Energy Conversion and Management: X 28 (2025) 101391

Contents lists available at ScienceDirect

Energy
Conversion
¢Management: @

Energy Conversion and Management: X

journal homepage: www.sciencedirect.com/journal/energy-conversion-and-management-x

Check for

Veliformer: A periodicity-preserving model for short-term tidal energy
forecasting in optimal power flow

Yangdi Huang ¥, Lina Yang ®, Xinzhang Wu ?, Yunxuan Dong **

@ School of Computer and Electronic Information, Guangxi University, Nanning, Guangxi 530000, China
b School of Electrical Engineering, Guangxi University, Nanning, Guangxi 530000, China

ARTICLE INFO ABSTRACT

Keywords:

Tidal energy
Optimal power flow
Transformer
Masked modeling

With the increasing integration of renewable energy, tidal energy stands out for its high predictability, making
it a valuable asset for stable power grid operation. However, accurate forecasting remains a critical challenge.
Conventional deep learning models, despite their success in general time-series analysis, often struggle to
preserve the inherent periodic features of tidal data, leading to reduced prediction accuracy and suboptimal
grid scheduling. To address this gap, we propose Veliformer, a novel periodicity-preserving forecasting model.
At its core, Veliformer introduces an innovative mask modeling technique. Unlike conventional methods that
predict masked data points, our approach reconstructs the complete original sequence by learning to aggregate
information from multiple, differently masked versions of the series. This unique reconstruction process is
specifically designed to maintain the integrity of the underlying periodic structure of tidal energy, enabling the
model to accurately capture both deterministic cycles and stochastic fluctuations. When applied to the optimal
power flow (OPF) of tidal energy systems, Veliformer reduces power generation costs. Our theoretical analysis
shows that the model preserves periodicity through masked sequence reconstruction. Numerical experiments
demonstrate Veliformer’s superior performance in optimizing power systems and reducing prediction errors
compared to other popular models. The mask modeling mechanism enhances Veliformer’s prediction accuracy
by an average of 4.91%, further highlighting its effectiveness in handling tidal energy forecasting.

1. Introduction The integration of tidal energy into modern power systems presents
a unique challenge, primarily centered around minimizing operational
costs while ensuring security and economy, a task addressed by Optimal
Power Flow (OPF). OPF is a critical tool for determining the optimal
dispatch in a power network to minimize operational costs under given
safety and performance constraints. Tidal energy is characterized by a
highly predictable semidiurnal (approximately 12-hour) cycle, resulting
in two pronounced power peaks and troughs each day. In OPF-based
scheduling, tidal generation is thus modeled as a source with large,

In recent years, the development of renewable energy sources has
received increasing attention due to the growing demand for energy
conservation. Renewable energy is characterized as sustainable and
non-polluting, which can solve the problems of energy supply and
environmental pollution [1]. Among renewable energy sources, wind
and solar power have been widely integrated into modern power
grids [2,3]. With the maturity of tidal power generation technology,
tidal energy has also garnered significant attention. Derived from the
gravitational forces of the Earth, Moon, and Sun, the total global tidal
energy potential is estimated at 2,700 GW, with approximately 2% (54
GW) being exploitable [4]. Compared to other renewable sources, tidal
energy is more influenced by astronomical factors, resulting in clear
and stable periodic patterns. This inherent predictability provides a re-

predictable but rapid fluctuations. The grid must accommodate these
swings by coordinating other controllable generators to ramp up or
down, ensuring real-time supply-demand balance [5]. The complexity
in OPF arises not from unpredictability, but from the need to eco-
nomically and securely manage these dramatic, periodic swings. Even

liable basis for grid scheduling and energy planning. As the potential for
tidal energy exploitation grows, the expanding market makes accurate
forecasting and the optimization of scheduling strategies increasingly
important (see in Fig. 1, data source: Global Market Insights, 2025).
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small errors in short-term tidal power forecasting — such as phase or
amplitude mismatches — can lead to significant deviations in dispatch
plans, increasing reliance on costly reserves and increasing operational
costs [6]. Therefore, enhancing prediction accuracy while preserving
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Fig. 1. Wave and tidal energy market size 2022 to 2032 (USD Million).

the inherent periodicity of tidal energy is critical for effective and
economical grid operation.

While accurate forecasting is a recognized prerequisite for OPF,
recent advancements in renewable energy forecasting have largely
focused on challenges pertinent to wind and solar power, such as
managing uncertainty and stochastic variability. For instance, Ref. [7]
demonstrated the use of a binary prediction market to achieve proba-
bilistic renewable energy forecasts, leveraging aggregated probabilities
to enhance forecasting precision. To improve forecasting accuracy in
wind power systems, Ref. [8] proposed a robust ensemble learning
method that combined random forests and quantile arrays. Addition-
ally, advanced machine learning techniques explored to enhance the
adaptability of forecasting models. Ref. [9] presented an adaptive prob-
abilistic wind power forecasting method, incorporating offline meta-
learning for model training and online learning for real-time updates,
showcasing flexibility across different lead times. Moreover, hybrid
models integrating signal processing techniques like Singular Spectrum
Analysis (SSA) with intelligent systems have been effectively applied to
short-term wind speed forecasting [10]. For more robust interval pre-
dictions, Ref. [11] introduced a multi-objective optimization approach
to construct wind power prediction intervals. Similarly, multi-objective
optimization has been effectively utilized to enhance short-term power
load forecasting models [12]. Despite these significant advancements,
the core focus of these methods remains on handling unpredictability.
Consequently, they do not adequately address the unique challenge
of preserving the strong, deterministic periodic features inherent in
tidal energy, as their mechanisms may inadvertently smooth out or
misinterpret these crucial patterns.

Addressing this specific gap, a few recent studies have attempted
to forecast tidal energy more explicitly. However, even these targeted
efforts exhibit limitations in robustly preserving periodicity. For exam-
ple, the hybrid point-interval forecasting system proposed in Ref. [13],
despite incorporating sophisticated techniques like mode decomposi-
tion and attention mechanisms to capture complex patterns, does not
guarantee the explicit preservation of fundamental tidal frequencies
throughout its modeling pipeline. The interaction between decomposed
modes and attention weights, or subtle shifts in data distribution,
could inadvertently dampen or distort these vital periodic components.
Likewise, while the use of deep neural networks with environmental
variables [14] or Long Short-Term Memory (LSTM) networks for short-
term tidal height forecasting [15] has demonstrated promise in terms
of regression accuracy, their architectural designs do not inherently
enforce the maintenance of the underlying temporal structure. Standard
recurrent or deep feed-forward layers, if not specifically structured
or regularized for periodicity, can struggle to distinguish between
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true periodic signals and aperiodic noise, particularly when dealing
with long sequences or the non-stationary effects of environmental
variables. Consequently, these models may capture average trends but
falter in accurately predicting the timing and magnitude of periodic
fluctuations.

To overcome the aforementioned limitations, we propose Veli-
former, a novel deep learning model that incorporates a unique pre-
training strategy designed to retain the natural periodicity of tidal
energy data. Pre-training aims to learn the features of the data by train-
ing the model on large-scale data, and we summarize the differences in
common approaches in Table 1. Based on this comparison, we selected
masked modeling as the foundation for Veliformer. However, typical
masking techniques, which reconstruct masked portions from visible
data, can disrupt the temporal continuity crucial for time series [16].
To solve this, Veliformer introduces a novel objective: reconstructing
the original from multiple, differently masked versions of it. This forces
the model to learn the underlying periodic structure and temporal
dependencies, rather than simply interpolating missing points. By ap-
plying this periodicity-preserving pre-training method to the powerful
Transformer architecture, Veliformer is able to capture both long-range
dependencies and the fundamental periodic patterns of tidal energy.

Based on the above insights, this paper proposes Veliformer to
optimize tidal energy integration with the dual objectives of minimiz-
ing operational costs and maintaining system security. The specific
contributions are as follows:

(1) To tackle the issue of periodicity preservation, Veliformer in-
troduces a pre-training method that reconstructs the original series
from multiple neighboring masked time series. This technique retains
periodic features and enhances the accuracy of tidal energy power
prediction when applied to the Transformer model.

