vectors from . And similarity is measured 
by the cosine similarity. Based on the learned series similarity, the 
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Fig. 3. Detailed schematic of Veliformer’s reconstruction pipeline, which emphasizes the process of learning similarities between series representations, adaptively 
aggregating information from masked sequences, and subsequently decoding the aggregated representation to reconstruct the original time series.
aggregation process for the 𝑖th original time series is as follows: 

𝐳̂𝑖 =
∑

𝑠′∈⧵{𝑠𝑖}

exp(𝐑𝑠𝑖 ,𝑠′∕𝜏)
∑

𝑠′′∈⧵{𝑠𝑖} exp(𝐑𝑠𝑖 ,𝑠′′∕𝜏)
𝐳′, (18)

where 𝐳′ represents the corresponding point-wise representation of 𝑠′, 
𝐳̂𝑖 is the reconstructed point-wise representation, and 𝜏 denotes the 
temperature hyperparameter for softmax normalization of series-wise 
similarities. Finally, after the decoder, the reconstructed original time 
series is obtained. 
{

𝐱̂𝐢
}𝑁
𝑖=1 = Decoder

(

{

𝐳̂𝑖
}𝑁
𝑖=1

)

, (19)

where 𝐱̂𝐢 is the reconstruction to 𝐱𝐢. The decoder is instantiated as a 
simple MLP layer along the channel dimension.

2.4. Periodic holding in Veliformer mask reconstruction

To establish the periodicity preservation of the Veliformer model 
during masked reconstruction, we first define periodicity formally. Let 
𝐱(𝑡) be a discrete time series with a fundamental period 𝑇𝑝, satisfying: 

𝐱(𝑡) = 𝐱
(

𝑡 + 𝑇𝑝
)

, ∀𝑡 (20)

Where 𝑇𝑝 represents the fundamental period. A masking mechanism 
is applied to generate 𝑀 masked versions of the series. These masked 
versions are denoted as 

{

𝐱(𝑗)(𝑡)
}𝑀

𝑗=1
, and each version is defined as: 

𝐱(𝑗)(𝑡) = 𝑚(𝑗)(𝑡) ⋅ 𝐱(𝑡). (21)

The variables 𝑚(𝑗)(𝑡) are binary random variables that are independently 
and identically distributed (i.i.d.), satisfying: 
E
[

𝑚(𝑗)(𝑡)
]

= 𝑝, Var
[

𝑚(𝑗)(𝑡)
]

= 𝑝(1 − 𝑝). (22)

The reconstructed series 𝐱̂(𝑡) is defined as: 

𝐱̂(𝑡) = 1
𝑀

𝑀
∑

𝑗=1
𝐱(𝑗)(𝑡). (23)

The autocorrelation function of the reconstructed series is defined 
as: 
𝑅𝐱̂(𝜏) = E[𝐱̂(𝑡) ⋅ 𝐱̂(𝑡 + 𝜏)]. (24)

Expanding Eq. (24), we have: 

𝑅𝐱̂(𝜏) =
1

𝑀2

𝑀
∑

𝑗=1

𝑀
∑

𝑘=1
E
[

𝐱(𝑗)(𝑡) ⋅ 𝐱(𝑘)(𝑡 + 𝜏)
]

. (25)

Under the assumptions of independence between different mask realiza-
tions and between the masks and the signal, the expectation of every 
term in the double summation is identical and evaluates to 𝑝2𝑅𝐱(𝜏). 
Therefore, the summation over all 𝑀2 terms simplifies as follows: 

𝑅𝐱̂(𝜏) =
1

𝑀2

𝑀
∑

𝑗=1

𝑀
∑

𝑘=1

(

𝑝2𝑅𝐱(𝜏)
)

= 1
𝑀2

⋅𝑀2 ⋅ 𝑝2𝑅𝐱(𝜏) = 𝑝2𝑅𝐱(𝜏). (26)

Thus, the autocorrelation function of the reconstructed series is propor-
tional to that of the original series, preserving its periodicity.
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When the mask intensity factor 𝑝 is nonzero, the autocorrelation 
function of the reconstructed series retains the periodicity of the origi-
nal series, scaled by 𝑝2. This proves that the masking and reconstruction 
mechanism in Veliformer effectively preserves the periodic structure of 
time series.

3. Experiment

3.1. Forecasting task formulation

To clarify the predictive capabilities of Veliformer and address 
potential confusion regarding its input–output structure, we formally 
define the forecasting task and distinguish between the model’s pre-
training and fine-tuning phases.

Task Definition: The forecasting task involves predicting future 
multivariate tidal velocity sequences based on historical observations. 
Specifically, given a historical sequence of multivariate tidal velocity 
data 𝐗𝑖𝑛𝑝𝑢𝑡 = {𝐱(𝑡−𝑇𝑖𝑛+1), 𝐱(𝑡−𝑇𝑖𝑛+2),… , 𝐱(𝑡)} spanning 𝑇𝑖𝑛 time steps, 
where each 𝐱(𝑡) = [𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡)]𝑇  represents the three-dimensional 
velocity components (X1, Y1, Z1) at time 𝑡, the model aims to predict 
the future sequence 𝐗𝑜𝑢𝑡𝑝𝑢𝑡 = {𝐱(𝑡 + 1), 𝐱(𝑡 + 2),… , 𝐱(𝑡 + 𝑇𝑜𝑢𝑡)} over the 
next 𝑇𝑜𝑢𝑡 time steps.

Input–Output Specification: In this study, the input sequence 
length 𝑇𝑖𝑛 was adjusted based on the forecasting horizon 𝑇𝑜𝑢𝑡 to provide 
sufficient historical information for the model. The configurations were 
as follows:

• For short-term horizons: To predict 𝑇𝑜𝑢𝑡 of 10 time steps (10 s), 
300 time steps (5 min), and 600 time steps (10 min), we set the 
input length to 𝑇𝑖𝑛 = 720 time steps (corresponding to 12 min of 
historical data).

• For longer-term horizons: To predict 𝑇𝑜𝑢𝑡 of 1200 time steps
(20 min), 1800 time steps (30 min), and 3600 time steps (60 min), 
we used an increased input length of 𝑇𝑖𝑛 = 7200 time steps 
(corresponding to 2 h of historical data).

In all cases, the model simultaneously processes all three velocity 
components (X1, Y1, Z1) as a unified multivariate input and generates 
predictions for all three components.

Two-Stage Training Process: Veliformer employs a two-stage
training approach:

1. Self-supervised Pre-training: In this stage, the masked reconstruc-
tion mechanism described in Section 2.3 is employed. The model 
learns to reconstruct original tidal velocity sequences from mul-
tiple masked versions, thereby capturing the inherent periodic 
patterns and temporal dependencies without requiring future 
ground truth labels [24].

