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A B S T R A C T

The representation of flow across influential spatiotemporal scales introduces a challenge when micro-siting
tidal stream turbine arrays. Robust representative approximations could accelerate design optimisation, yet
there is no consensus on what defines the most appropriate flow conditions. We summarise existing approaches
to representative flow field selection for array optimisation and propose an objective-driven process. The
method curates a subset of flow fields that best captures relevant dynamics, enabling the streamlined
representation of tidal cycles. To demonstrate the method, we consider flow modelling data in the Inner
Sound of the Pentland Firth, Scotland, UK. We examine the impact of flow field inputs to array design
through comparative analyses using a heuristic array optimisation process. Results indicate notable sensitivity
of the turbine layout to the flow conditions selected. For the case study presented, our method led to 4%–5%
energy yield prediction improvements relative to use of simple time-interval based approaches and up to 2%
improvement against using peak flow fields; these can be pivotal margins to secure feasibility by developers.
We also find that using the data associated with a single monitored point across the array for flow field
selection can lead to sub-optimal results, emphasising the need for accurate spatiotemporal representation.
1. Introduction

Oceanic currents are influenced by various processes, ranging from
planetary-scale interactions and tidal movements to localised changes
in temperature, salinity, and wind stress. This gives rise to highly
variable spatial flow patterns, especially in shallow waters with rugged
coastlines and bed topography (e.g. Polagye and Thomson [1]). Con-
versely, temporal predictability is often cited as a major attribute
of tidal energy, allowing long-term resource forecasting through har-
monic analysis [2,3]. Over shorter duration, true flow behaviour cannot
be predicted by harmonics, and more sophisticated approaches are
required to consider the impact of waves and wind [4]. On spatial vari-
ability, Warder et al. [5] demonstrate the presence of non-deterministic
effects by forcing a regional hydrodynamics model with only a sin-
gle constituent (M2, principal lunar semi-diurnal) and presenting the
departure from purely periodic behaviour within a highly energetic
tidal site. The spatial variation in temporal patterns across marine sites
necessitates hydrodynamic modelling for forecasting at less surveyed
sites. The complex non-linearity is only further exacerbated by the
introduction of infrastructure such as dams, ports, turbines, coastal
defence systems and maritime traffic.

Engineers must consider these spatio-temporal flow dynamics in
both design and operation activities. For tidal range power plants, Pap-
pas et al. [6] found that the average potential energy of a tidal range
site can vary by up to 30% depending on which 28-day tidal cycle was
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used in a resource assessment. Similarly, tidal stream turbine arrays are
intrinsically linked to the spatio-temporal variability of tidal flows, as
the energy output is contingent upon the diverse flow patterns exhib-
ited across the array site. Several studies discuss the influence of tidal
asymmetry [7,8] and tidal resource variability in high energy regions,
even deeming some sites infeasible for tidal energy deployment [9].

Considering the technical implications, it becomes essential that
flow characteristics are reliably resolved when modelling a marine site.
Typically, this is achieved through a calibration exercise, following
which a model might be used for environmental impact assessment,
forecasting or energy yield predictions. In such assessments, model
run-time is a balance of computational burden and satisfactory rep-
resentation of the hydrodynamics. For some tasks, such as pollutant
tracking and sediment transport, the intricacies of flow dynamics re-
quire transient modelling over extended periods of time. As climate
change impacts increasingly influence coastal and marine environ-
ments, simulations may even span decades [10]. For applications such
as tidal array optimisation, opportunities exist to leverage the cyclic
nature of tidal flows. By focusing on specific tidal phases or cycles,
we can hypothesise that computations can be accelerated without
compromising the objective’s accuracy.

Avoiding sub-optimal investigations whilst using a subset of flow
data, requires careful consideration and judgement in the selection of
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instantaneous fields or tidal cycles for analyses. This is the challenge
we seek to address. We devise a statistical objective-focussed approach
to provide a reduced representation of the transient tidal flow. We
subsequently compare methods for reduced cost flow representation in
the context of tidal array optimisation.

2. Background

Gunn and Stock-Williams [11] comment on model calibration de-
cisions, emphasising the need for selective validation parameters to
suit the objective of interest. Following validation, a hydrodynamic
model should provide a quantifiable degree of confidence, given known
limitations. However, when applying a calibrated model for subsequent
purposes, there is a risk of sub-optimal utilisation. Table 1 summarises
examples specific to tidal stream array optimisation. Some of the
studies focus solely on methodology development that rely on idealised
domains, others apply calibrated hydrodynamic models in practical
scenarios in the optimisation process. Funke et al. [12] and Culley
et al. [13] calculate the optimisation gradient using an adjoint-based
approach which is known for being memory intensive. The calculation
of the adjoint is attractive as it enables partial differential equation
(PDE) constrained gradient evaluations that can inform the optimisa-
tion. However, in order to balance the need for device-scale resolution
and the method’s memory requirements, steady state cases were used
to minimise computational burden [14]. For practical cases, these
approaches must be extended to account for transient tidal flows and
realistic turbine characteristics. Within their exploration of economic
constrained optimisation, Goss et al. [15] forced their model using
the principal M2 constituent, consequently overlooking monthly and
annual variations. Funke et al. [16] and Zhang et al. [17] extended
the application of the adjoint-optimisation methodology to incorporate
realistic tidal forcing and bathymetry survey data, providing realistic
variation both temporally and spatially. However, in all unsteady ap-
plications of adjoint based optimisation, a non-discrete representation
of the array using mesh resolution exceeding the turbine diameter
was imposed. This ‘continuous’ representation involves representing the
entire array as one smeared momentum sink, rather than modelling
turbines independently. This makes it challenging to consider finer
scale practical constraints such as those regarding the support structure
foundation and individual turbine wake evolution. Additional refine-
ment in resolution can be applied to address this issue, at considerable
computational expense.