(2) Veliformer is applied within the Optimal Power Flow (OPF)
framework for power systems that integrate tidal energy. By leveraging
deep learning techniques, Veliformer effectively minimizes operational
costs while ensuring system security.

(3) A comprehensive comparative analysis is conducted between
Veliformer and several popular deep learning models. The experimental
results demonstrate Veliformer’s superior performance in predicting
tidal power generation, further underscoring its distinct advantages in
both prediction accuracy and overall system optimization.

2. Method
2.1. Optimal power flow model with tidal energy

The Optimal Power Flow problem is a typical nonlinear program-
ming challenge. Before describing the problem in detail, we introduce
the vector x to denote the time series of active power. The input
vector x”(t) represents a mini-batch of time series samples. Each sample
is a 7 X C matrix, where r denotes the number of time points and
C denotes the number of observed variables. The input vector x(t)
represents the tth row of the mini-batch matrix. We denote x(t) as
x(t) = {x;(®),...,x.(t),....xc(1)}, where t € [1,T]. And we express
the scalar average of each vector x(t) as x(r) = ézcczl x.(1). The
vector x[(t) represents the cth column, containing 7 scalars, and is
denoted as xZ(t) = {x,(t— 7 +1),x,(t = 7 +2),...,x.()}. Then, We can
slice this mini-batch data into x*(t) = {x](t), ..., x(t), ... ,x{,(t) }, where
¢ € [1,C]. The mathematical formulation of the AC optimal power flow
problem adopted in this work is consistent with standard formulations
in power systems literature [19], which can be described as follows:

min  f(x)
st. h,x)=0, a=12,...,A, a
g<g(x=<g b=12..,B,

where x is the decision variable, f(x) is the objective function with
respect to the variable x, h,(x) characterizes all equality constraints
on the variable x, and g,(x) characterizes all inequality constraints



Y. Huang et al.

Table 1

Comparison of different pre-training methods.
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Type

Description

Advantages

Disadvantages

Masked Modeling [16]

Contrastive Learning [17]

Self-Supervised Learning [18]

A pre-training method where parts of
the input data are randomly masked,
and the model learns to predict the
masked parts.

Learns by comparing pairs or sets of
inputs to understand which features
make two inputs similar or different.

The model learns by creating its own
supervision signals from the data,
such as predicting missing parts of

Encourages the model to understand
context and develop a deeper
understanding of the data structure.

Effective in learning robust features
and useful for tasks requiring
fine-grained distinction between
inputs.

Reduces the need for labeled data
and improves generalization by
leveraging inherent data structures.

Can be computationally intensive and
requires substantial data to avoid
bias in predictions.

Requires careful design of the
contrast sets and can be less effective
if the negative examples are not well
chosen.

Can be challenging to design
effective self-supervision tasks and
may require significant

data or solving puzzles generated
from the data itself.

computational resources.

on the variable x. g and g are the upper and lower bounds of the
inequality constraints, respectively. A and B denote the number of
equality constraints and inequality constraints respectively.

The objective function f(x) can be determined according to the
problem to be solved. In this paper, our goal is to evaluate the overall
economic benefits of tidal energy projects when enhanced with high-
precision forecasting models. Therefore, we adopt a cost function based
on the Levelized Cost of Energy (LCOE) framework, which annualizes
both capital and operational costs to assess the long-term impact of
different scheduling strategies [20]. The function is defined as:

CAPEX - FCR + OPEX + G,
) = e @
AEP

Here, CAPEX, OPEX, and FCR denote the capital expenditure, operating
expenditure, and capital recovery factor of the power plant, respec-
tively. AEP represents the annual energy production, which depends on
the power output x over time. This formulation allows us to assess the
impact on the average unit generation cost, rather than focusing solely
on short-term fuel savings [21]. Furthermore, the term Cpyyery repre-
sents the cost related to the energy storage system. Energy storage is an
essential enabling technology for managing the high variability of tidal
energy, allowing for peak shaving and valley filling. Including its cost is
crucial to fully exploit the scheduling flexibility and economic potential
brought by high-precision forecasting [22]. The detailed calculations
for each component are provided as follows:

_a+nr
T
Where r refers to the discount rate, and / denotes the economic lifespan
of the power plant.

FCR 3

CAPEX = Cupfront + CTCTs +Cgr + Cinstall + Coffshore : @

In this equation, Cypgone Tepresents the upfront investment cost. Crery,
Crrs> Cinstall » and Cygehore  correspond to the costs of the tidal current
system, power units, installation, and offshore construction, respec-
tively.

OPEX =Cy+ Crg+Crpy- (5)
Where Cj, Cg, and C,, denote the initial operation cost, maintenance
cost, and repair cost, respectively.

Chattery = &+ (P + PES ) 4y - SoC2. (6)

total total

Where « is a constant related to the cost per unit of charge and
discharge power, P ~and P are the total charge and discharge
powers of the storage system, respectively. y is a constant related to
the degradation cost due to cycling. And SoC is the state of charge of
the battery, which is related to the degradation cost.

The nodal power balance equations A(x) is the tidal current equation

of the following form:
Por — Ppi — Py (Ve’Vf) =0,

7
Qg — Opi — Qi (V. Vy) =0, @

where k = 1,2,....n; Py, Qg are the active and reactive generator
outputs connected at node k; Py, Op, are the active and reactive loads
connected at node k; P, O, are the active and reactive power injections
at node k; V,, V, are the real and imaginary part of the voltages at
nodes.

The inequality constraint g(x) mainly includes the generator’s active
and reactive power output constraints:

P&nlin < PGk < pmax

Gk °
. (8)
0gy < Qg <05
Nodal voltage amplitude constraint:
Vkmm S I/k S I/kmax’ (9)
and the line transmission power constraint:
pmin < p; < Pmax,
kj kj kj (10)

min max
ij < Py < ij ’

Where poin | pmax .(Qg,ic" , g‘zx ) represent ;he': lower and upper limits
of generator k’s active (reactive) output; Vkmlrl is the lower limit of the
voltage amplitude at node k. Similarly, V" is the upper limit of the
voltage amplitude at node k; Py;, P;. denote the active power flowing
from node k to node j and the active power flowing from node j to
node k, respectively; P; min - p, ;e (P/.‘Zi“,PT"‘) are the upper and
lower limits of the active power of line kj (jk) respectively.
Energy storage capacity constraints:

Epn <E, <E

min =

an

max*
Charging and discharging Power Constraints:

< P < pd
02 pi s g a2
- t - max”
Where E, is the energy state of charge (SoC) at time t. E;, and E,,,
are the minimum and maximum energy storage limits, respectively.
P and PY represent the charging and discharging powers of the
energy storage at time 7. P} and PY are the maximum charging and

discharging power limits, respectively.
2.2. OPF solution methodology

To solve the OPF problem (1) formulated in Section 2.1, we em-
ploy a standard Primal-Dual Interior-Point Method, a well-established
and robust algorithm for nonlinear constrained optimization problems
in power systems [23]. The core idea of this method is to convert
the original problem with inequality constraints into a sequence of
equality-constrained problems by introducing slack variables and a log-
arithmic barrier function. At each iteration, the Karush-Kuhn-Tucker
(KKT) conditions are solved using a Newton—-Raphson method to find
the search direction for all variables. For a detailed mathematical
derivation of this standard method as implemented in our study, please
refer to Appendix A.
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Fig. 2. Architecture of Veliformer, which reconstructs the original time series by adaptively aggregating multiple masked versions of the series. The aggregation

process is driven by series-wise similarities.
2.3. Modeling based on masked mechanism

The richness of time series features is crucial for improving pre-
diction accuracy. In this paper, we enhance the diversity of training
data by adopting a masking mechanism, which significantly improves
the accuracy of the prediction model. Specifically, we reconstruct the
original time series from multiple adjacent masked time series. The
overall framework of Veliformer is illustrated in Fig. 2.