2. Supervised Fine-tuning: Following pre-training, the model param-
eters are fine-tuned using the standard supervised forecasting 
objective, where the model learns to map historical sequences 
to future sequences using the mean squared error loss function.

This two-stage approach enables Veliformer to leverage both the unsu-
pervised periodic pattern learning from the masking mechanism and 
the supervised sequence-to-sequence mapping required for accurate 
forecasting.[25]
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3.2. Dataset description

The tidal data used in this study come from the ReDAPT project, 
which collects data at a tidal energy test site near the Fall of Warness, 
one of the Orkney Islands in Scotland [26]. The Fall of Warness 
is a globally significant site for tidal energy research and develop-
ment, known for its strong, consistent, and fast-flowing tidal currents, 
making it an ideal location for assessing the performance of tidal 
energy converters and related technologies. The availability of high-
quality, high-resolution data from such a well-characterized energetic 
site was a key reason for its selection, providing a robust foundation 
for developing and validating our forecasting model.

Tidal current velocity data were collected using a four-beam acous-
tic Doppler current profiler (ADCP) deployed on a gravity-anchored 
frame on the seabed [27]. Tidal current velocity data along the X, Y, 
and Z directions at depths of 22, 23, and 24 m below sea level were 
selected for multilevel prediction. These measurements, taken at three 
different depths, were chosen to capture variations in tidal currents at 
multiple layers of the water column, providing a more comprehensive 
dataset for predictive modeling [28]. The multi-depth approach is 
crucial as tidal currents exhibit vertical shear, meaning their speed 
and direction can vary significantly from the sea surface to the seabed 
due to factors like bed friction and velocity gradients. Analyzing data 
from different depths thus allows for a more accurate representation of 
the overall energy potential and the complex three-dimensional flow 
structure.

While the horizontal velocity components (X1, Y1) are the primary 
contributors to tidal power generation, the inclusion of the verti-
cal velocity component (Z1) serves as a crucial auxiliary information 
source in our multivariate forecasting framework. Although Z1 does not 
directly contribute to power calculations, it captures important three-
dimensional flow dynamics, turbulence intensity, and vorticity patterns 
that significantly influence the stability and short-term variations of 
the horizontal flow components. In multivariate time series prediction, 
deep learning models can automatically learn complex correlations 
between Z1 variations and future changes in X1 and Y1, thereby 
leveraging this additional hydrodynamic information to improve pre-
diction accuracy for the power-generating components. The vertical 
flow patterns often serve as early indicators of flow regime changes 
and environmental perturbations that subsequently affect horizontal 
currents, making Z1 a valuable predictor variable despite its indirect 
relationship to power output [29].

The data were recorded continuously over a seven-day period with 
a high-resolution sampling interval of 1 s, allowing for detailed tempo-
ral analysis. The 1-second sampling interval is particularly important 
for capturing the fine-grained dynamics and turbulent fluctuations 
inherent in tidal flows, which might be missed by coarser sampling 
rates.

The raw data were stored in .mat file format, and the dataset 
included missing values and outliers due to the possible malfunction 
of the recording instruments or interference caused by fish movement 
in the vicinity of the sensors [30]. We thoroughly pre-processed the 
data to address these issues. For non-continuous missing values, the 
average of neighboring time points was used to fill the gaps. This 
method was chosen as it provides a reasonable local estimate while 
preserving the underlying temporal structure without introducing sig-
nificant bias. Continuous missing values were directly replaced with 
the default value of 0.01 to ensure consistency. This small constant 
value was used to maintain data integrity for numerical processing and 
to clearly distinguish these imputed points from actual zero readings, 
while minimizing their impact on overall statistical properties.

To understand the underlying statistical properties of the tidal 
velocity components, we first examined their probability density dis-
tributions. Fig.  4 illustrates the distributions for the key components 
X1, Y1, and Z1, derived using histograms and Kernel Density Esti-
mation. The distributions for X1 and Y1 exhibit distinct multi-modal 
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characteristics, suggesting the presence of several dominant operational 
states within the tidal flow, possibly corresponding to different phases 
and strengths of the ebb and flood tides. In contrast, the Z1 compo-
nent shows a sharp, unimodal distribution highly concentrated around 
zero, indicating that vertical velocities are predominantly minimal 
but can experience occasional fluctuations. These varied and complex 
distributions underscore the non-Gaussian nature of the tidal data and 
highlight the necessity for sophisticated modeling approaches capable 
of capturing such diverse data patterns.

To further validate and characterize the inherent periodicity crucial 
for tidal energy forecasting, we performed frequency and time-domain 
analyses. A frequency domain analysis using the Fast Fourier Transform 
(FFT) was conducted on the velocity components. As illustrated in 
Fig.  5, both the X1 and Y1 components exhibit a distinct dominant 
frequency corresponding to a period of approximately 12 h, consistent 
with the known semidiurnal tidal cycles driven by lunar gravitation. 
Although the Z1 component exhibits more scattered spectral energy, 
a weak periodicity is still observable. These findings from the spectral 
analysis confirm that the dataset contains clear periodic patterns.

Complementing the frequency-domain insights, an analysis of the 
temporal dependence structure was conducted using Autocorrelation 
Function (ACF) and Partial Autocorrelation Function (PACF) plots, 
shown in Fig.  6 for a representative key tidal velocity component (X1). 
To clarify this analysis, the ACF measures the correlation between the 
time series and its own lagged values, revealing the overall strength of 
persistence and long-term memory in the data. The PACF, conversely, 
measures the direct correlation between an observation and a specific 
lag after removing the influence of the intermediate time steps, which 
is useful for identifying the order of autoregressive processes [31]. 
These tools are fundamental for diagnosing the underlying structure 
of time series data. The ACF plot for X1 demonstrates a very slow 
decay, indicating strong persistence and significant autocorrelation 
across many lags. Each lag represents a one-second time step, consistent 
with the data’s sampling frequency. This pattern is characteristic of 
time series with strong underlying periodicities or trends. The PACF, 
on the other hand, cuts off sharply after a few lags, suggesting an 
autoregressive nature in the data once the influence of intermediate 
observations is removed. Together, these ACF and PACF characteristics 
strongly reinforce the presence of exploitable temporal structures and 
periodicities within the tidal velocity data, justifying the design choice 
in Veliformer to explicitly preserve such periodic features for improved 
forecasting accuracy.