Surrogate models can reduce computational cost, circumventing the
use of PDE-constrained optimisation. This provides substantially more
rapid optimisation in practical cases while sacrificing some of the local
and array blockage considerations in the micrositing process, as dis-
cussed in [25]. As it would be memory-consuming to store all the flow
fields to superimpose wakes onto, the optimisation makes use of fewer
instantaneous flow fields. The optimisation objective is formulated as
power maximisation, or variants related to this. Optimisation is even
more constrained if performed in 3D models. For example, González-
Gorbeña et al. [23] used a single steady-state simulation for both ebb
and flood conditions to make predictions on optimal array structure. Lo
Brutto et al. [21] and Mubarok et al. [27] use frequency of principal
direction and average velocity magnitude, determined from the hydro-
dynamic model, to generate a ‘‘tidal rose’’. The flow fields are simplified
to a series of uniform flows and thus all spatial variation across each
flow field is lost. This would therefore only apply for very small arrays
and a uniform basin geometry. Another route has been the use of a
greedy based technique directly within the hydrodynamic model, such
as in [29]. There, each turbine was introduced based on full flood-ebb
cycles and the entire simulation re-run after each placement.

To our knowledge, no study so far (e.g. Table 1) simultaneously
combines a realistic turbine power curve, non-linear spatial represen-
tation and transient flow in the optimisation process. In Jordan et al.

[26], a simple experiment of artificially over-estimating the velocity

2 
magnitude for the flow fields used in optimisation was conducted.
This determined that the resultant array power improved up until an
optimal point, governed in part by the rated speed. This links back to
several key factors related to the efficiency of a tidal turbine array,
most importantly balancing the ratio of wake interaction versus array
density at high energy regions. This is in turn related to the cut-in,
rated and cut-out speeds of the turbines and the corresponding ratio of
flow speeds above and below these thresholds. Individual turbine and
array performance can also be substantially impacted by local, array
and global blockage effects. Identifying a satisfactory representation of
the flow that ensures an accurate balance between wake interaction
versus array density at high energy regions motivates the development
of optimal flow field selection strategies.

3. Methodology

Various array layout optimisation approaches could be used to
investigate the influence of the flow fields or cycles used for design,
however the methodology developed in [25] is deployed for its low
computational cost. This is described in Section 3.1. The hypothesised
impact of the flow field selection methodology for other array design
methods can be found in the appendices. The proposed methodology for
flow field selection is then described in Section 3.2 and the setting for
its application, as well as investigation of other methods, is described
in Section 3.3.

3.1. Array design

3.1.1. Resource modelling
Thetis1 [30] is employed for hydrodynamic modelling, utilising Fire-

rake [31] to solve associated partial differential equations using the
inite element method. Thetis is applied in its 2D configuration, solving
he non-conservative form of the non-linear shallow-water equations,
𝜕𝜂
𝜕𝑡

+ ∇ ⋅ (𝐻𝑑𝐮) = 0, (1)

𝜕𝐮
𝜕𝑡

+ 𝐮 ⋅ ∇𝐮 + 𝑔∇𝜂 = ∇ ⋅ (𝜈(∇𝐮 + ∇𝐮𝑇 )) −
𝝉𝒃
𝜌𝐻𝑑

−
𝑐𝑡
𝜌𝐻

|𝐮|𝐮 + 𝑓𝐮⟂, (2)

where 𝜂 is the water elevation, 𝐻𝑑 is the total water depth, 𝐮 is the
depth-averaged velocity vector, and 𝜈 is the kinematic viscosity of the
fluid. The term 𝑓𝐮⟂ represents the Coriolis ‘‘force’’, 𝐮⟂ is the velocity
vector rotated counter-clockwise over 90◦, and 𝑓 = 2𝛺sin(𝜁 ) with 𝛺 the
angular frequency of the Earth’s rotation and 𝜁 the latitude. The bed
shear stress (𝝉𝒃) is represented through the Manning’s 𝑛𝑀 formulation
as per [32]:
𝝉𝒃
𝜌

= 𝑔𝑛2𝑀
|𝐮|𝐮

𝐻
1
3
𝑑

, (3)

The treatment of inter-tidal processes, discretisation and time-
marching are applied consistently to Jordan et al. [25]. The force on
the tidal array according to the linear momentum actuator disc theory
is:

𝐹array = 1
2 ∫𝜶

𝜌 𝑐𝑡(𝐱) |𝐮(𝐱)| 𝐮(𝐱) d𝐱, (4)

here 𝜶 is the area of interest where the array is situated i.e. the
omain over which the integral is evaluated. We define here 𝑚 = (𝑥, 𝑦),
uch that 𝐱 contains all pairs of coordinates 𝑚 in the field. The thrust
oefficient, 𝑐𝑡(𝐱), is defined as:

𝑡(𝐱) =
(

𝐶𝑡(𝐮(𝐱))𝐴𝑡 + 𝐶𝑠𝑢𝑝𝐴𝑠𝑢𝑝
)

𝑑(𝐱), (5)

here 𝐴𝑡 is the turbine swept area, 𝐶𝑡 is the thrust coefficient as a
unction of the velocity 𝐮(𝐱), and 𝑑(𝐱) is the local turbine density [25].

1 http://thetisproject.org/

http://thetisproject.org/
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Table 1
Tidal array optimisation studies in the literature, emphasising realistic cases where available.

Ref. Optimisation Setting Optimisation Turbine Spatial Temporal Flow fields Power
strategy objective representation variability variability for optimisation curve

Funke et al. [12] Adjoint +
SLSQPa

Inner Sound,
Pentland Firth

Power Discrete Constant
bathymetry

Steady state 1× No

Culley et al. [13] Adjoint +
SLSQP & GA

Inner Sound,
Pentland Firth

LCOE (cabling
only)

Discrete Constant
bathymetry

Steady state 1× No

Funke et al. [16] Adjoint +
L-BFGS-B

Pentland Firth LCOE Continuous Full Transient, (M2,
S2, . . . )

12.5h tidal cycle No

du Feu et al. [18] Adjoint +
SLSQP

Inner Sound,
Pentland Firth

Power &
Environmental
Impact

Discrete Constant
bathymetry

Steady state Peak (1×) No

du Feu et al. [19] Adjoint +
SLSQP

Pentland Firth LCOE &
Environmental
Impact

Continuous Full Steady state Peak (1×) No

Goss et al. [15] Adjoint +
L-BFGS-B

Idealised
headland

LCOE Continuous Constant
bathymetry
at site

Transient, M2
forcing only

3 M2 cycles Yes

Zhang et al. [17] Adjoint +
L-BFGS-B

Zhoushan Islands Energy Continuous Full Transient, (M2,
S2, . . . )