Next, we describe the detailed process of modeling based on the
masking mechanism. First, we need to generate the masked series. x;
represents a mini-batch of N time series samples. We can generate a set
of mask series for each sample x; by randomly masking a portion of time
points in the time dimension. The detailed formulation is presented as
follows:

(4 = o

= {me’ <) L)

J

13)

Eq. (13) denotes the generation of M random masked series for each x;.
M is the hyperparameter of the number of masked time series, which
indicates how many different random masked series are generated
for each x;. And if denotes the jth masked time series of x;. m,(t)/
is a random binary variable generated using a geometric distribution
satisfying the following conditions:

m 1y = { 0, with probability r,

1,  with probability 1 —r, a4

where r denotes the masking part, r is a decimal number between 0 ~ 1,
which indicates the proportion of the masked part in the total data
length. The detailed procedure is summarized in Algorithm 1. Finally,
a total of N * (M + 1) series can be obtained by randomly masking the
N time series and adding the original series. That is,

x:Q({xi}u{i{}Zl). as)

Then X is passed through an encoder to get Z, and Z is passed
through a projection layer to get S. Z is a feature vector of X, and
the role of S is to learn the similarity between features. The following
equations formally describe the transformations from X to Z and from
ZtoS.

z=UY, <{zi} U {_l} ) = Encoder(X),
s=UL (v {3}

S

(16)
> = Projector (2).

Algorithm 1 Geometric Masking

1: Input: x; (The original time series to be masked), /m (The average
length of the masking subsequence), r (The ratio of the series to be
masked)

2: Output: masked_sequence (The series with random masking ap-
plied)

3: Mask Generation:

4: L < length of x;

5: keep_mask « array of True values with length L
6: p,, < 1/Im

7: by (_pmxr/(l_r)

8: p < [Py, pul

9: Generate a random number between 0 and 1
10: if the random number is greater than r then
11: Set state < 1

12: else

13: Set state < 0

14: end if

15: for each i from 0 to L — 1 do

16: keep_mask[i] < state

17: if random value < p[state] then

18: state « 1 — state

19: end if
20: end for

21: masked_sequence « X; X keep_mask
22: return masked_sequence

The encoder used in this paper is transformer and the projection layer
is a simple MLP. Fig. 3 further details the Veliformer’s reconstruction
pipeline, showcasing how encoded and projected series representations
are processed through similarity learning, aggregation, and a final
decoder to yield the reconstructed original time series.

Using the series-level representation of the similarity between
weighted aggregation, we get
R = Sim(S),
R - _w' a7)
WY cos [[v[[[full”
where R is the pairwise similarity matrix of (N x(M +1)) input samples
in the series representation space, with matrix size (N X (M + 1)) X (N x
(M +1)). u and v are feature vectors from S. And similarity is measured
by the cosine similarity. Based on the learned series similarity, the
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Fig. 3. Detailed schematic of Veliformer’s reconstruction pipeline, which emphasizes the process of learning similarities between series representations, adaptively
aggregating information from masked sequences, and subsequently decoding the aggregated representation to reconstruct the original time series.

aggregation process for the ith original time series is as follows:
exp(Ry ¢/7)
7, as)
s'eS\(s;) Zs”es\(s,) exp(Rs[,s”/T)

2 =

where z’ represents the corresponding point-wise representation of s,
2; is the reconstructed point-wise representation, and = denotes the
temperature hyperparameter for softmax normalization of series-wise
similarities. Finally, after the decoder, the reconstructed original time
series is obtained.

{%}1, = Decoder ({z}" ). 19)
where %; is the reconstruction to x;. The decoder is instantiated as a
simple MLP layer along the channel dimension.

2.4. Periodic holding in Veliformer mask reconstruction

To establish the periodicity preservation of the Veliformer model
during masked reconstruction, we first define periodicity formally. Let
x(1) be a discrete time series with a fundamental period T), satisfying:

xO)=x(1+T,), V¥t (20
Where T, represents the fundamental period. A masking mechanism
is applied to generate M masked versions of the series. These masked
) M
versions are denoted as {i(’ )(t)} '1’ and each version is defined as:
j=

() = m9 () - x(0). @1

The variables m\)(t) are binary random variables that are independently
and identically distributed (i.i.d.), satisfying:
E[mP)] = p.  Var [mP@)] = p(1 - p). 22)

The reconstructed series X(¢) is defined as:
| M
S04 — =)
0= - Zf ). (23)
The autocorrelation function of the reconstructed series is defined
as:
Rq(r) = E[X(1) - X(t + 7)]. (24)

Expanding Eq. (24), we have:
1 M M )
Ryo) = = S YE [i‘”(z) x®¢ T)] . (25)
j=1k=1

Under the assumptions of independence between different mask realiza-
tions and between the masks and the signal, the expectation of every
term in the double summation is identical and evaluates to p*Ry(7).
Therefore, the summation over all M? terms simplifies as follows:

| M
R(r) = —
M? j§1k=l

M
(P*Ry(D)) = # - M? - pPR(z) = p*R,(2). (26)

Thus, the autocorrelation function of the reconstructed series is propor-
tional to that of the original series, preserving its periodicity.

When the mask intensity factor p is nonzero, the autocorrelation
function of the reconstructed series retains the periodicity of the origi-
nal series, scaled by p?. This proves that the masking and reconstruction
mechanism in Veliformer effectively preserves the periodic structure of
time series.

3. Experiment
3.1. Forecasting task formulation

To clarify the predictive capabilities of Veliformer and address
potential confusion regarding its input-output structure, we formally
define the forecasting task and distinguish between the model’s pre-
training and fine-tuning phases.

Task Definition: The forecasting task involves predicting future
multivariate tidal velocity sequences based on historical observations.
Specifically, given a historical sequence of multivariate tidal velocity
data X, = {x(t=T;,+1),x(t = T;,+2), ..., x(¢)} spanning T}, time steps,
where each x(f) = [x(1), x,(¢), x5(t)]” represents the three-dimensional
velocity components (X1, Y1, Z1) at time 7, the model aims to predict
the future sequence X = {x(t + 1),x(t +2), ... ,x(t + T,,,)} over the
next T, time steps.

Input-Output Specification: In this study, the input sequence
length T;, was adjusted based on the forecasting horizon T, to provide
sufficient historical information for the model. The configurations were
as follows:

out put

* For short-term horizons: To predict T,,, of 10 time steps (10 s),
300 time steps (5 min), and 600 time steps (10 min), we set the
input length to T;, = 720 time steps (corresponding to 12 min of
historical data).

« For longer-term horizons: To predict T,, of 1200 time steps
(20 min), 1800 time steps (30 min), and 3600 time steps (60 min),
we used an increased input length of 7;, = 7200 time steps
(corresponding to 2 h of historical data).

In all cases, the model simultaneously processes all three velocity
components (X1, Y1, Z1) as a unified multivariate input and generates
predictions for all three components.

Two-Stage Training Process: Veliformer employs a two-stage
training approach:

1. Self-supervised Pre-training: In this stage, the masked reconstruc-
tion mechanism described in Section 2.3 is employed. The model
learns to reconstruct original tidal velocity sequences from mul-
tiple masked versions, thereby capturing the inherent periodic
patterns and temporal dependencies without requiring future
ground truth labels [24].

2. Supervised Fine-tuning: Following pre-training, the model param-
eters are fine-tuned using the standard supervised forecasting
objective, where the model learns to map historical sequences
to future sequences using the mean squared error loss function.

This two-stage approach enables Veliformer to leverage both the unsu-
pervised periodic pattern learning from the masking mechanism and
the supervised sequence-to-sequence mapping required for accurate
forecasting.[25]
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3.2. Dataset description

The tidal data used in this study come from the ReDAPT project,
which collects data at a tidal energy test site near the Fall of Warness,
one of the Orkney Islands in Scotland [26]. The Fall of Warness
is a globally significant site for tidal energy research and develop-
ment, known for its strong, consistent, and fast-flowing tidal currents,
making it an ideal location for assessing the performance of tidal
energy converters and related technologies. The availability of high-
quality, high-resolution data from such a well-characterized energetic
site was a key reason for its selection, providing a robust foundation
for developing and validating our forecasting model.