To facilitate the subsequent computation of OPF, we converted the 
tidal flow rate into power using the Flux method [32]. The theoret-
ical power (𝑃𝑡𝑖𝑑𝑎𝑙) that can be extracted by a tidal stream turbine is 
generally calculated as: 

𝑃𝑡𝑖𝑑𝑎𝑙 =
1
2
𝜌𝐴𝑠𝑤𝑒𝑝𝑡𝑢

3
𝑡𝑖𝑑𝑎𝑙𝐶𝑃 𝜂𝑜𝑣𝑒𝑟𝑎𝑙𝑙 (27)

where 𝜌 is the density of seawater, 𝐴𝑠𝑤𝑒𝑝𝑡 is the cross-sectional area 
swept by the turbine rotors (m2), 𝑢𝑡𝑖𝑑𝑎𝑙 is the velocity of the tidal 
current (m/s), 𝐶𝑃  is the power coefficient, and 𝜂𝑜𝑣𝑒𝑟𝑎𝑙𝑙 is the overall 
conversion efficiency of the power train. The tidal current velocity 
data 𝑢𝑡𝑖𝑑𝑎𝑙, collected as described previously, serves as a primary input 
for this power calculation. For the purpose of OPF calculations in this 
work, appropriate and consistent values for 𝐴𝑠𝑤𝑒𝑝𝑡, 𝐶𝑃 , and 𝜂𝑜𝑣𝑒𝑟𝑎𝑙𝑙 were 
utilized.

The dataset is categorized into a training set, a test set and a 
validation set with proportions of 70%, 20% and 10%, respectively. 
The validation set is used to tune the model’s hyperparameters. The 
predictive accuracy of the forecasting models developed and evaluated 
using this dataset will be primarily assessed through Mean Absolute 
Error (MAE) and Mean Squared Error (MSE). These metrics are formally 
defined as: 

𝑀𝐴𝐸 = 1
𝑛
∑

|𝑦𝑖 − 𝑦̂𝑖| (28)

𝑛 𝑖=1
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Fig. 4. Distribution analysis of key tidal velocity components (X1, Y1, Z1) via histograms and kernel density estimation, revealing multi-modal distributions for 
X1 and Y1, and a sharp unimodal distribution for Z1.
Fig. 5. Dominant 12-hour periodicity revealed by spectral analysis of tidal velocities in X, Y, and Z directions.
Fig. 6. ACF and PACF analysis of a key tidal velocity component (X1). The slow decay in ACF highlights strong persistence/periodicity, while the PACF suggests an 
underlying autoregressive structure. (Note: The figure displays data for component X1, chosen for its representative characteristics of the primary flow dynamics. 
The lag units are in time steps, where each time step corresponds to 1 s given our data sampling interval.)
𝑀𝑆𝐸 = 1
𝑛

𝑛
∑

𝑖=1
(𝑦𝑖 − 𝑦̂𝑖)2 (29)

where 𝑛 represents the total number of data points in the evaluation 
set, 𝑦𝑖 is the actual observed value for the 𝑖th data point, and 𝑦̂𝑖 is the 
corresponding value predicted by the forecasting model. These metrics 
will be instrumental in comparing the performance of different models 
discussed in subsequent sections.

3.3. Optimal power flow cost comparison case study

The IEEE 118-bus power system is a complex and widely used 
standardized test system for power system research. It contains 118 
buses, 186 lines, and 54 transformers, which together represent a 
complex urban power grid network [33]. The system simulates a power 
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network in a region of the United States and is widely used to study 
power system dynamic behavior. Similarly, the IEEE 39-bus system is a 
well-known test case that represents the power grid in the northeastern 
region of the United States. It consists of 39 buses, 46 lines, and 10 
generators, making it suitable for studying dynamic stability and power 
flow analysis.

In our case study, we set the reference power for both systems 
to 100 MVA, with reference voltages set to 380 kV and 110 kV, 
respectively. The nominal frequency for both systems is maintained at 
60 Hz. To ensure the accuracy of the study, both systems utilize high-
precision power flow calculation and optimization algorithms during 
the optimized tidal energy generation operation. The tidal energy 
generator is connected to the 110 kV voltage level in both the IEEE 
118-bus and 39-bus systems. Specifically, the generator is connected 
to bus 25 in the IEEE 39-bus system and bus 61 in the IEEE 118-bus 
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Table 2
Cost in IEEE 118 bus and IEEE 39 bus systems.
 TCN [34] TCN-LSTM [35] LSTM-GRU [36] GRU-FCN [37] Veliformer

 IEEE-39 IEEE-118 IEEE-39 IEEE-118 IEEE-39 IEEE-118 IEEE-39 IEEE-118 IEEE-39 IEEE-118 
 
Cost

15min 29207 18737 31445 45668 39141 18782 37089 19466 28981 16767  
 6h 768806 839535 796994 751166 772078 791885 823226 1066771 745341 678485  
 20h 2772456 1546014 2811036 1312254 2736331 1795600 2727652 1860472 2644167 1266977 
1. All costs are in U.S. dollars (USD).
2. Gold represents the best performance, Silver represents the second best, Copper represents the third best.
Table 3
Model performance comparison across multiple time intervals (10 s, 5 min, 10 min, 20 min, 30 min, 60 min) for multivariate time-series forecasting (see Ref. 
[38]).
 Models 10 s 5 min 10 min 20 min 30 min 60 min
 MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE  
 Crossformer [39] 0.256 0.391 0.298 0.386 0.302 0.427 0.348 0.461 0.276 0.409 0.303 0.429 
 TCN [34] 0.466 0.475 0.313 0.390 0.388 0.433 0.287 0.350 0.277 0.350 0.335 0.389 
 LSTM-GRU [36] 1.310 0.899 0.467 0.404 0.451 0.401 0.462 0.417 0.467 0.419 0.458 0.420 
 TCN-LSTM [35] 0.468 0.533 0.346 0.412 0.397 0.439 0.281 0.352 0.306 0.352 0.334 0.369 
 GRU-FCN [37] 1.843 0.985 0.373 0.364 0.457 0.402 0.461 0.414 0.475 0.424 0.502 0.439 
 Informer [40] 0.545 0.458 0.434 0.542 0.403 0.507 0.543 0.573 0.605 0.599 0.732 0.673 
 DLinear [41] 0.291 0.352 0.382 0.361 0.386 0.369 0.391 0.373 0.401 0.384 0.406 0.393 
 FNet [42] 0.297 0.385 0.384 0.354 0.381 0.360 0.378 0.367 0.385 0.377 0.413 0.415 
 UTide [38] 0.752 0.613 0.518 0.488 0.425 0.415 0.389 0.390 0.357 0.365 0.325 0.461 
 Veliformer 0.236 0.336 0.287 0.347 0.284 0.344 0.271 0.348 0.263 0.345 0.289 0.355 

1. Gold represents the best performance, Silver represents the second best, Copper represents the third best.
system. The impact of the tidal energy generator on both power systems 
is analyzed through precise power flow optimization.

The effectiveness of the proposed model was validated by integrat-
ing tidal energy generation power into both the IEEE 118-bus and IEEE 
39-bus systems, which allowed us to calculate the system generation 
costs under different time scenarios. This case study aims to assess the 
performance of various models in optimizing power flow costs within 
these systems, including the proposed Veliformer model, designed to 
enhance accuracy in such tasks.