12.42h tidal cycle No

Zhang et al. [20] Adjoint +
SLSQP

Idealised regular
channel

Power (Yaw
Angle)

Discrete None Steady state 1× No

Lo Brutto et al. [21] Surrogate +
PSO

Idealised LCOE Discrete
(structured)

None Based on tidal
rose

Based on tidal rose
(153×)

Yes

González-Gorbeña et al. [22] Surrogate +
enumeration

Idealised
irregular channel

LCOE Discrete
(structured)

Constant
bathymetry

Steady state Sub-rated (1×) Yes

González-Gorbeña et al. [23] Surrogate +
enumeration

Idealised regular
channel

LCOE Discrete
(structured)

None Steady state, ebb
and flood

Sub-rated (2×) Yes

Wu et al. [24] Surrogate +
DPSO

Zhoushan Islands Energy Discrete
(structured)

Constant
bathymetry

Steady state, ebb
and flood

Peaks (2×) Yes

Jordan et al. [25] Surrogate +
greedy

Inner Sound,
Pentland Firth

Power (& Wake
Interaction)

Discrete Full Transient, (M2,
S2, . . . )

Neap, intermediate
and spring
instantaneous fields
(18×)

Yes

Jordan et al. [26] Surrogate +
greedy

Inner Sound,
Pentland Firth

Average Power
(& Wake
Interaction)

Discrete Full Transient, (M2,
S2, . . . )

Rated (4×) Yes

Mubarok et al. [27] Surrogate +
PSO

Idealised LCOE Discrete None Based on tidal
rose

Based on tidal rose
(18×)

Yes

Divett et al. [28] Enumeration Idealised regular
channel

Power (turbine
drag coefficient)

Discrete
(structured)

None Transient 1 flood/ebb cycle N/A

Phoenix and Nash [29] Greedy Shannon Estuary Energy (&
Environmental
Impact)

Discrete Full Transient (spring
cycles)

Flood/ebb cycle No

a SLSQP allows for more general inequality constraints, so is typically used for e.g. minimum separation constraints. L-BFGS-B is therefore typically used for continuous array
representation and SLSQP for discrete.
𝐴𝑠𝑢𝑝 represents the cross-sectional support structure area with a corre-
sponding drag coefficient of 𝐶𝑠𝑢𝑝. Following notation of (4), the power
extracted at any given moment by the array can be approximated as

𝑃array = 1
2 ∫ 𝜌 𝑐𝑝(𝐱) |𝐮(𝐱)|3 d𝐱, (6)

here 𝑐𝑝(𝐱) is a power coefficient function given as

𝑝(𝐱) = 𝐶𝑝(𝐮(𝐱))𝐴𝑡𝑑(𝐱), (7)

nd 𝐶𝑝 is a power coefficient as per [25]. The turbine specification for
his study is discussed in Section 3.3 and the thrust and power curves
re plotted in Fig. 2. Finally, the concentration of the thrust at a turbine
ocation can affect Linear Momentum Actuator Disc Theory calcula-
ion. A correction relating free-stream and through-turbine velocities
s therefore applied as per Kramer and Piggott [33].

.1.2. Layout optimisation
Surrogate modelling is applied for array design. The ambient flow

ields are generated in Thetis. Relevant flow fields or cycles are then
sed as input for an analytical wake model, FLORIS,2 which superim-
oses the predicted wake structure for each turbine when placed by
he array design algorithm. The iterative algorithm introduced in [25]

2 https://github.com/NREL/floris
3 
is used, which is described in detail in Appendix A. At each iteration,
the turbine is placed in the location of highest energy, constrained by
performance conditions (applied to all turbines). These constraints can
be expressed mathematically, for acceptance, as:

• Minimum turbine capacity factor, 𝐴min ≤ 𝐴 = min
{

𝑃i
𝑃rated

∣ 𝑖 ∈ 𝑛
}

,
where 𝑛 is the number of turbines.

• Maximum reduction of power to any other turbine, 𝐵max ≥ 𝐵 =

max
{

𝑃 (𝑛−1)
𝑖 −𝑃 (𝑛)

𝑖

𝑃 (𝑛−1)
𝑖

∣ 𝑖 ∈ 𝑛
}

i.e. the relative change in power of each
turbine in the array as a result of introducing the new turbine.

• Maximum reduction of the sum of powers of individual turbines
of 𝛤max ≥ 𝛤 =

∑𝑛
𝑖=1

( 𝑃 (𝑛−1)
𝑖 −𝑃 (𝑛)

𝑖

𝑃 (𝑛−1)
𝑖

)

.

It should be noted that by preventing excessive wake interactions,
the constraint, 𝐵, is also expected to reduce fatigue loading and in turn,
prevent greater geotechnical and structural requirements. In the current
implementation, performance metrics are first calculated for each flow
field, then averaged and hence no specific flow field dominates the
acceptance or rejection of a location for turbine deployment. The
parameter values used in this study are later defined in Section 3.3.

We use the Bastankhah and Porté-Agel [34] Gaussian wake model
calibrated with the turbine support structure included, as described in

detail in Appendix B. The optimisation objective within FLORIS being

https://github.com/NREL/floris


C. Jordan et al.

a
b

a
d
m
p
t




𝑁
e
w
b
d
e
t
W
t
r
f

w
a
y

Y

t
𝜃
s

t
𝑡
𝑤

1
1
1

1
1
2
2

2

2
2

Renewable Energy 236 (2024) 121381 
maximised can be expressed as:

𝑃 array,𝐹𝐿𝑂𝑅𝐼𝑆 = 1
𝑁

𝑁
∑

𝑖=0
𝑤(𝑡𝑖) × 𝑃array,𝐹𝐿𝑂𝑅𝐼𝑆 (𝑡𝑖), (8)

subject to any constraints applied on the optimisation. 𝑁 is the number
of flow fields and 𝑡𝑖 indicates the timestamp of the flow field being as-
sessed. 𝑤 is an optional weight, should certain flow fields be considered
more important.

As FLORIS is a surrogate model, it is not appropriate for the final
quantification of array yield. The final performance of the array is
finally quantified in Thetis to make comparisons between the various
arrays designed.