Tidal current velocity data were collected using a four-beam acous-
tic Doppler current profiler (ADCP) deployed on a gravity-anchored
frame on the seabed [27]. Tidal current velocity data along the X, Y,
and Z directions at depths of 22, 23, and 24 m below sea level were
selected for multilevel prediction. These measurements, taken at three
different depths, were chosen to capture variations in tidal currents at
multiple layers of the water column, providing a more comprehensive
dataset for predictive modeling [28]. The multi-depth approach is
crucial as tidal currents exhibit vertical shear, meaning their speed
and direction can vary significantly from the sea surface to the seabed
due to factors like bed friction and velocity gradients. Analyzing data
from different depths thus allows for a more accurate representation of
the overall energy potential and the complex three-dimensional flow
structure.

While the horizontal velocity components (X1, Y1) are the primary
contributors to tidal power generation, the inclusion of the verti-
cal velocity component (Z1) serves as a crucial auxiliary information
source in our multivariate forecasting framework. Although Z1 does not
directly contribute to power calculations, it captures important three-
dimensional flow dynamics, turbulence intensity, and vorticity patterns
that significantly influence the stability and short-term variations of
the horizontal flow components. In multivariate time series prediction,
deep learning models can automatically learn complex correlations
between Z1 variations and future changes in X1 and Y1, thereby
leveraging this additional hydrodynamic information to improve pre-
diction accuracy for the power-generating components. The vertical
flow patterns often serve as early indicators of flow regime changes
and environmental perturbations that subsequently affect horizontal
currents, making Z1 a valuable predictor variable despite its indirect
relationship to power output [29].

The data were recorded continuously over a seven-day period with
a high-resolution sampling interval of 1 s, allowing for detailed tempo-
ral analysis. The 1-second sampling interval is particularly important
for capturing the fine-grained dynamics and turbulent fluctuations
inherent in tidal flows, which might be missed by coarser sampling
rates.

The raw data were stored in .mat file format, and the dataset
included missing values and outliers due to the possible malfunction
of the recording instruments or interference caused by fish movement
in the vicinity of the sensors [30]. We thoroughly pre-processed the
data to address these issues. For non-continuous missing values, the
average of neighboring time points was used to fill the gaps. This
method was chosen as it provides a reasonable local estimate while
preserving the underlying temporal structure without introducing sig-
nificant bias. Continuous missing values were directly replaced with
the default value of 0.01 to ensure consistency. This small constant
value was used to maintain data integrity for numerical processing and
to clearly distinguish these imputed points from actual zero readings,
while minimizing their impact on overall statistical properties.

To understand the underlying statistical properties of the tidal
velocity components, we first examined their probability density dis-
tributions. Fig. 4 illustrates the distributions for the key components
X1, Y1, and Z1, derived using histograms and Kernel Density Esti-
mation. The distributions for X1 and Y1 exhibit distinct multi-modal
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characteristics, suggesting the presence of several dominant operational
states within the tidal flow, possibly corresponding to different phases
and strengths of the ebb and flood tides. In contrast, the Z1 compo-
nent shows a sharp, unimodal distribution highly concentrated around
zero, indicating that vertical velocities are predominantly minimal
but can experience occasional fluctuations. These varied and complex
distributions underscore the non-Gaussian nature of the tidal data and
highlight the necessity for sophisticated modeling approaches capable
of capturing such diverse data patterns.

To further validate and characterize the inherent periodicity crucial
for tidal energy forecasting, we performed frequency and time-domain
analyses. A frequency domain analysis using the Fast Fourier Transform
(FFT) was conducted on the velocity components. As illustrated in
Fig. 5, both the X1 and Y1 components exhibit a distinct dominant
frequency corresponding to a period of approximately 12 h, consistent
with the known semidiurnal tidal cycles driven by lunar gravitation.
Although the Z1 component exhibits more scattered spectral energy,
a weak periodicity is still observable. These findings from the spectral
analysis confirm that the dataset contains clear periodic patterns.

Complementing the frequency-domain insights, an analysis of the
temporal dependence structure was conducted using Autocorrelation
Function (ACF) and Partial Autocorrelation Function (PACF) plots,
shown in Fig. 6 for a representative key tidal velocity component (X1).
To clarify this analysis, the ACF measures the correlation between the
time series and its own lagged values, revealing the overall strength of
persistence and long-term memory in the data. The PACF, conversely,
measures the direct correlation between an observation and a specific
lag after removing the influence of the intermediate time steps, which
is useful for identifying the order of autoregressive processes [31].
These tools are fundamental for diagnosing the underlying structure
of time series data. The ACF plot for X1 demonstrates a very slow
decay, indicating strong persistence and significant autocorrelation
across many lags. Each lag represents a one-second time step, consistent
with the data’s sampling frequency. This pattern is characteristic of
time series with strong underlying periodicities or trends. The PACF,
on the other hand, cuts off sharply after a few lags, suggesting an
autoregressive nature in the data once the influence of intermediate
observations is removed. Together, these ACF and PACF characteristics
strongly reinforce the presence of exploitable temporal structures and
periodicities within the tidal velocity data, justifying the design choice
in Veliformer to explicitly preserve such periodic features for improved
forecasting accuracy.

To facilitate the subsequent computation of OPF, we converted the
tidal flow rate into power using the Flux method [32]. The theoret-
ical power (P,,,) that can be extracted by a tidal stream turbine is
generally calculated as:

1 3
Ptidal = EpAsweptu}ida[ CP”averall (27)

where p is the density of seawater, A,,,, is the cross-sectional area
swept by the turbine rotors (m?), u,,, is the velocity of the tidal
current (m/s), Cp is the power coefficient, and #,,,,,, is the overall
conversion efficiency of the power train. The tidal current velocity
data u;,,, collected as described previously, serves as a primary input
for this power calculation. For the purpose of OPF calculations in this
work, appropriate and consistent values for A Cp, and 7., Were
utilized.

The dataset is categorized into a training set, a test set and a
validation set with proportions of 70%, 20% and 10%, respectively.
The validation set is used to tune the model’s hyperparameters. The
predictive accuracy of the forecasting models developed and evaluated
using this dataset will be primarily assessed through Mean Absolute
Error (MAE) and Mean Squared Error (MSE). These metrics are formally
defined as:

swept>

n
1 N
MAE == 3 Iy, = 3| (28)
i=1
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Fig. 4. Distribution analysis of key tidal velocity components (X1, Y1, Z1) via histograms and kernel density estimation, revealing multi-modal distributions for

X1 and Y1, and a sharp unimodal distribution for Z1.
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Fig. 5. Dominant 12-hour periodicity revealed by spectral analysis of tidal velocities in X, Y, and Z directions.
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n
MSE = % = 9)? 29
i=1
where n represents the total number of data points in the evaluation
set, y; is the actual observed value for the ith data point, and y; is the
corresponding value predicted by the forecasting model. These metrics
will be instrumental in comparing the performance of different models
discussed in subsequent sections.

3.3. Optimal power flow cost comparison case study

The IEEE 118-bus power system is a complex and widely used
standardized test system for power system research. It contains 118
buses, 186 lines, and 54 transformers, which together represent a
complex urban power grid network [33]. The system simulates a power

network in a region of the United States and is widely used to study
power system dynamic behavior. Similarly, the IEEE 39-bus system is a
well-known test case that represents the power grid in the northeastern
region of the United States. It consists of 39 buses, 46 lines, and 10
generators, making it suitable for studying dynamic stability and power
flow analysis.