The models compared in this study include TCN [34], TCN-LSTM 
[35], LSTM-GRU [36], GRU-FCN [37], and the proposed Veliformer 
model. We calculated generation costs across three scenarios: 15 min, 
6 h, and 20 h, which denoted the total forecast horizons. The prediction 
time steps were set to 1 min for the 15-minute scenario and 10 min 
for the 6-hour and 20-hour scenarios, as shown in Table  2. These 
time intervals were selected to simulate both short-term and long-term 
operational scenarios within the IEEE 118-bus system, allowing for a 
comprehensive evaluation of each model’s performance.

Table  2 shows that the proposed Veliformer model achieved the 
lowest generation costs across all three-time intervals. In different 
time scenarios, the Veliformer model demonstrated significant cost 
advantages across both the IEEE 118-bus and 39-bus systems. In the 
15-minute scenario, Veliformer reduced costs by approximately 10.5% 
to 11.1% compared to the TCN and LSTM-GRU models in the IEEE 118-
bus system, and by 0.8% to 7.7% compared to the TCN and TCN-LSTM 
models in the IEEE 39-bus system. In the 6-hour scenario, Veliformer 
achieved cost reductions of 9.6% and 19.2% in the IEEE 118-bus 
system (compared to TCN-LSTM and TCN models, respectively), while 
reducing costs by 3.0% and 6.5% in the IEEE 39-bus system (compared 
to the TCN and LSTM-GRU models). In the 20-hour scenario, Veliformer 
achieved savings of 3.4% to 16.1% in the IEEE 118-bus system (com-
pared to TCN-LSTM and TCN models), and 4.6% in the IEEE 39-bus 
system (compared to both TCN-LSTM and TCN models).

These cost reductions highlight the efficiency of Veliformer in min-
imizing power flow costs, primarily attributed to its masking mecha-
nism, which enhances the model’s ability to focus on the most relevant 
data. The consistent performance of the Veliformer model across differ-
ent time frames underscores its robustness and potential for application 
in integrated energy systems, where efficient power flow optimization 
is crucial.
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3.4. Model prediction accuracy comparison experiment

We evaluate Veliformer against nine baseline models—Crossformer, 
TCN, LSTM-GRU, TCN-LSTM, GRU-FCN, Informer, DLinear, FNet, and 
UTide—across six different forecast horizons: 10 seconds, 5 minutes, 10 
minutes, 20 minutes, 30 minutes, and 60 minutes. Table  3 summarizes the 
results in terms of Mean Squared Error (MSE) and Mean Absolute Error 
(MAE). We acknowledge that pointwise metrics such as MSE and MAE 
can overweight phase misalignment in periodic signals. However, our 
comparisons emphasize relative model performance and downstream 
OPF cost benefits, so our conclusions do not rely on a single pointwise 
metric. Therefore, we complement MSE/MAE with the Q value (a 
Sobolev-norm-based metric for surface similarity) and R2 to assess 
both phase and amplitude consistency in a more robust manner. Table 
4 summarizes the key advantages and limitations of these baselines, 
which provides insights into their design characteristics and forecasting 
capabilities.

Short-term horizons (10 s, 5 min, 10 min). For short-term fore-
casts, Veliformer consistently delivered superior accuracy over compet-
ing models. At the 10 s interval, it reduced MSE by roughly 8% and 
MAE by about 14% compared to the next-best model, Crossformer. 
Moving to 5 min predictions, Veliformer’s MSE and MAE showed 
improvements of around 4% and 10%, respectively, relative to Cross-
former, and outperformed TCN, TCN-LSTM, DLinear, and FNet by even 
wider margins. By 10 min, Veliformer retained a consistent edge, 
with its MSE and MAE about 6% and 19% lower, respectively, than 
Crossformer, while the gap against other baselines grew larger. Across 
the short-term horizons, Veliformer achieved an average improvement 
of approximately 7.64% in MSE and 9.84% in MAE.

Longer horizons (20 min, 30 min, 60 min). As the forecast 
window extended, Veliformer’s relative lead remained pronounced. For 
instance, at 20 min, it demonstrated an approximate 4% drop in MSE 
and a 1% drop in MAE over the second-best TCN-LSTM. At the 30 min 
horizon, Veliformer improved MSE by around 5% relative to Cross-
former. Even at the longest 60 min forecast, Veliformer still surpassed 
the runner-up by around 5% in MSE and 17% in MAE. Overall, these 
results confirm that Veliformer delivers robust gains across all time 
intervals, providing anywhere from a few percentage points to double-
digit percentage error reductions compared to baseline models. Across 
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Fig. 7. Performance comparison of Veliformer against eight baseline models on Q value and R2 metrics. The results are based on the 20-minute forecasting 
scenario. Both metrics indicate that Veliformer achieves the best performance.
Table 4
Summary of baseline models.
 Model Advantages Limitations Ref.

 Crossformer Captures long-range dependencies using cross-dimension 
attention for inter-channel interactions and frequency mixing 
for spectral pattern recognition.

Coarse temporal granularity, optimized for long-term focus, 
can lead to sensitivity to short-term fluctuations and 
overlooking of localized details.

[39] 

 TCN Employs causal and dilated convolutions ensuring valid 
temporal flow, enabling fast training, stable gradients, and 
large receptive fields for contextual understanding.

Fixed convolutional structure offers limited dynamic 
temporal adaptivity, potentially struggling with highly 
irregular or non-stationary time series patterns.

[34] 

 LSTM-GRU Leverages gated recurrence mechanisms from LSTM and GRU 
units to effectively model complex sequential dynamics and 
manage information flow over long sequences.

May still encounter vanishing gradient challenges in very 
long sequences and can incur high inference latency due to 
its inherently sequential computation.

[36] 

 TCN-LSTM Combines TCN’s ability to capture broad temporal contexts 
via long receptive fields with LSTM’s proficiency in memory 
retention for robust sequential data modeling.

The hybrid architecture can be computationally more 
intensive than its standalone components and typically lacks 
inherent mechanisms for frequency-aware processing.

[35] 

 GRU-FCN Provides a lightweight and efficient architecture by 
integrating GRUs for temporal modeling with FCNs for 
convolutional feature encoding, suitable for faster processing.

May offer limited interpretability of learned features and 
possesses weaker inherent capabilities for explicit frequency 
domain analysis or decomposition.

[37] 

 Informer Utilizes a ProbSparse attention mechanism to efficiently 
process very long sequences, significantly reducing the 
computational overhead associated with standard attention 
mechanisms.

Its strong focus on dominant long-range patterns via sparse 
attention may result in overlooking finer-grained, localized 
temporal details crucial for some predictions.