3.2. Flow field selection through the objective binning approach

For flow field selection, we propose Algorithm 1 to form an ‘‘objec-
tive binning’’ (OB) method to identify representative flow conditions.
Firstly, we discuss the term ‘objective’ in this context. Considering
array design, the optimisation objective is to maximise energy yield,
which may be paired with other constraints such as cabling length [13]
or environmental impact [18,19]. Energy yield, can equivalently be
considered as the average power:

𝑃 array = 1
𝑡𝑠 ∫

𝑡𝑓

𝑡0
𝑃array d𝐭, (9)

where 𝑡𝑠 is the duration of the time period simulation, given by the
initial and finish time, 𝑡𝑠 = 𝑡𝑓 − 𝑡0. For flow field selection there is
no inclusion of turbines in the initial runs, therefore we require the
ambient equivalent of the optimisation objective. We define this as the
flow field selection objective function, :

(𝑚, 𝑡) = 1
2
𝜌𝐶𝑝(𝐮(𝑚, 𝑡))𝐴𝑡 |𝐮(𝑚, 𝑡)|3 , (10)

at a point of interest, 𝑚, at time, 𝑡. Unlike 𝑃 array,  is not associated with
n array density, nor averaged temporally, since we need to distinguish
etween fields.

Algorithm 1 firstly extracts velocity fields at the area of interest, 𝜶,
nd decomposes these to magnitude and direction. The principle flow
irections allow classification into ebb and flood fields, so that the pri-
ary directional variability is preserved for optimisation. The ambient
ower yield, , is calculated across the flow field for every entry in the
ime series, 𝐭. This ambient power yield is spatially averaged to form
avg, i.e.

avg(𝑡) =
1
𝐴𝜶 ∫𝜶

(𝐱, 𝑡) d𝐱. (11)

Ebb and flood fields are then ordered based on avg and binned into
ebb and 𝑁f lood bins. Each bin is assigned a weight, 𝑤, based on the bin

nergy relative to the total energy over the simulation time, 𝑡𝑠. This
eighting is required to make corrections for any energy imbalance
etween flood and ebb, given how the cycle energy may not perfectly
ivide into 𝑁 equal energy groups. For example, when 𝑁 is small, an
qual number of flood and ebb fields will be used, despite the fact
hat there could be more energy in either the ebb or the flood tide.

ithin each bin, we define as the representative flow field, 𝐮𝛼(𝐱, 𝑡),
hat with the avg closest to the average bin value. Accumulating the
epresentative flow field from each bin gives the final subset of flow
ields to use from Algorithm 1.

In assessing how energetic the subset of flow fields selected are,
e introduce a yield representation index, YRI, balancing the full cycle
verage ambient energy yield relative to the average ambient energy
ield captured by the optimisation:

RI =
1
𝑡𝑠
∫ 𝑡𝑓
𝑡0

avg d𝐭
1 ∑𝑁

, (12)

𝑁 avg

4 
where the objective function, 𝑎𝑣𝑔 , is the average ambient field poten-
tial power yield across the deployment region. The smaller this value,
the more energetic the fields used in the optimisation are relative to
the average power of the cycle used for instantaneous flow field or
sub-cycle selection.

3.3. Case study — Inner Sound, Pentland Firth

3.3.1. Site overview
The Inner Sound of the Pentland Firth in Scotland is home to the

MeyGen project, a tidal stream site currently including four operational

Algorithm 1 Objective-binning (OB) approach for representative flow
field (𝐮𝛼(𝐱, 𝑡)) selection from a time series, also returning weight factors,
𝑤, subject to an objective function, .

𝐼𝑁𝑃𝑈𝑇𝑆: Target number of representative fields (𝑁) and model start
(𝑡0) and finish time (𝑡𝑓 ).
𝐷𝐸𝐹𝐼𝑁𝐼𝑇 𝐼𝑂𝑁𝑆:
𝐮𝛼(𝐱, 𝐭): flow velocity vector field within area of interest, 𝜶, over the
ime series, 𝐭
𝛼(𝐱, 𝐭): flow direction field within area of interest, 𝜶, over the time
eries, 𝐭
avg(𝑡): objective function value averaged across area of interest, 𝜶, at

ime 𝑡
𝑖: timestamp of representative flow field for bin 𝑖
(𝑡𝑖): weight factor for flow field 𝐮(𝜶, 𝑡𝑖) relative to 

1: Run hydrodynamic model to derive 𝐮𝛼(𝐱, 𝐭)
2: Determine 𝜃𝛼(𝐱, 𝐭) and 𝛼(𝐱, 𝐭)
3: Determine principal flow directions, 𝜃ebb, 𝜃f lood
4: Classify flow fields, 𝐮𝜶(𝐱, 𝐭), into 𝐮𝜶(𝐱, 𝐭ebb),𝐮𝜶(𝐱, 𝐭f lood) using 𝜃ebb,

𝜃f lood
5: Spatially average objective function, avg(𝐭) =

1
𝐴𝜶

∑𝜶 𝜶(𝐱, 𝐭)
6: Find the total value of the objective function over the time series,

avg,total =
∑𝐭

avg(𝑡)
7: Find the total value of objective function for ebb, avg,ebb =

∑
𝐭𝑒𝑏𝑏 avg(𝑡)

8: Determine number of bins for each tide, 𝑁ebb =
avg,ebb
avg,total

×𝑁 , 𝑁f lood =
𝑁 −𝑁ebb

9: Sort 𝐮𝜶(𝐱, 𝐭ebb), 𝐮𝜶(𝐱, 𝐭f lood) in descending order of avg, denoted
𝐭′ebb, 𝐭

′
f lood

10: for tide in [ebb, flood] do
11: Determine ideal bin objective function total, avg,ideal =

avg,tide
𝑁𝑡𝑖𝑑𝑒

12: Initiate counter and list for keeping bin timestamps, 𝑖 = 1, 𝐭bin =
[ [ ] for 𝑖 in range(𝑁tide)]