In our case study, we set the reference power for both systems
to 100 MVA, with reference voltages set to 380 kV and 110 kV,
respectively. The nominal frequency for both systems is maintained at
60 Hz. To ensure the accuracy of the study, both systems utilize high-
precision power flow calculation and optimization algorithms during
the optimized tidal energy generation operation. The tidal energy
generator is connected to the 110 kV voltage level in both the IEEE
118-bus and 39-bus systems. Specifically, the generator is connected
to bus 25 in the IEEE 39-bus system and bus 61 in the IEEE 118-bus
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Table 2
Cost in IEEE 118 bus and IEEE 39 bus systems.
TCN [34] TCN-LSTM [35] LSTM-GRU [36] GRU-FCN [37] Veliformer
IEEE-39 IEEE-118 IEEE-39 IEEE-118 IEEE-39 IEEE-118 IEEE-39 IEEE-118 IEEE-39 IEEE-118
15min 31445 45668 39141 18782 37089 19466
Cost 6h 839535 796 994 772078 791885 823226 1066771
20h 2772456 1546014 2811036 2736331 1795600 1860472

1. All costs are in U.S. dollars (USD).

2. represents the best performance, represents the second best, Copper represents the third best.

Table 3

Model performance comparison across multiple time intervals (10 s, 5 min, 10 min, 20 min, 30 min, 60 min) for multivariate time-series forecasting (see Ref.
[38D).
Models 10 s 5 min 10 min 20 min 30 min 60 min

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Crossformer [39] 0.391 0.386 0.427 0.348 0.461 0.409 0.429
TCN [34] 0.466 0.475 0.313 0.390 0.388 0.433 0.287 0.277 0.335 0.389
LSTM-GRU [36] 1.310 0.899 0.467 0.404 0.451 0.401 0.462 0.417 0.467 0.419 0.458 0.420
TCN-LSTM [35] 0.468 0.533 0.346 0.412 0.397 0.439 0.352 0.306 0.352 0.334
GRU-FCN [37] 1.843 0.985 0.373 0.364 0.457 0.402 0.461 0.414 0.475 0.424 0.502 0.439
Informer [40] 0.545 0.458 0.434 0.542 0.403 0.507 0.543 0.573 0.605 0.599 0.732 0.673
DLinear [41] 0.291 0.382 0.361 0.386 0.369 0.391 0.373 0.401 0.384 0.406 0.393
FNet [42] 0.297 0.385 0.384 0.381 0.378 0.367 0.385 0.377 0.413 0.415
UTide [38] 0.752 0.613 0.518 0.488 0.425 0.415 0.389 0.390 0.357 0.365 0.325 0.461
Veliformer

1. represents the best performance, represents the second best, Copper represents the third best.

system. The impact of the tidal energy generator on both power systems
is analyzed through precise power flow optimization.

The effectiveness of the proposed model was validated by integrat-
ing tidal energy generation power into both the IEEE 118-bus and IEEE
39-bus systems, which allowed us to calculate the system generation
costs under different time scenarios. This case study aims to assess the
performance of various models in optimizing power flow costs within
these systems, including the proposed Veliformer model, designed to
enhance accuracy in such tasks.

The models compared in this study include TCN [34], TCN-LSTM
[35], LSTM-GRU [36], GRU-FCN [37], and the proposed Veliformer
model. We calculated generation costs across three scenarios: 15 min,
6 h, and 20 h, which denoted the total forecast horizons. The prediction
time steps were set to 1 min for the 15-minute scenario and 10 min
for the 6-hour and 20-hour scenarios, as shown in Table 2. These
time intervals were selected to simulate both short-term and long-term
operational scenarios within the IEEE 118-bus system, allowing for a
comprehensive evaluation of each model’s performance.

Table 2 shows that the proposed Veliformer model achieved the
lowest generation costs across all three-time intervals. In different
time scenarios, the Veliformer model demonstrated significant cost
advantages across both the IEEE 118-bus and 39-bus systems. In the
15-minute scenario, Veliformer reduced costs by approximately 10.5%
to 11.1% compared to the TCN and LSTM-GRU models in the IEEE 118-
bus system, and by 0.8% to 7.7% compared to the TCN and TCN-LSTM
models in the IEEE 39-bus system. In the 6-hour scenario, Veliformer
achieved cost reductions of 9.6% and 19.2% in the IEEE 118-bus
system (compared to TCN-LSTM and TCN models, respectively), while
reducing costs by 3.0% and 6.5% in the IEEE 39-bus system (compared
to the TCN and LSTM-GRU models). In the 20-hour scenario, Veliformer
achieved savings of 3.4% to 16.1% in the IEEE 118-bus system (com-
pared to TCN-LSTM and TCN models), and 4.6% in the IEEE 39-bus
system (compared to both TCN-LSTM and TCN models).

These cost reductions highlight the efficiency of Veliformer in min-
imizing power flow costs, primarily attributed to its masking mecha-
nism, which enhances the model’s ability to focus on the most relevant
data. The consistent performance of the Veliformer model across differ-
ent time frames underscores its robustness and potential for application
in integrated energy systems, where efficient power flow optimization
is crucial.

3.4. Model prediction accuracy comparison experiment

We evaluate Veliformer against nine baseline models—Crossformer,
TCN, LSTM-GRU, TCN-LSTM, GRU-FCN, Informer, DLinear, FNet, and
UTide—across six different forecast horizons: 10 seconds, 5 minutes, 10
minutes, 20 minutes, 30 minutes, and 60 minutes. Table 3 summarizes the
results in terms of Mean Squared Error (MSE) and Mean Absolute Error
(MAE). We acknowledge that pointwise metrics such as MSE and MAE
can overweight phase misalignment in periodic signals. However, our
comparisons emphasize relative model performance and downstream
OPF cost benefits, so our conclusions do not rely on a single pointwise
metric. Therefore, we complement MSE/MAE with the Q value (a
Sobolev-norm-based metric for surface similarity) and R?> to assess
both phase and amplitude consistency in a more robust manner. Table
4 summarizes the key advantages and limitations of these baselines,
which provides insights into their design characteristics and forecasting
capabilities.

Short-term horizons (10 s, 5 min, 10 min). For short-term fore-
casts, Veliformer consistently delivered superior accuracy over compet-
ing models. At the 10 s interval, it reduced MSE by roughly 8% and
MAE by about 14% compared to the next-best model, Crossformer.
Moving to 5 min predictions, Veliformer’s MSE and MAE showed
improvements of around 4% and 10%, respectively, relative to Cross-
former, and outperformed TCN, TCN-LSTM, DLinear, and FNet by even
wider margins. By 10 min, Veliformer retained a consistent edge,
with its MSE and MAE about 6% and 19% lower, respectively, than
Crossformer, while the gap against other baselines grew larger. Across
the short-term horizons, Veliformer achieved an average improvement
of approximately 7.64% in MSE and 9.84% in MAE.

Longer horizons (20 min, 30 min, 60 min). As the forecast
window extended, Veliformer’s relative lead remained pronounced. For
instance, at 20 min, it demonstrated an approximate 4% drop in MSE
and a 1% drop in MAE over the second-best TCN-LSTM. At the 30 min
horizon, Veliformer improved MSE by around 5% relative to Cross-
former. Even at the longest 60 min forecast, Veliformer still surpassed
the runner-up by around 5% in MSE and 17% in MAE. Overall, these
results confirm that Veliformer delivers robust gains across all time
intervals, providing anywhere from a few percentage points to double-
digit percentage error reductions compared to baseline models. Across
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Fig. 7. Performance comparison of Veliformer against eight baseline models on Q value and R?> metrics. The results are based on the 20-minute forecasting
scenario. Both metrics indicate that Veliformer achieves the best performance.

Table 4
Summary of baseline models.

Model Advantages Limitations Ref.
Crossformer Captures long-range dependencies using cross-dimension Coarse temporal granularity, optimized for long-term focus, [39]
attention for inter-channel interactions and frequency mixing can lead to sensitivity to short-term fluctuations and

for spectral pattern recognition. overlooking of localized details.

TCN Employs causal and dilated convolutions ensuring valid Fixed convolutional structure offers limited dynamic [34]
temporal flow, enabling fast training, stable gradients, and temporal adaptivity, potentially struggling with highly
large receptive fields for contextual understanding. irregular or non-stationary time series patterns.