[40] 

 DLinear Offers a simple yet robust baseline by decomposing time 
series into distinct trend and seasonal components, which are 
then modeled linearly for interpretability.

The inherent linearity restricts its ability to capture 
non-linear patterns and complex interactions, making it less 
adaptive to abrupt changes or localized disruptions.

[41] 

 FNet Replaces computationally intensive self-attention with 
unparameterized Fourier Transforms for global token mixing, 
significantly accelerating inference and reducing model 
complexity.

Reliance on Fourier analysis, which assumes periodicity and 
stationarity, limits its adaptivity to non-stationary or 
non-periodic data and complex aperiodic events.

[42] 
the longer horizons, Veliformer achieved an average improvement of 
approximately 4.30% in MSE and 2.67% in MAE.

To further assess performance, Fig.  7 presents a comparison based 
on Q value and the coefficient of determination (𝑅2) for the 20-
minute forecasting scenario. The Q value, a metric that quantifies the 
magnitude of error between predicted and observed values, shows 
Veliformer achieving the top score of 0.0889 [43]. Similarly, for the 
𝑅2, which represents the proportion of variance in the observed data 
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that is predictable from the model, Veliformer again leads with a 
score of 0.9684. These results provide additional evidence of Veli-
former’s superior predictive accuracy. Fig.  8 illustrates the predicted 
time-series curves from Veliformer and the Crossformer baseline against 
the ground truth. The plots for both 20-minute and 60-minute horizons 
visually confirm Veliformer’s ability to more closely track the actual 
tidal velocity, accurately capturing the critical peaks and troughs that 
are essential for reliable operational planning.
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Fig. 8. Case visualization of prediction performance for 20-minute and 60-minute forecast horizons. The plot compares the ground truth with predictions from 
Veliformer and the baseline Crossformer.
Fig. 9. Comparative analysis of Veliformer and baseline models on high-frequency forecasting metrics for a 20-minute prediction horizon. (Left) Spectral Similarity, 
where a higher score is better. (Center) High-Frequency MSE and (Right) High-Frequency MAE, where lower values indicate better performance. The results 
highlight Veliformer’s superior capability in accurately predicting high-frequency components.
Overall, Veliformer provides consistently lower MSE and MAE val-
ues than the other methods across all six time intervals, with an 
average improvement of 4.91% in prediction accuracy, supplemented 
by its leading performance on Q and 𝑅2 metrics, which indicates its 
robustness for both short-term and long-term multivariate time-series 
forecasting tasks.

3.5. Validation of high-frequency component forecasting

To address concerns regarding the importance of high-frequency 
components in tidal energy forecasting – where the cubic relationship 
between velocity and power (𝑃 ∝ 𝑢3) can amplify the impact of 
small, rapid fluctuations – a dedicated experiment was conducted. This 
experiment was designed to quantitatively assess Veliformer’s ability to 
accurately predict these crucial high-frequency dynamics compared to 
baseline models (LSTM, Transformer, and TCN). The evaluation was 
performed on a 20-minute forecasting task, focusing on three spe-
cialized frequency-domain metrics: Spectral Similarity, High-Frequency 
MSE, and High-Frequency MAE.

Spectral Similarity measures the cosine similarity between the fre-
quency spectra of the predicted and true signals, indicating how well 
the overall periodic structure is preserved. High-Frequency MSE and 
MAE are calculated after applying a high-pass filter to isolate compo-
nents with periods shorter than 10 min, directly quantifying the model’s 
accuracy on the most rapid variations.

The results, presented in Fig.  9, unequivocally demonstrate Veli-
former’s superior performance in capturing high-frequency compo-
nents. Veliformer achieved a Spectral Similarity score of 0.989, sig-
nificantly outperforming the next-best model, Transformer (0.945), 
and indicating a much higher fidelity in reconstructing the complete 
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frequency spectrum. Most critically, in the direct evaluation of high-
frequency errors, Veliformer obtained an MSE of 0.0382 and an MAE 
of 0.153. These error values are substantially lower – by a factor of 
approximately 2.6 for MSE and 1.6 for MAE compared to the Trans-
former – than those of all baseline models. This marked reduction in 
high-frequency error confirms that Veliformer’s masked reconstruction 
mechanism is highly effective at preserving the fine-grained temporal 
details essential for accurate tidal power estimation, directly validating 
its advantage in handling the very components that are most critical to 
energy conversion calculations.

3.6. Sensitivity analysis of hyperparameters

To comprehensively evaluate the robustness of Veliformer and iden-
tify optimal or influential hyperparameter settings, an extensive sensi-
tivity analysis was conducted. In these experiments, one hyperparam-
eter was varied at a time, while all other parameters were maintained 
at their established baseline values. For each specific configuration, 
the Veliformer model underwent both its self-supervised pre-training 
and supervised fine-tuning stages before Veliformer’s predictive per-
formance, in terms of Test MSE and Test MAE, was evaluated on 
the designated test set. The summarized results of these experiments, 
illustrating performance trends for each tested hyperparameter, are 
presented in Fig.  10.

Parameters central to Veliformer’s masking strategy were examined. 
For the Temporal Unit (M), defining the number of augmented masked 
sequences utilized, model performance, measured by both MSE and 
MAE, generally exhibited consistent improvement with an increasing 
number of units within the tested range of 1 to 7. This upward trend 
in performance suggests that incorporating a richer set of augmented 
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Fig. 10. Sensitivity of Veliformer’s prediction performance (Test MSE and Test MAE) to variations in individual hyperparameters. Each subplot illustrates the 
change in error metrics as a single hyperparameter is varied, while all other parameters are held constant at their baseline values.
perspectives on the input series allows Veliformer to build more robust 
and comprehensive temporal feature representations. Such representa-
tions are crucial for accurate tidal energy forecasting where diverse 
and subtle short-term patterns exist. The mask ratio, representing the 
proportion of the input sequence that is masked, was evaluated from 
0.2 to 0.8. The analysis showed that lower ratios within this evalu-
ated range, specifically around 0.2, tended to yield significantly better 
results than higher ratios. As the mask ratio increased beyond 0.2, a 
clear upward trend in both MSE and MAE was observed, indicating 
performance degradation. This finding suggests that while a certain 
degree of masking is essential for the model’s learning mechanism, 
an overly aggressive masking approach can be detrimental, likely by 
removing too much critical information about tidal patterns for the 
model to effectively learn and reconstruct. Regarding the mask length 
divisor, which inversely controls the length of contiguous masked 
segments, the analysis revealed a clear trend. Model performance, in 
terms of both MSE and MAE, consistently improved as the divisor 
increased when tested from 1 to 7. An increasing divisor corresponds to 
shorter contiguous masked segments. This outcome indicates that mask-
ing shorter, more distributed segments throughout the time series is 
more advantageous for Veliformer’s performance than masking fewer, 
longer contiguous blocks. The latter approach might excessively dis-
rupt local temporal dependencies or obscure entire short-term periodic 
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events, whereas shorter, distributed masked segments may encourage 
the model to learn finer-grained contextual relationships and improve 
the model’s ability to capture nuances of the tidal data. However, this 
is a preliminary observation under conditions where other parameters 
are held constant. The potential interaction effects between parameters 
warrant a more detailed investigation, which will be analyzed in the 
next section.