13: for 𝑡𝑘 in 𝐭′tide do
14: Add flow field timestamp to the bini corresponding times-

tamp list, append 𝑡𝑘 to 𝐭𝑏𝑖𝑛,𝑖
5: Add avg of flow field to the bin total, bini += avg(𝑡𝑘)
6: if bini ≥ avg,ideal then
7: 𝑖 += 1, i.e. start new bin once current bin total has

reached avg,ideal
8: end if
9: end for
0: for 𝑖 in range(𝑁tide) do
1: Determine the average value of objective function for each

bin, avg,bini =
bini

len(𝐭bin,i)

22: Find representative time, 𝑡𝑖 = argmin𝑡𝑘
(

|

|

|

avg(𝑡𝑘) − avg,bini
|

|

|

)

for 𝑘 in len(𝐭bin,i)
3: Determine timestamp weight factor, 𝑤(𝑡𝑖) =

∑

bin,i
avg,total

4: end for
5: end for
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Fig. 1. Site location, (a, b) computational mesh showing Orkney isles and mainland Scotland, (c) bathymetry interpolated onto the mesh. The deployment region for optimisation
is outlined in red.
1.5 MW turbines. It is one of the several sites where UK government
funding has been announced for further development [35], which
sets it on-track to deliver a ≈ 50 MW array for the next instalment.
Multi-faceted large-scale optimisation over varying conditions and con-
straints will need to be performed at sites such as MeyGen, which
exhibit irregular geometry (Fig. 1b,c). It becomes critical to understand
how spatio-temporal variations impact optimisation at these sites. To
demonstrate the flow field selection methodology we use the Inner
Sound as a case study, performing optimisation for 43×2 MW turbines
(≈ 86 MW, the initial Phase ‘1B’ target set by MeyGen) in the deploy-
ment region shown in Fig. 1c. This is the same region as used for Jordan
et al. [25], where model calibration results are also presented. As
in [26], support structure values of 𝐴𝑠𝑢𝑝 = 36.4𝑚2 and 𝐶𝑠𝑢𝑝 = 0.7 are
used.

The refined mesh of Jordan et al. [26] (Fig. 1) is implemented.
The element size varies from 300m to 1500m close to islands and the
shoreline up to 20 000m at the seaward boundaries. At the MeyGen site,
the nearby coastlines are resolved to 20m and within the deployment
area, the minimum element size is 5m on average, corresponding to
≈ 1

2 blade length. Further resolution would be important to capture
finer turbulent structures, however demonstration of the flow field
selection methodology does not require such model fidelity. Variable
friction representation through the Manning’s coefficient is used in the
same manner as Mackie et al. [32]. Bathymetry obtained through the
MeyGen project, Edina Digimap Service [36] and GEBCO3 is used. Tidal
open boundaries are forced by the Q1, O1, P1, K1, N2, M2, S2 & K2
tidal constituents from the TPXO database [37] and the model is spun
up for 2 days of simulation time. The model is sequentially run over a
28 day period without turbines to subsequently provide ambient flow
fields for the flow selection methodology.

3.3.2. Flow field selection for optimisation
We perform optimisation using several existing flow field selec-

tion methods reported in previous optimisation approaches (Table 3).
For investigation of intuitive (i.e. empirical) methods, flow fields are

3 https://www.gebco.net/
5 
Fig. 2. Estimated thrust and power (expressed as capacity factor) curves for a SIMEC
Atlantis Energy AR2000 turbine, including support structure contribution. The curves
ramp up and down just prior to cut-in and post cut-out speed for model stability.

selected by taking 𝑁 fields at equal time intervals (EI) from represen-
tative flood and ebb cycles. The same approach but excluding slack
flow fields (IS) (|𝐮avg| < 1 m∕s = cut-in speed, see Fig. 2) follows this,
as in [25]. Intuitively, this reframes focus from the ambient resource
to the power yield from deployed devices. This is performed with a
varying number of instantaneous flow fields (6, 18, 36) from one ebb
and one flood cycle, but also with twelve fields selected from three ebb
and three flood cycles (3 × 12). We then proceed to investigate methods
used in surrogate model approaches for flow field selection, where the
number of flow fields is typically reduced to contain computational
complexity. Both peak flow fields (P, [24]), and flow fields with speeds
just above and below rated (R, [26]) are used separately, and then
combined (PR). In all cases, the representative flood and ebb cycles
are selected by adapting Algorithm 1 for use with cycles. Typically
the cycle used for optimisation is chosen arbitrarily or based on major
constituents (e.g. M2).

https://www.gebco.net/
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Fig. 3. Field-averaged distribution of occurrence for velocity, kinetic power density (KPD) and potential turbine power (based on AR2000 turbine) over a 28-day period.
Our objective-binning approach is then compared, targeting 𝑁 flow
fields that represent the ambient flow power yield for a given turbine
technology as in Section 3.2 and Algorithm 1. To guide the investiga-
tion and the imposed constraints, we use a semi-realistic turbine based
on the SIMEC Atlantis Energy AR2000 set-up, with a 20 m diameter,
2 MW rated power at 3.05 m/s and a cut-out speed of 5 m/s (Fig. 2).
These characteristics are often neglected by several studies in Table 1
and by site feasibility investigation tools and metrics, such as Iglesias
et al. [38]. Fig. 3 shows how the representation of a 28-day period
varies between energy yield and kinetic power density, KPD, which is
defined at a given point, 𝑚 as:

KPD(𝑚) = 1
2
𝜌 |𝐮(𝑚)|3 (13)

For rated turbines, KPD frequency of occurrence does not correlate
with the total ambient potential power generation (as per Eq. (10)) fre-
quency of occurrence, nor the field-averaged flow velocity frequency of
occurrence. The probability distribution of energy yield shifts towards
lower velocity flow fields for two reasons. Firstly, no additional power
is generated above the rated speed. Secondly, turbines cease generation
beyond their cut-out speed. It therefore becomes instructive to include
these factors throughout the optimisation process.

Several experiments are performed on the proposed OB technique.
Firstly, the number of flow fields is varied to investigate the relation-
ship between optimised layout efficiency and the number of represen-
tative fields (𝑁) used. Secondly, we test the influence of omitting low
energy flow fields on the design. We filter flow fields where the average
output of a turbine when placed across all locations is less than 10%
ambient flow field capacity factor (OB-DF) (i.e. for the example turbine
of our study, 0.2 MW). Finally, we assess whether the spatial variation
across individual flow fields is important in the selection process. To
do so, we deploy the same OB technique, using just the central point
of the domain to determine the impact of the spatial variation when
trying to provide a reduced temporal representation (with these cases
denoted as OB-CP). These cases are summarised in Table 2.