LSTM-GRU Leverages gated recurrence mechanisms from LSTM and GRU May still encounter vanishing gradient challenges in very [36]
units to effectively model complex sequential dynamics and long sequences and can incur high inference latency due to
manage information flow over long sequences. its inherently sequential computation.

TCN-LSTM Combines TCN’s ability to capture broad temporal contexts The hybrid architecture can be computationally more [35]
via long receptive fields with LSTM’s proficiency in memory intensive than its standalone components and typically lacks
retention for robust sequential data modeling. inherent mechanisms for frequency-aware processing.

GRU-FCN Provides a lightweight and efficient architecture by May offer limited interpretability of learned features and [37]
integrating GRUs for temporal modeling with FCNs for possesses weaker inherent capabilities for explicit frequency
convolutional feature encoding, suitable for faster processing. domain analysis or decomposition.

Informer Utilizes a ProbSparse attention mechanism to efficiently Its strong focus on dominant long-range patterns via sparse [40]
process very long sequences, significantly reducing the attention may result in overlooking finer-grained, localized
computational overhead associated with standard attention temporal details crucial for some predictions.
mechanisms.

DLinear Offers a simple yet robust baseline by decomposing time The inherent linearity restricts its ability to capture [41]
series into distinct trend and seasonal components, which are non-linear patterns and complex interactions, making it less
then modeled linearly for interpretability. adaptive to abrupt changes or localized disruptions.

FNet Replaces computationally intensive self-attention with Reliance on Fourier analysis, which assumes periodicity and [42]

unparameterized Fourier Transforms for global token mixing,
significantly accelerating inference and reducing model
complexity.

stationarity, limits its adaptivity to non-stationary or
non-periodic data and complex aperiodic events.

the longer horizons, Veliformer achieved an average improvement of
approximately 4.30% in MSE and 2.67% in MAE.

To further assess performance, Fig. 7 presents a comparison based
on Q value and the coefficient of determination (R%) for the 20-
minute forecasting scenario. The Q value, a metric that quantifies the
magnitude of error between predicted and observed values, shows
Veliformer achieving the top score of 0.0889 [43]. Similarly, for the
R?, which represents the proportion of variance in the observed data

that is predictable from the model, Veliformer again leads with a
score of 0.9684. These results provide additional evidence of Veli-
former’s superior predictive accuracy. Fig. 8 illustrates the predicted
time-series curves from Veliformer and the Crossformer baseline against
the ground truth. The plots for both 20-minute and 60-minute horizons
visually confirm Veliformer’s ability to more closely track the actual
tidal velocity, accurately capturing the critical peaks and troughs that
are essential for reliable operational planning.
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Fig. 8. Case visualization of prediction performance for 20-minute and 60-minute forecast horizons. The plot compares the ground truth with predictions from

Veliformer and the baseline Crossformer.
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Fig. 9. Comparative analysis of Veliformer and baseline models on high-frequency forecasting metrics for a 20-minute prediction horizon. (Left) Spectral Similarity,
where a higher score is better. (Center) High-Frequency MSE and (Right) High-Frequency MAE, where lower values indicate better performance. The results
highlight Veliformer’s superior capability in accurately predicting high-frequency components.

Overall, Veliformer provides consistently lower MSE and MAE val-
ues than the other methods across all six time intervals, with an
average improvement of 4.91% in prediction accuracy, supplemented
by its leading performance on Q and R?> metrics, which indicates its
robustness for both short-term and long-term multivariate time-series
forecasting tasks.

3.5. Validation of high-frequency component forecasting

To address concerns regarding the importance of high-frequency
components in tidal energy forecasting — where the cubic relationship
between velocity and power (P « u’) can amplify the impact of
small, rapid fluctuations — a dedicated experiment was conducted. This
experiment was designed to quantitatively assess Veliformer’s ability to
accurately predict these crucial high-frequency dynamics compared to
baseline models (LSTM, Transformer, and TCN). The evaluation was
performed on a 20-minute forecasting task, focusing on three spe-
cialized frequency-domain metrics: Spectral Similarity, High-Frequency
MSE, and High-Frequency MAE.

Spectral Similarity measures the cosine similarity between the fre-
quency spectra of the predicted and true signals, indicating how well
the overall periodic structure is preserved. High-Frequency MSE and
MAE are calculated after applying a high-pass filter to isolate compo-
nents with periods shorter than 10 min, directly quantifying the model’s
accuracy on the most rapid variations.

The results, presented in Fig. 9, unequivocally demonstrate Veli-
former’s superior performance in capturing high-frequency compo-
nents. Veliformer achieved a Spectral Similarity score of 0.989, sig-
nificantly outperforming the next-best model, Transformer (0.945),
and indicating a much higher fidelity in reconstructing the complete
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frequency spectrum. Most critically, in the direct evaluation of high-
frequency errors, Veliformer obtained an MSE of 0.0382 and an MAE
of 0.153. These error values are substantially lower — by a factor of
approximately 2.6 for MSE and 1.6 for MAE compared to the Trans-
former — than those of all baseline models. This marked reduction in
high-frequency error confirms that Veliformer’s masked reconstruction
mechanism is highly effective at preserving the fine-grained temporal
details essential for accurate tidal power estimation, directly validating
its advantage in handling the very components that are most critical to
energy conversion calculations.

3.6. Sensitivity analysis of hyperparameters

To comprehensively evaluate the robustness of Veliformer and iden-
tify optimal or influential hyperparameter settings, an extensive sensi-
tivity analysis was conducted. In these experiments, one hyperparam-
eter was varied at a time, while all other parameters were maintained
at their established baseline values. For each specific configuration,
the Veliformer model underwent both its self-supervised pre-training
and supervised fine-tuning stages before Veliformer’s predictive per-
formance, in terms of Test MSE and Test MAE, was evaluated on
the designated test set. The summarized results of these experiments,
illustrating performance trends for each tested hyperparameter, are
presented in Fig. 10.

Parameters central to Veliformer’s masking strategy were examined.
For the Temporal Unit (M), defining the number of augmented masked
sequences utilized, model performance, measured by both MSE and
MAE, generally exhibited consistent improvement with an increasing
number of units within the tested range of 1 to 7. This upward trend
in performance suggests that incorporating a richer set of augmented
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Fig. 10. Sensitivity of Veliformer’s prediction performance (Test MSE and Test MAE) to variations in individual hyperparameters. Each subplot illustrates the
change in error metrics as a single hyperparameter is varied, while all other parameters are held constant at their baseline values.

perspectives on the input series allows Veliformer to build more robust
and comprehensive temporal feature representations. Such representa-
tions are crucial for accurate tidal energy forecasting where diverse
and subtle short-term patterns exist. The mask ratio, representing the
proportion of the input sequence that is masked, was evaluated from
0.2 to 0.8. The analysis showed that lower ratios within this evalu-
ated range, specifically around 0.2, tended to yield significantly better
results than higher ratios. As the mask ratio increased beyond 0.2, a
clear upward trend in both MSE and MAE was observed, indicating
performance degradation. This finding suggests that while a certain
degree of masking is essential for the model’s learning mechanism,
an overly aggressive masking approach can be detrimental, likely by
removing too much critical information about tidal patterns for the
model to effectively learn and reconstruct. Regarding the mask length
divisor, which inversely controls the length of contiguous masked
segments, the analysis revealed a clear trend. Model performance, in
terms of both MSE and MAE, consistently improved as the divisor
increased when tested from 1 to 7. An increasing divisor corresponds to
shorter contiguous masked segments. This outcome indicates that mask-
ing shorter, more distributed segments throughout the time series is
more advantageous for Veliformer’s performance than masking fewer,
longer contiguous blocks. The latter approach might excessively dis-
rupt local temporal dependencies or obscure entire short-term periodic
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events, whereas shorter, distributed masked segments may encourage
the model to learn finer-grained contextual relationships and improve
the model’s ability to capture nuances of the tidal data. However, this
is a preliminary observation under conditions where other parameters
are held constant. The potential interaction effects between parameters
warrant a more detailed investigation, which will be analyzed in the
next section.