Key architectural parameters of the Transformer were analyzed. 
The model dimension (𝑑𝑚𝑜𝑑𝑒𝑙) exhibited a distinct U-shaped sensitivity 
curve, indicating an optimal capacity. As 𝑑𝑚𝑜𝑑𝑒𝑙 increased from smaller 
values such as 16, predictive performance, reflected by decreasing MSE 
and MAE, improved significantly. An optimal capacity was observed 
around a dimension of 48 to 64. Beyond this optimal region, further 
increases in 𝑑𝑚𝑜𝑑𝑒𝑙 led to a slight degradation in performance, possi-
bly due to the onset of overfitting with excessive parameters for the 
given dataset size or an increased difficulty in optimizing a larger, 
more complex network. A similar U-shaped trend was observed for 
the number of Transformer layers (num_layers). Both a low number 
of layers, such as a single layer, which may lack the hierarchical 
capacity to model complex temporal dependencies, and a high number 
of layers, such as 5 or 6 layers, which can be harder to train effectively 
and become prone to overfitting or issues like vanishing gradients, 
resulted in higher prediction errors. An intermediate depth, typically 
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around 2 to 3 layers, was found most effective, striking an optimal 
balance between model expressiveness and the model’s ability to gen-
eralize from training data. The dimension of the feedforward network 
(‘dim_feedforward‘) within the Transformer layers also demonstrated 
an optimal range. Performance generally improved (errors decreased) 
as this feedforward dimension increased from smaller values like 32 
or 64. The lowest error metrics were typically observed for moder-
ately larger dimensions, such as 128 or 256. Further increasing this 
feedforward dimension beyond this range did not yield substantial 
additional performance gains and, in some instances, led to a slight 
increase in error, indicating a point of diminishing returns regarding 
model capacity for this specific network component.

Common training and regularization hyperparameters were as-
sessed. The learning rate (lr) demonstrated a critical impact on model 
training and final predictive accuracy, exhibiting a pronounced U-
shaped curve. The analysis revealed a distinct optimal range, typically 
around 1 × 10−4 to 5 × 10−5, where the model achieved the lowest 
MSE and MAE. Learning rates of 1 × 10−5 or less significantly hindered 
convergence speed and resulted in suboptimal performance, likely due 
to the optimizer struggling to escape shallow local minima. Conversely, 
learning rates of 2×10−4, 5×10−4, and above led to training instability 
and divergence, causing a sharp increase in prediction errors. The 
choice of batch size also proved influential, with smaller batch sizes 
generally yielding superior results. The experiments, testing batch sizes 
from 16 to 256, indicated that smaller values like 16 or 32 resulted 
in lower MSE and MAE compared to larger batch sizes such as 128 or 
256. Larger batches tended to increase prediction errors, a phenomenon 
sometimes attributed to larger batches converging to sharper minima in 
the loss landscape, which may generalize less effectively than the flatter 
minima often found by smaller batches. The dropout rate analysis 
clearly confirmed the benefits of regularization for the Veliformer 
model. Performance was notably worse, with higher MSE and MAE, 
when dropout was not applied (a dropout rate of 0.0), indicating a 
tendency of the model to overfit the training data. An intermediate 
dropout rate, typically found most effective in the range of 0.1 to 
0.2, minimized both error metrics. Dropout rates higher than this 
optimal range, such as 0.3 or 0.4, began to degrade performance again, 
likely due to excessive information loss during training, leading to 
underfitting.

In summary, the detailed analyses underscore that Veliformer’s 
predictive accuracy is highly sensitive to the interplay of architectural 
design, masking strategy configuration, and training procedure. The 
identified trends and more precisely characterized optimal regions 
for these hyperparameters offer valuable and actionable insights. This 
enhanced understanding facilitates the effective deployment of Veli-
former in tidal energy forecasting, ensuring robust performance and 
maximizing Veliformer’s predictive capabilities when tackling complex 
time series data.

3.7. Effect of different masking strategies

Building on the preliminary analysis in Section 3.6, which suggested 
that shorter mask segments were optimal under a fixed set of hyperpa-
rameters, we recognize that the effect of a single hyperparameter may 
not fully capture its role in a complex model. Specifically, the optimal 
mask segment length might be significantly influenced by the chosen 
mask ratio. To investigate this interaction effect, we designed a more 
comprehensive experiment by systematically varying the combination 
of mask ratio and mask segment length. The mask segment length sets 
the average size of contiguous segments within the geometric masking 
process. These experiments utilized model hyperparameters established 
from prior sensitivity analyses. The Veliformer model incorporated 
both self-supervised pre-training and supervised fine-tuning stages. Test 
MSE and MAE served as the performance evaluation metrics. Fig.  11 
summarizes the main effects of these masking parameters. Fig.  12 
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details their interaction effects through heatmaps, while Table  5 lists 
the top-performing parameter combinations.

An examination of the main effects, referencing Fig.  11, reveals 
the average trends for each masking parameter when the influence 
of the other is averaged out. For the masking ratio, a clear trend 
emerges: lower to moderate values, particularly around 0.2, generally 
yield superior average performance, with a noticeable degradation as 
the proportion of masking increases towards 0.5. Regarding the length 
of masked segments, the analysis presents a more nuanced picture 
that contrasts with the findings from the single-variable sensitivity 
analysis in Section 3.6. While the earlier analysis pointed to shorter 
segments being optimal for a specific fixed configuration, the main 
effects analysis here indicates that longer segments (specifically 90 
and 180) are more beneficial on average when evaluated across all 
mask ratios. This apparent discrepancy strongly suggests the presence 
of a significant interaction effect, meaning the ideal segment length is 
highly dependent on the chosen mask ratio.

The heatmaps in Fig.  12 provide a more nuanced understanding 
by illustrating significant interaction effects between the masking ratio 
and mask segment length. These visualizations clearly show that the 
optimal setting for one parameter often depends on the value of the 
other, rather than a universally optimal value existing for each in 
isolation. For instance, a masking ratio of 0.4 paired with a relatively 
short mask segment length of 45 achieved one of the best overall 
performances. Conversely, a lower masking ratio, such as 0.2, also 
produced excellent results when combined with a very long mask 
segment length of 180. Furthermore, even a high masking ratio of 0.5 
demonstrated competitive performance when matched with a moderate 
mask segment length of 60, while performing poorly with shorter mask 
segment lengths. Table  5 highlights these distinct optimal pairings by 
listing the top three configurations. This interplay suggests the model 
can adapt to different masking intensities if the segment length is 
appropriately chosen to balance context and reconstruction difficulty.