We present yield potential roses for the central point of the deploy-
ment area alongside all points in the deployment area in Fig. 4. This is
indicative of the variability present both in flow direction and energy
distribution, across a portion of a potential site. A tidal rose usually
consists of the joint probability of velocity directions and magnitude,
the latter of which has been replaced by the potential yield (Eq. (10))
(i.e. energy conversion potential).

The turbine layout optimisation is performed using FLORIS as per
Section 3.1.2. In order to do so the performance conditions relating to
6 
wake interaction as defined in Section 3.1.2 must be imposed, which
will be sensitive to the turbine technology deployed. For the semi-
realistic 2 MW turbines of Section 5.2 these are fixed between flow field
selection cases, setting 𝐵max = 0.10 and 𝛤max = 0.175. The minimum
capacity factor per turbine, 𝐴min, is calculated at each iteration of the
optimisation to ensure all turbines maintain the minimum capacity
factor required. This value varies between cases as a minimum capac-
ity factor expected when only using peak flow field case would not
be appropriate to use for when lower energy fields are being used.
Therefore, we calculate 𝐴min as 90% of the average capacity factor of
the ambient flow fields for each case, 𝐴min = 0.9 ×

min(avg)
𝑃rated

. For fully
realistic array design, minimum longitudinal and lateral separation
may be imposed depending on the specific device requirements. For
the purposes of investigating the impact of the flow field selection
methodology, a minimum radial separation between turbines of 2D is
imposed. The flow field selection performance is evaluated by the array
design efficiency, i.e. array yield, quantified in Thetis over the 28-day
period.

4. Results

4.1. Flow field selection

Fig. 5 presents results of flow field selection through the OB method-
ology, when applied over a single flood and ebb tide, for demonstration
purposes. Relative to an equal interval approach, flow fields are much
more energetic. The percentile values indicate the cumulative ambient
potential yield under the curve, highlighting the concentration of large
amounts of energy over very short intervals close to the peaks.

Fig. 6 presents the field-averaged ambient energy yield capacity fac-
tor, avg

𝑃rated
, for each representative flow field selected in each case. The

time-based approaches (EI, IS) lead to fields which are widely spread in
terms of the objective function. Equal emphasis is placed on all fields,
including those that are low in potential returns. When reducing the
number of flow fields (e.g. IS6), the energetic range covered and fed
to the optimisation is much reduced. In the OB approach, the range of
the energies observed over the cycle is preserved until the number of
flow fields is dropped below 6. The emphasis towards peak flow fields is
maintained without ignoring lower energetic states which might persist
for longer duration. This high concentration of energy in peak periods
is demonstrated in OB36, where flow fields shift to a higher ambient
capacity factor relative to IS36.
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Table 2
Case descriptions for investigation of various flow field selection methodologies.
Case Case ID Description

Equal interval EI-N 𝑁 flow fields at equal time intervals from a single representative flood and ebb cycle.
Where 𝑁 = 3 × 12, 3 representative flood and ebb cycles are used.

Ignore slack IS-N 𝑁 flow fields at equal time intervals from a single representative flood and ebb cycle,
dropping any flow fields from the slack tide (|𝐮avg| < 1 m∕s)

Peak P2 The flow field of maximum average speed from a representative cycle, for ebb and flood
Rated R4 Flow fields with an average speed of just below and just above rated speed (3.05 m/s), for

ebb and flood
Peak + rated PR6 The combination of peak and rated fields (P2 + R4)

Objective binning OB-N 𝑁 flow fields selected using Algorithm 1
Objective binning
(dropping low energy
fields)

OB-DF-N 𝑁 flow fields selected using Algorithm 1, but dropping any low energy fields (where
average ambient yield equivalent is below 10% of the maximum potential yield)

Objective binning (central
point only)

OB-CP-N 𝑁 flow fields selected using Algorithm 1, but using only the central point in the binning
process, instead of field averaged values
Fig. 4. Left: Potential yield rose at the central point of the deployment region. Right: Potential yield rose across the entire deployment region.
Fig. 5. Example of application of the objective binning method using two selected flow cycles. Percentage values represent the total potential yield under the curve, indicating
that over 25% of the energy is held within the flood alone for these representative currents. 10% of the total ambient potential yield exists in fields with average potential capacity
factor exceeding 99.7%. Note that this does not correspond to OB18, as the full 28-day period is used for the objective binning method.
The use of the flow fields in the optimisation is twofold. Firstly, the
power generated and impact of each turbine added in each iteration
is determined for every flow field. Secondly, flow fields are averaged
to determine the next candidate turbine placement location based the
highest speed and spatial constraints. Examples of time-averaged flow
magnitude fields are shown in Fig. 7 for the equal interval (EI36),
objective binning (OB6) and peak (P2) cases. The flow magnitude field
7 
patterns remain similar and reflective of the complex bathymetry, but
the average speed of each demonstrates how bias is introduced subject
to the flow field selection technique used. The turbine layouts in Fig. 7
demonstrate the consequences of the flow field selection on their distri-
bution, whereby in the ‘peak’ selection, averaged flow field velocities
generally exceed 3.5 m/s.Turbines in that case are subsequently placed
unrealistically close together.
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Fig. 6. Comparison of flow field ambient energy of each flow field selection method. Each line represents the flow field ambient energy of a selected flow field in terms of an
equivalent capacity factor.
Fig. 7. Average magnitude of representative input flow fields used for array optimisation (D = 20 m). Layout of turbine coordinates for Equal Interval (EI36), Objective-Binning
(OB6), and Peaks (P2) cases superimposed for completeness.
4.2. Comparison of objective binning to alternative strategies

Table 3 presents array energy yield across cases, also summarised in
Fig. 8. The equal interval approach (EI36) is the least efficient method,
with immediate improvement once low energy (e.g. slack period) fields
are omitted. The number of flow fields used when filtering fields
appears to have minimal influence on the optimised array efficiency.
Using peak flow fields (P2) results in a slightly more productive op-
timisation process than IS cases, and is superior to using flow fields
close to rated speeds (R4). The latter (R4) emphasises wake interaction
avoidance in the micro-siting procedure. Combining peak flow fields
with those with field-averaged speed around rated speed (PR6) leads
to an overall improvement. Objective binning (OB) shows substantial
improvement over alternative cases, with 6 flow fields being sufficient
to generate an almost 5% improvement in array power. With the
exception of case OB2, regardless of the number of flow fields selected,
this method outperforms existing approaches in terms of projected
array yield.