Key architectural parameters of the Transformer were analyzed.
The model dimension (d,,,,.;) exhibited a distinct U-shaped sensitivity
curve, indicating an optimal capacity. As d,, 4, increased from smaller
values such as 16, predictive performance, reflected by decreasing MSE
and MAE, improved significantly. An optimal capacity was observed
around a dimension of 48 to 64. Beyond this optimal region, further
increases in d,,, 4., led to a slight degradation in performance, possi-
bly due to the onset of overfitting with excessive parameters for the
given dataset size or an increased difficulty in optimizing a larger,
more complex network. A similar U-shaped trend was observed for
the number of Transformer layers (num_layers). Both a low number
of layers, such as a single layer, which may lack the hierarchical
capacity to model complex temporal dependencies, and a high number
of layers, such as 5 or 6 layers, which can be harder to train effectively
and become prone to overfitting or issues like vanishing gradients,
resulted in higher prediction errors. An intermediate depth, typically
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around 2 to 3 layers, was found most effective, striking an optimal
balance between model expressiveness and the model’s ability to gen-
eralize from training data. The dimension of the feedforward network
(‘dim_feedforward) within the Transformer layers also demonstrated
an optimal range. Performance generally improved (errors decreased)
as this feedforward dimension increased from smaller values like 32
or 64. The lowest error metrics were typically observed for moder-
ately larger dimensions, such as 128 or 256. Further increasing this
feedforward dimension beyond this range did not yield substantial
additional performance gains and, in some instances, led to a slight
increase in error, indicating a point of diminishing returns regarding
model capacity for this specific network component.

Common training and regularization hyperparameters were as-
sessed. The learning rate (Ir) demonstrated a critical impact on model
training and final predictive accuracy, exhibiting a pronounced U-
shaped curve. The analysis revealed a distinct optimal range, typically
around 1 x 10~ to 5 x 10~3, where the model achieved the lowest
MSE and MAE. Learning rates of 1 X 1073 or less significantly hindered
convergence speed and resulted in suboptimal performance, likely due
to the optimizer struggling to escape shallow local minima. Conversely,
learning rates of 2 x 1074, 5x 10, and above led to training instability
and divergence, causing a sharp increase in prediction errors. The
choice of batch size also proved influential, with smaller batch sizes
generally yielding superior results. The experiments, testing batch sizes
from 16 to 256, indicated that smaller values like 16 or 32 resulted
in lower MSE and MAE compared to larger batch sizes such as 128 or
256. Larger batches tended to increase prediction errors, a phenomenon
sometimes attributed to larger batches converging to sharper minima in
the loss landscape, which may generalize less effectively than the flatter
minima often found by smaller batches. The dropout rate analysis
clearly confirmed the benefits of regularization for the Veliformer
model. Performance was notably worse, with higher MSE and MAE,
when dropout was not applied (a dropout rate of 0.0), indicating a
tendency of the model to overfit the training data. An intermediate
dropout rate, typically found most effective in the range of 0.1 to
0.2, minimized both error metrics. Dropout rates higher than this
optimal range, such as 0.3 or 0.4, began to degrade performance again,
likely due to excessive information loss during training, leading to
underfitting.

In summary, the detailed analyses underscore that Veliformer’s
predictive accuracy is highly sensitive to the interplay of architectural
design, masking strategy configuration, and training procedure. The
identified trends and more precisely characterized optimal regions
for these hyperparameters offer valuable and actionable insights. This
enhanced understanding facilitates the effective deployment of Veli-
former in tidal energy forecasting, ensuring robust performance and
maximizing Veliformer’s predictive capabilities when tackling complex
time series data.

3.7. Effect of different masking strategies

Building on the preliminary analysis in Section 3.6, which suggested
that shorter mask segments were optimal under a fixed set of hyperpa-
rameters, we recognize that the effect of a single hyperparameter may
not fully capture its role in a complex model. Specifically, the optimal
mask segment length might be significantly influenced by the chosen
mask ratio. To investigate this interaction effect, we designed a more
comprehensive experiment by systematically varying the combination
of mask ratio and mask segment length. The mask segment length sets
the average size of contiguous segments within the geometric masking
process. These experiments utilized model hyperparameters established
from prior sensitivity analyses. The Veliformer model incorporated
both self-supervised pre-training and supervised fine-tuning stages. Test
MSE and MAE served as the performance evaluation metrics. Fig. 11
summarizes the main effects of these masking parameters. Fig. 12
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details their interaction effects through heatmaps, while Table 5 lists
the top-performing parameter combinations.

An examination of the main effects, referencing Fig. 11, reveals
the average trends for each masking parameter when the influence
of the other is averaged out. For the masking ratio, a clear trend
emerges: lower to moderate values, particularly around 0.2, generally
yield superior average performance, with a noticeable degradation as
the proportion of masking increases towards 0.5. Regarding the length
of masked segments, the analysis presents a more nuanced picture
that contrasts with the findings from the single-variable sensitivity
analysis in Section 3.6. While the earlier analysis pointed to shorter
segments being optimal for a specific fixed configuration, the main
effects analysis here indicates that longer segments (specifically 90
and 180) are more beneficial on average when evaluated across all
mask ratios. This apparent discrepancy strongly suggests the presence
of a significant interaction effect, meaning the ideal segment length is
highly dependent on the chosen mask ratio.

The heatmaps in Fig. 12 provide a more nuanced understanding
by illustrating significant interaction effects between the masking ratio
and mask segment length. These visualizations clearly show that the
optimal setting for one parameter often depends on the value of the
other, rather than a universally optimal value existing for each in
isolation. For instance, a masking ratio of 0.4 paired with a relatively
short mask segment length of 45 achieved one of the best overall
performances. Conversely, a lower masking ratio, such as 0.2, also
produced excellent results when combined with a very long mask
segment length of 180. Furthermore, even a high masking ratio of 0.5
demonstrated competitive performance when matched with a moderate
mask segment length of 60, while performing poorly with shorter mask
segment lengths. Table 5 highlights these distinct optimal pairings by
listing the top three configurations. This interplay suggests the model
can adapt to different masking intensities if the segment length is
appropriately chosen to balance context and reconstruction difficulty.

In conclusion, the investigation into different masking strategies un-
derscores that simple monotonic rules do not govern the effectiveness
of Veliformer’s masking mechanism for the masking ratio and mask
segment length individually. Instead, optimal predictive accuracy arises
from specific combinations of these two parameters. The findings indi-
cate a preference for moderate masking ratios, but the ideal segment
length is interactive and context-dependent, with several distinct com-
binations yielding top-tier performance. This detailed understanding is
crucial for configuring the masking strategy to maximize Veliformer’s
capabilities.

3.8. Ablation test

To assess the contribution of different components within the Veli-
former model, an ablation study was conducted, as shown in Fig.
13. The base Veliformer model includes three key components: the
masking mechanism, the Transformer architecture, and a fine-tuning
process. To evaluate the impact of the masking mechanism and fine-
tuning, two modified versions of the model were tested: one without the
masking mechanism (denoted as “Veliformer w/o Masking”) and an-
other without the fine-tuning process (“Veliformer w/o Fine-tuning”).
Additionally, the standard Transformer [44] model was included for
comparison.

The performance of each model variant was evaluated using both
MSE and MAE as key metrics. The base Veliformer model demonstrated
the lowest error rates, achieving an MSE of 0.236 and an MAE of 0.336.
When the masking mechanism was removed from the model, the MSE
increased to 0.278 and the MAE rose to 0.386. Similarly, when the fine-
tuning process was excluded, the error values further increased, with
the MSE reaching 0.305 and the MAE rising to 0.392. The standard
Transformer model exhibited the highest error rates among all tested
configurations, with an MSE of 0.330 and an MAE of 0.421. The results
indicate that both the masking mechanism and fine-tuning enhance
model performance. The masking mechanism improves feature capture,
while fine-tuning refines parameters for greater accuracy.



