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A MULTI-INSTITUTIONAL RESEARCH PARTNERSHIP

Co-locating wind turbines with wave energy converters like the Pelamis device allows
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- the utilization of extra capacity in the transmission system by wave energy devices,
increasing the total energy delivered to shore with little to no increase in the portfolio

LCOE, especially with anticipated cost reductions for wave energy by 2050.

INTRODUCTION

Offshore Wind Market Report (DOE, 2023).
Marine energy in the United States: An
overview of opportunities (NREL, 2021).
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* NC has other considerable offshore resources like wave and ocean
currents. Can we take advantage of the future offshore wind energy . . . . . .
infrastructure to integrate these other resources? This work looks at
wave energy!
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Technical power potential of US marine energy
resources [TWh/year] (NREL, 2021)

Linear Absorber: Pelamis Device

Locations of U.S. offshore wind energy * The US currently has around 17GW of offshore wind power offtake
pipeline activity and Call Areas (DOE, 2023)

 States Planning Targets and Mandates: 63GW by 2040 and 112GW
by 2050.

* In NC, Governor Cooper issued in 2021 the Executive Order No. 218
with targets for 2.8GW of offshore wind by 2030 and 8GW by 2040.
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COLOCATED CONFIGURATIONS
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Layout of 3-line anchor and 6-line

Pwec/Powr ~ 0.2, for a wind farm consisting of 100-units 5SMW
anchor systems. OWTs and 350-units 286kW RM3 devices

Pwec/Powr ~ 0.8, for a wind farm consisting of 100-units 5MW
OWTs and 500-units 750kW Pelamis devices

PORTFOLIO OPTIMIZATION RESULTS
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Rosenblatt Transformation
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3.1 PORTFOLIO OPTIMIZATION

For a given budget (LCOE), find me the solution that delivers the most electricity to the shore

Solution: Number of turbines at each viable site location (y), location of offshore substation (v)
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CONCLUSIONS

In shared anchoring configurations studied for the RM3 device with fixed-
bottom wind turbines, it was found that mooring costs increase by 200% as the
rated power of the wind turbines increases from 5MW to 18 MW, due to the

need for longer mooring lines.

Analysis of the non-shared anchoring configuration revealed that Pelamis arrays
have a higher installed capacity compared to RM3 devices in wind-wave farms,
depending on the wind turbine's rated power and the number of turbines in the

farm.

A mathematical model capable of performing portfolio optimization for wind-
wave integration was formalized, showing that wind-wave colocation, assuming
conservative and optimistic WEC cost reductions from NREL, can be used as an
alternative to deliver more energy to the shore, thereby making better use of

the existing transmission system infrastructure.

The Pelamis wave energy converter was identified as more feasible due to its
lower LCOEs and higher capacity factors in North Carolina conditions.
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