According to this analysis we make the following observations.
When filtering fields below a 10% ambient field-averaged energy ca-
pacity factor prior to the OB selection procedure, array productivity
improves in all cases except OB36. When using a single point (OB-CP)
to guide the flow field selection instead of averaging the flow field, the
array productivity decreases where a large number of flow fields are
used. However, array productivity remains similar where the number
of flow fields remains low. Overall, filtering low energy fields appears
to be beneficial, whilst failure to exploit all of the spatial data leads
to a reduction in subsequently sited array productivity. Notably, there
8 
was a failure to place all turbines when only two flow fields are used
using the central point OB-CP analysis.

5. Discussion

5.1. On the impact of design constraints

Before discussion on the flow field selection methodology, we high-
light a feature of the optimisation methodology that impacts the results.
Design optimisation is metric-constrained to ensure that turbines do not
have excessive wake interaction. In this case we use simplified formu-
lations of such metrics to establish a minimum performance threshold
(𝐴min), deter excessive interaction between two devices (𝐵max) and,
by extension, cumulative interaction with turbines across the array
(𝛤max). This not only directly improves the array yield by reducing the
likelihood that turbines are in lower energy wake regions, but may
also assist with structural and geotechnical load requirements by proxy.
These requirements could be defined (or extended) more concretely for
specific devices.

The consideration of these constraints leads to several key obser-
vations. A turbine can induce a time-varying impact on a downstream
turbine due to differences in thrust force, turbulence level, wake effects
and broader flow variability [39]. This complicates the design optimi-
sation, adding dimensions beyond energy yield. A simple example of
the need for these constraints is when the flow speed is well above
the device’s rated speed. In that scenario the upstream turbine wake
deficit can be insignificant in decreasing the oncoming flow speed for
the downstream turbine below rated. Thus, if power generation is the
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Fig. 8. Array energies for different optimisation input flow fields quantified over 28 days. OB-CP2 had insufficient turbine placements and is thus excluded.
Table 3
Results of optimisation methodology applied to each case of flow field selection. The energy yield is
calculated based on array simulations of optimised layouts in Thetis.
Case description No. of Case ID Yield representation Thetis energy

fields index, YRI yield [GWh]

Equal interval 36 EI36 1.053 21.75 0%

Ignore slack 6 IS6 0.632 22.50 +3.45%
Ignore slack 18 IS18 0.746 22.46 +3.26%
Ignore slack 36 IS36 0.788 22.48 +3.36%
Ignore slack 3 × 12 IS3 × 12 0.680 22.43 +3.13%

Peak 2 P2 0.427 22.57 +3.77%
Rated 4 R4 0.576 22.45 +3.22%
Peak + rated 6 PR6 0.516 22.61 +3.95%

Obj. binning 2 OB2 0.996 22.46 +3.26%
Obj. binning 4 OB4 0.673 22.71 +4.41%
Obj. binning 6 OB6 0.617 22.79 +4.78%
Obj. binning 8 OB8 0.596 22.56 +3.72%
Obj. binning 10 OB10 0.574 22.65 +4.14%
Obj. binning 18 OB18 0.565 22.87 +5.15%
Obj. binning 36 OB36 0.559 22.79 +4.78%

Obj. binning (df) 2 OB-DF2 0.713 22.48 +3.36%
Obj. binning (df) 4 OB-DF4 0.598 22.75 +4.60%
Obj. binning (df) 6 OB-DF6 0.574 23.03 +5.89%
Obj. binning (df) 8 OB-DF8 0.564 22.67 +4.23%
Obj. binning (df) 10 OB-DF10 0.550 22.83 +4.97%
Obj. binning (df) 18 OB-DF18 0.548 22.92 +5.38%
Obj. binning (df) 36 OB-DF36 0.546 22.66 +4.18%

Obj. binning (cp) 2 OB-CP2 0.995 * *
Obj. binning (cp) 4 OB-CP4 0.625 22.74 +4.55%
Obj. binning (cp) 6 OB-CP6 0.542 22.84 +5.01%
Obj. binning (cp) 8 OB-CP8 0.530 22.51 +3.49%
Obj. binning (cp) 10 OB-CP10 0.525 22.38 +2.90%
Obj. binning (cp) 18 OB-CP18 0.511 22.53 +3.59%
Obj. binning (cp) 36 OB-CP36 0.510 22.63 +4.05%

*Failure to place all turbines.
sole driver, then for a small number of flow fields, a high energy field
will dominate the optimisation process. This was the case in [26],
where metrics were calculated once per iteration based on the average
power across all flow fields. There, flow fields were empirically selected
around rated speed. This analysis demonstrates how such practices may
lead design to a relatively narrow energetic range (see Fig. 6, case Rated
(R4)).

Conversely, in [25], constraints were prescribed for each flow field.
This instead allows a subset of extreme low-energy flow fields to
dominate the acceptance/rejection of candidate turbine coordinates. A
balance must be satisfied across these extremes, and care should be
directed to the formulation of the metrics that assess compliance to
the optimisation constraints. To do so, the metric average was tested
herein. Using the constraint metric average still risks an emphasis
on one of the dominant flow directions (i.e. if a particular metric is
at 4% in one direction, and 12% in the other direction, an average
of 8% would satisfy a 10% requirement). However, sensitivity tests
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found using the average of the field metrics superior for power yield
to requiring all, or a subset of the flow fields to be compliant (or
a combination of both). Whilst this metric-averaged based approach
step prevents any particular flow field overly governing design, the
optimisation remains more sensitive the fewer the flow fields used, as
each field has a larger impact on the average metric value.