Y. Huang et al.

Average Error vs. Mask Ratio

Energy Conversion and Management: X 28 (2025) 101391

Average Error vs. Mask Length
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Fig. 12. Heatmaps showing the impact of combining different Mask Ratios and Mask Lengths on

and the right heatmap displays Test MAE.

model prediction error. The left heatmap displays Test MSE,

Table 5
Top 3 masking strategy combinations for optimal performance.
Metric Rank Mask ratio Mask length Test MSE Test MAE
1 0.4 45 0.26784854 0.34311256
Lowest MSE 2 0.5 60 0.26885887 0.34379373
3 0.2 180 0.26907027 0.34449386
1 0.4 45 0.26784854 0.34311256
Lowest MAE 2 0.5 60 0.26885887 0.34379373
3 0.2 180 0.26907027 0.34449386

Note: The values for Test MSE and Test MAE are rounded to 8 decimal places for presentation. The ranking is based on the
full precision values. The top configurations for MSE and MAE are identical in this dataset.

4. Conclusion

This paper addressed the prevalent challenge of periodicity dis-
ruption in deep learning-based short-term tidal energy forecasting by
proposing Veliformer, a novel Transformer model. Veliformer utilizes
a unique masking and reconstruction technique, rebuilding the original
time series from multiple adjacent masked sequences. This approach is
designed to effectively preserve the inherent periodic structure of tidal
energy data, a capability supported by our theoretical analysis.

Comprehensive experimental evaluations demonstrated
Veliformer’s significant advantages. The model achieved an average
prediction accuracy improvement of 4.91% over several state-of-the-
art baseline models across multiple forecasting horizons. Furthermore,
when applied to Optimal Power Flow (OPF) simulations on standard
IEEE test systems, Veliformer delivered substantial reductions in power
generation costs, highlighting its practical utility. The efficacy of the
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core masking mechanism was further validated through ablation stud-
ies, while extensive sensitivity and masking strategy analyses not only
confirmed the model’s robustness but also provided valuable guidelines
for optimal hyperparameter configuration.

In summary, Veliformer offers a robust and efficient solution for
enhancing short-term tidal energy forecasting and contributing to more
effective power system optimization. By successfully preserving critical
periodic information, the model facilitates more reliable grid inte-
gration and cost-effective management of tidal energy resources. The
fundamental principles of its periodicity-preserving masking strategy
may also hold promise for other time series forecasting domains where
similar structural patterns are crucial. Future research will focus on
exploring Veliformer’s adaptability to other periodic renewable energy
sources, assessing its performance and scalability in larger and more
complex power systems, and pursuing further advancements in its
adaptive masking techniques.
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Appendix A. Detailed OPF solution method

The Optimal Power Flow (OPF) problem described in Eq. (1) is
solved using the primal-dual interior-point method. By introducing
slack variables and adding a barrier function to the objective function,
the inequality constraints are transformed into equality constraints.
Thus, the solution of problem (1) is transformed into the solution of
the following problem:

FXF(t) —¢& <Z Insy, + Y In szp)
p=1 p=1

min

s.t. h(x) =0, A1)
gx) -5 —g=0,
gx)+s5,-2=0,
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where s, and s, are slack variables. s, and s,, are the pth elements
in the slack variable vectors s; and s, (s, > 0, s, > 0). r denotes the
number of inequality constraints. £ is the barrier parameter. Problem
(A.1) is an optimization problem containing only equation constraints,
so it can be solved by the Lagrange multiplier method. Its Lagrangian
function is as follows:

L=fx"t) - AThx) - z" [g(x) _ —g]

r r (A.2)
- z; [g(x)+sz —g’] —521ns1p—521n52p,
p=1 p=1

where z; >0, z, <0, 51, 20, 55, 20, 4 # 0. 4, z; and z, represent the
Lagrange multipliers associated with the constraints. x, s;, and s, are
the original variables.

According to the theory of Fiacco and McCormick [23], if the barrier
parameter ¢ monotonically decreases to 0 during the iteration process,
the solution of problem (A.1) is the optimal solution of problem (1). The
perturbed KKT conditions form a system of nonlinear equations, which
can be solved by Newton’s method. We linearize the KKT conditions to
obtain:

V2 f(x" (1) Ax — V2h(x)14x

— V2g(x)(z| + 2,)Ax — V h(x)AA

-V, g(x)(4z, + 4z)) =—L_,
V. hx)TAx = —L,,
V.ex) Ax - As; = -L,,
V.ex)TAx + 4s, = L,
Z\Asy + S14z) = —L;
ZAs| + S,Azy = —L

(A.3)

-
L

8§

Where S| and S, represent the diagonal matrices of the slack variables
s, and s,, respectively. Similarly, Z, and Z, represent the diagonal
matrices of the Lagrange multipliers z;, and z,, respectively.

The corrections for each iteration can be obtained by solving
Eq. (A.3) (Aw = [Ax,AA, Asy, As,, Az|, Az,]), which is commonly re-
ferred to as the Newtonian direction. After obtaining the Newtonian
direction, the variables are updated by the following equation:

A=A+ agdl,

Sy =8y + a,Asy,

xX=x+ a,,Ax,
51 =51 + a,dsy, (A4)

zy =z tay4z), 2z, =2+ a;4z,.

Where «, and a, are the step sizes. In our implementation, these step
sizes are updated using the Adam optimization algorithm as follows:

Pimay, —1+(1=P1)Vay Lt
5
1 ﬁl

/
a =a,—1n s
P Prva, -1 H1—P2) Ve L2
p P .
I—ﬂ’ +e A 5
pl
Pimay -1 +(0=F)Vay Lt (A.5)
’ l'ﬁi
a,=ag—1 —,
Pavay 1—1+1=p2)Va, L)
—_———+€
1-/;5

where a; and o/, denote the updated step sizes. §; is the decay rate
of the first-order momentum term (0.9), and g, is the decay rate of
the second-order momentum term (0.999). 5 is the learning rate, and
¢ is a small constant (10~8) to prevent division by zero. After updating
the variables, the new values are used as the initial values for the next
iteration until the optimal solution is obtained.

Appendix B. Experimental setup and reproducibility details

This appendix provides additional implementation details for the
key performance metrics and the Optimal Power Flow (OPF) case study
to enhance the reproducibility of our results.
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B.1.

Frequency-domain metric calculation

The frequency-domain metrics used in the high-frequency compo-
nent analysis (Section 3.5) were calculated with the following param-
eters:

B.2.

+ Spectral Similarity: The similarity was computed based on the
magnitude of the Fast Fourier Transform (FFT) applied to the
entire prediction sequence on the test set. The raw time series,
sampled at 1 Hz, was used directly without a windowing function
to avoid introducing artificial spectral artifacts. For computa-
tional efficiency, the signal was zero-padded to the next power
of two before the FFT was performed.

High-Frequency MSE/MAE: To isolate the high-frequency com-
ponents, a 5th-order Butterworth high-pass filter was applied to
both the ground truth and predicted signals. The cutoff frequency
was set to correspond to a period of 10 min. A zero-phase digital
filtering approach was used to ensure that no phase shift was in-
troduced by the filtering process, allowing for a direct point-wise
comparison of the resulting high-frequency signals.

OFPF cost calculation parameters

The cost parameters for the OPF case study (Section 3.3 and Table
2) were configured as follows:

+ Currency and Time Scale: All costs are presented in U.S. Dollars
(USD) and represent the total system operational cost over the
specified forecast horizons (15 min, 6 h, and 20 h).

Grid and Load Data: The simulations were performed on the
standard IEEE 39-bus and 118-bus systems with a grid frequency
of 60 Hz. The system load profiles were based on the standard
datasets accompanying these test cases. To isolate the impact
of tidal forecast accuracy, the generation costs for conventional
thermal units were modeled using typical quadratic cost func-
tions, while real-time electricity market price volatility was not
considered.

Tidal Generation Cost Model: The components of the Levelized
Cost of Energy (LCOE) framework, such as CAPEX and OPEX,
were estimated using generalized values derived from the techno-
economic analysis literature on tidal energy projects, as refer-
enced in the main text [20,21].

Data availability

The authors do not have permission to share data.
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