In conclusion, the investigation into different masking strategies un-
derscores that simple monotonic rules do not govern the effectiveness 
of Veliformer’s masking mechanism for the masking ratio and mask 
segment length individually. Instead, optimal predictive accuracy arises 
from specific combinations of these two parameters. The findings indi-
cate a preference for moderate masking ratios, but the ideal segment 
length is interactive and context-dependent, with several distinct com-
binations yielding top-tier performance. This detailed understanding is 
crucial for configuring the masking strategy to maximize Veliformer’s 
capabilities.

3.8. Ablation test

To assess the contribution of different components within the Veli-
former model, an ablation study was conducted, as shown in Fig. 
13. The base Veliformer model includes three key components: the 
masking mechanism, the Transformer architecture, and a fine-tuning 
process. To evaluate the impact of the masking mechanism and fine-
tuning, two modified versions of the model were tested: one without the 
masking mechanism (denoted as ‘‘Veliformer w/o Masking’’) and an-
other without the fine-tuning process (‘‘Veliformer w/o Fine-tuning’’). 
Additionally, the standard Transformer [44] model was included for 
comparison.

The performance of each model variant was evaluated using both 
MSE and MAE as key metrics. The base Veliformer model demonstrated 
the lowest error rates, achieving an MSE of 0.236 and an MAE of 0.336. 
When the masking mechanism was removed from the model, the MSE 
increased to 0.278 and the MAE rose to 0.386. Similarly, when the fine-
tuning process was excluded, the error values further increased, with 
the MSE reaching 0.305 and the MAE rising to 0.392. The standard 
Transformer model exhibited the highest error rates among all tested 
configurations, with an MSE of 0.330 and an MAE of 0.421. The results 
indicate that both the masking mechanism and fine-tuning enhance 
model performance. The masking mechanism improves feature capture, 
while fine-tuning refines parameters for greater accuracy.
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Fig. 11. Main effects of mask ratio and mask length on model performance.
Fig. 12. Heatmaps showing the impact of combining different Mask Ratios and Mask Lengths on model prediction error. The left heatmap displays Test MSE, 
and the right heatmap displays Test MAE.
Table 5
Top 3 masking strategy combinations for optimal performance.
 Metric Rank Mask ratio Mask length Test MSE Test MAE  
 
Lowest MSE

1 0.4 45 0.26784854 0.34311256 
 2 0.5 60 0.26885887 0.34379373 
 3 0.2 180 0.26907027 0.34449386 
 
Lowest MAE

1 0.4 45 0.26784854 0.34311256 
 2 0.5 60 0.26885887 0.34379373 
 3 0.2 180 0.26907027 0.34449386 
Note: The values for Test MSE and Test MAE are rounded to 8 decimal places for presentation. The ranking is based on the 
full precision values. The top configurations for MSE and MAE are identical in this dataset.
4. Conclusion

This paper addressed the prevalent challenge of periodicity dis-
ruption in deep learning-based short-term tidal energy forecasting by 
proposing Veliformer, a novel Transformer model. Veliformer utilizes 
a unique masking and reconstruction technique, rebuilding the original 
time series from multiple adjacent masked sequences. This approach is 
designed to effectively preserve the inherent periodic structure of tidal 
energy data, a capability supported by our theoretical analysis.

Comprehensive experimental evaluations demonstrated
Veliformer’s significant advantages. The model achieved an average 
prediction accuracy improvement of 4.91% over several state-of-the-
art baseline models across multiple forecasting horizons. Furthermore, 
when applied to Optimal Power Flow (OPF) simulations on standard 
IEEE test systems, Veliformer delivered substantial reductions in power 
generation costs, highlighting its practical utility. The efficacy of the 
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core masking mechanism was further validated through ablation stud-
ies, while extensive sensitivity and masking strategy analyses not only 
confirmed the model’s robustness but also provided valuable guidelines 
for optimal hyperparameter configuration.

In summary, Veliformer offers a robust and efficient solution for 
enhancing short-term tidal energy forecasting and contributing to more 
effective power system optimization. By successfully preserving critical 
periodic information, the model facilitates more reliable grid inte-
gration and cost-effective management of tidal energy resources. The 
fundamental principles of its periodicity-preserving masking strategy 
may also hold promise for other time series forecasting domains where 
similar structural patterns are crucial. Future research will focus on 
exploring Veliformer’s adaptability to other periodic renewable energy 
sources, assessing its performance and scalability in larger and more 
complex power systems, and pursuing further advancements in its 
adaptive masking techniques.
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Fig. 13. Ablation Test on Veliformer. Veliformer (Base) is the original model, 
w/o means ‘‘without’’.
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Appendix A. Detailed OPF solution method

The Optimal Power Flow (OPF) problem described in Eq. (1) is 
solved using the primal–dual interior-point method. By introducing 
slack variables and adding a barrier function to the objective function, 
the inequality constraints are transformed into equality constraints. 
Thus, the solution of problem (1) is transformed into the solution of 
the following problem: 

min 𝑓 (𝐱𝜏 (𝐭)) − 𝜉

( 𝑟
∑

𝑝=1
ln 𝑠1𝑝 +

𝑟
∑

𝑝=1
ln 𝑠2𝑝

)

s.t. ℎ(𝐱) = 0,

𝑔(𝐱) − 𝑠1 − 𝑔 = 0,

(A.1)
𝑔(𝐱) + 𝑠2 − 𝑔̄ = 0,
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where 𝑠1 and 𝑠2 are slack variables. 𝑠1𝑝 and 𝑠2𝑝 are the 𝑝th elements 
in the slack variable vectors 𝑠1 and 𝑠2 (𝑠1𝑝 > 0, 𝑠2𝑝 > 0). 𝑟 denotes the 
number of inequality constraints. 𝜉 is the barrier parameter. Problem 
(A.1) is an optimization problem containing only equation constraints, 
so it can be solved by the Lagrange multiplier method. Its Lagrangian 
function is as follows: 
𝐿 = 𝑓 (𝐱𝜏 (𝐭)) − 𝜆𝑇 ℎ(𝐱) − 𝑧𝑇1

[

𝑔(𝐱) − 𝑠1 − 𝑔
]

− 𝑧𝑇2
[

𝑔(𝐱) + 𝑠2 − 𝑔̄
]

− 𝜉
𝑟
∑

𝑝=1
ln 𝑠1𝑝 − 𝜉

𝑟
∑

𝑝=1
ln 𝑠2𝑝,

(A.2)

where 𝑧1 > 0, 𝑧2 < 0, 𝑠1𝑝 ≥ 0, 𝑠2𝑝 ≥ 0, 𝜆 ≠ 0. 𝜆, 𝑧1 and 𝑧2 represent the 
Lagrange multipliers associated with the constraints. 𝑥, 𝑠1, and 𝑠2 are 
the original variables.

According to the theory of Fiacco and McCormick [23], if the barrier 
parameter 𝜉 monotonically decreases to 0 during the iteration process, 
the solution of problem (A.1) is the optimal solution of problem (1). The 
perturbed KKT conditions form a system of nonlinear equations, which 
can be solved by Newton’s method. We linearize the KKT conditions to 
obtain: 
∇2
𝑥𝑓 (𝐱

𝜏 (𝐭))𝛥𝑥 − ∇2
𝑥ℎ(𝐱)𝜆𝛥𝑥

− ∇2
𝑥𝑔(𝐱)(𝑧1 + 𝑧2)𝛥𝑥 − ∇𝑥ℎ(𝐱)𝛥𝜆

− ∇𝑥𝑔(𝐱)(𝛥𝑧1 + 𝛥𝑧2) = −𝐿𝑥,

∇𝑥ℎ(𝐱)𝑇 𝛥𝑥 = −𝐿𝜆,

∇𝑥𝑔(𝐱)𝑇 𝛥𝑥 − 𝛥𝑠1 = −𝐿𝑧1 ,

∇𝑥𝑔(𝐱)𝑇 𝛥𝑥 + 𝛥𝑠2 = −𝐿𝑧2 ,

𝑍1𝛥𝑠1 + 𝑆1𝛥𝑧1 = −𝐿𝑠1 ,

𝑍1𝛥𝑠1 + 𝑆2𝛥𝑧2 = −𝐿𝑠2 .

(A.3)

Where 𝑆1 and 𝑆2 represent the diagonal matrices of the slack variables 
𝑠1 and 𝑠2, respectively. Similarly, 𝑍1 and 𝑍2 represent the diagonal 
matrices of the Lagrange multipliers 𝑧1 and 𝑧2, respectively.

The corrections for each iteration can be obtained by solving
Eq.  (A.3) (

𝛥𝑤 = [𝛥𝑥, 𝛥𝜆, 𝛥𝑠1, 𝛥𝑠2, 𝛥𝑧1, 𝛥𝑧2]
)

, which is commonly re-
ferred to as the Newtonian direction. After obtaining the Newtonian 
direction, the variables are updated by the following equation: 
⎧

⎪

⎨

⎪

⎩

𝑥 = 𝑥 + 𝛼𝑝𝛥𝑥, 𝜆 = 𝜆 + 𝛼𝑑𝛥𝜆,
𝑠1 = 𝑠1 + 𝛼𝑝𝛥𝑠1, 𝑠2 = 𝑠2 + 𝛼𝑝𝛥𝑠2,
𝑧1 = 𝑧1 + 𝛼𝑑𝛥𝑧1, 𝑧2 = 𝑧2 + 𝛼𝑑𝛥𝑧2.

(A.4)

Where 𝛼𝑝 and 𝛼𝑑 are the step sizes. In our implementation, these step 
sizes are updated using the Adam optimization algorithm as follows: 

𝛼′𝑝 = 𝛼𝑝 − 𝜂

𝛽1𝑚𝛼𝑝,𝑡−1+(1−𝛽1)∇𝛼𝑝 𝐿𝑡

1−𝛽𝑡1
√

√

√

√

𝛽2𝑣𝛼𝑝,𝑡−1+(1−𝛽2)(∇𝛼𝑝 𝐿𝑡 )
2

1−𝛽𝑡2
+𝜖

,

𝛼′𝑑 = 𝛼𝑑 − 𝜂

𝛽1𝑚𝛼𝑑 ,𝑡−1+(1−𝛽1)∇𝛼𝑑 𝐿𝑡
1−𝛽𝑡1

√

𝛽2𝑣𝛼𝑑 ,𝑡−1+(1−𝛽2)(∇𝛼𝑑 𝐿𝑡 )2

1−𝛽𝑡2
+𝜖

,

(A.5)

where 𝛼′𝑝 and 𝛼′𝑑 denote the updated step sizes. 𝛽1 is the decay rate 
of the first-order momentum term (0.9), and 𝛽2 is the decay rate of 
the second-order momentum term (0.999). 𝜂 is the learning rate, and 
𝜖 is a small constant (10−8) to prevent division by zero. After updating 
the variables, the new values are used as the initial values for the next 
iteration until the optimal solution is obtained.

Appendix B. Experimental setup and reproducibility details

This appendix provides additional implementation details for the 
key performance metrics and the Optimal Power Flow (OPF) case study 
to enhance the reproducibility of our results.
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B.1. Frequency-domain metric calculation

The frequency-domain metrics used in the high-frequency compo-
nent analysis (Section 3.5) were calculated with the following param-
eters:

• Spectral Similarity: The similarity was computed based on the 
magnitude of the Fast Fourier Transform (FFT) applied to the 
entire prediction sequence on the test set. The raw time series, 
sampled at 1 Hz, was used directly without a windowing function 
to avoid introducing artificial spectral artifacts. For computa-
tional efficiency, the signal was zero-padded to the next power 
of two before the FFT was performed.

• High-Frequency MSE/MAE: To isolate the high-frequency com-
ponents, a 5th-order Butterworth high-pass filter was applied to 
both the ground truth and predicted signals. The cutoff frequency 
was set to correspond to a period of 10 min. A zero-phase digital 
filtering approach was used to ensure that no phase shift was in-
troduced by the filtering process, allowing for a direct point-wise 
comparison of the resulting high-frequency signals.

B.2. OPF cost calculation parameters

The cost parameters for the OPF case study (Section 3.3 and Table 
2) were configured as follows:

• Currency and Time Scale: All costs are presented in U.S. Dollars 
(USD) and represent the total system operational cost over the 
specified forecast horizons (15 min, 6 h, and 20 h).

• Grid and Load Data: The simulations were performed on the 
standard IEEE 39-bus and 118-bus systems with a grid frequency 
of 60 Hz. The system load profiles were based on the standard 
datasets accompanying these test cases. To isolate the impact 
of tidal forecast accuracy, the generation costs for conventional 
thermal units were modeled using typical quadratic cost func-
tions, while real-time electricity market price volatility was not 
considered.

• Tidal Generation Cost Model: The components of the Levelized 
Cost of Energy (LCOE) framework, such as CAPEX and OPEX, 
were estimated using generalized values derived from the techno-
economic analysis literature on tidal energy projects, as refer-
enced in the main text [20,21].

Data availability

The authors do not have permission to share data.
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