These complications arise as constraints beyond energy yield are
factored in the optimisation requiring engineering judgement to inform
the metrics that converge to the final design.

5.2. On the impact of flow field selection on optimisation

Several approaches (Table 2) were tested to guide the instantaneous
flow field selection and inform the optimisation process. We see a close
sensitivity of these inputs and the final layout. Applying a uniform
discretisation to flow field selection over a spring-neap tidal cycle (EI)
performs poorly due to the inclusion of several low-energetic fields
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Fig. 9. Array regions superimposed onto the 28-day average potential energy field (based on AR2000, D = 20 m). Numerical values represent the proportion of turbines within
each region.
that penalise the acceptance of turbines in close proximity. This leads
to excessive spacing and thus an overly conservative, wake avoidance
focussed layout design. Filtering slack tide and low capacity fields
as in [25], leads to an array that is 3% more productive on aver-
age. By switching the optimisation performance conditions to those
of Jordan et al. [26], this discrepancy could be avoided as discussed
in Section 5.1, though at reduced optimisation efficiency. With the
capability of applying performance conditions as in-place here, exten-
sions could adapt optimisation constraints (that in this case balance
turbine–turbine interaction and turbine–array interaction) subject to
the average flow speed of each field. An alternative option would
be to weigh the importance of constraints based on the frequency of
occurrence of each flow field, akin to the proposed OB method.

One benefit of the OB method is that we can minimise the number
of flow fields used where the optimisation space is already very large.
Funke et al. [12] deployed an adjoint-based optimisation method in a
steady state simulation, which required days of run time to complete
on a supercomputer. When applying such approaches over transient
periods, the shorter the model run time, the lesser the computational
cost. A route to identify representative subsets of the flow could be
extremely beneficial in reducing memory and time for such approaches.
Metric-based approaches require hyper-parameterisation, particularly
when optimisations become multi-objective. Fundamentally, it is desir-
able to minimise the flow field number, 𝑁 , used in optimisation. Even
surrogate models (i.e. in this case, FLORIS) become time-consuming for
large-scale, finely resolved domains with multiple objectives over non-
linear parameter spaces. This is particularly important when the array
deployment area increase is proportional to the memory requirements
dedicated to perform optimisation.

Fig. 9 presents the primary regions where turbines are deployed
subject to different cases. On EI/IS cases for flow field selection, em-
phasis is primarily placed on wake avoidance. Equal emphasis is placed
on all fields, adding more frequent lower energy fields that bias the
optimisation process. Conversely, by relying solely on peak flow fields,
turbines are densely packed into high-energy regions, promoting more
wake interaction. The OB technique emphasises representation of the
flow based on the energy and subsequently provides the means to
achieve a critical balance between array density in high energy regions
and wake avoidance.

5.3. On the sensitivity of the proposed methodology

We explored the significance of including low energy flow fields,
typically associated with slack periods. In removing these fields prior
to OB flow field selection, we see an increased array productivity,
generally. OB essentially weights each flow field equally so that the
cycle is represented in terms of energy, as fairly as possible. In omitting
high-frequency lower energy fields, it becomes logical that we may
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lose balance in establishing an optimal layout. The primary difference
when filtering low energy fields regards the final representative fields
selected as inputs in the optimisation. The most energetic flow field
bins are the smallest, as high levels of energy are concentrated in
short periods. Therefore the first-selected fields are similar regardless of
whether low energy fields are excluded or not. The representative fields
selected at lower energy bins subsequently see a larger variation in
velocity. Where flow data stemming from the full cycle is used (e.g. EI),
a flow field with average direction varying notably from the principal
current direction may be used. For small numbers of flow fields, this
could influence whether a turbine is accepted or rejected. Considering
additional similarity indices and further refining constraints could re-
ject selection of such fields in the OB method. This is beyond the scope
of the work presented here and also appears to be dealt with by removal
of these fields (OB-DF).

With increasing flow field number, 𝑁 , optimisation sensitivity re-
duces. However, the number of energy bins increases and this leads to
more selected flow fields that are of higher energy. Here, interaction
metrics should be reviewed or modified per flow field, since higher
energetic flow fields are easier to satisfy power-related constraints
even when turbines interact. In this study, we fixed interaction related
metrics, 𝐵max and 𝛤max, for ease of explanation. A potential issue
emerges by increasing emphasis on higher energy fields leads to, say, a
3% benefit for those fields, at the cost of a 5% loss in productivity over
low energetic states. This is demonstrated in Fig. 10, where filtering
low energy fields leads to improved yield during peak flood flow but
substantial reductions in the peak-slack transition.

Using a velocity time-series at a single or limited points to determine
optimisation flow fields is common in wind farm layout optimisa-
tion (e.g. Samorani [40],Cazzaro and Pisinger [41]). A similar ‘‘tidal
rose’’ approach is used in [21,27]. While acceptable for wind farms
where ambient velocity does not fluctuate substantially, significantly
greater variability in space is encountered in a tidal domain. This
is demonstrated herein in Fig. 4 for a relatively compact site. The
influence of losing this spatial variability in the flow field selection
process for tidal stream energy application subsequently impacts the
temporal variability observed. Excluding cases where optimisation is
more sensitive to the low number of flow fields, we see a subtle but
noticeable drop in array productivity as a result. This also highlights the
challenge of capturing the spatial variation accurately in hydrodynamic
models, due to the limited observation points available across tidal
sites. Further work would entail the examination of this effect across
different sites and quantifying the significance of the point used, when
the spatial variation is not considered.

5.4. On the limitations of the study

A few intricacies were not explored in this study, such as the impact

of post-cut-out speeds. Over spring tide peaks at certain parts of the
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Fig. 10. Array power comparisons over representative flood and ebb cycles for cases OB36 and OB-DF36.
:

Inner Sound, occasions arise where flow speed exceeds 5 m/s. Where
these flow speeds are recorded, the objective function will take a value
of zero, subsequently leading to 𝑎𝑣𝑔

𝑃rated
< 1 despite a field exhibiting peak

flow. Therefore, it could enter a bin with lower objective value, in spite
of being one of the most energetic fields present over the time inves-
tigated. This is a result of the objective function being tailored to the
device capabilities. This can therefore interfere with the optimisation
balance desired. Another issue requiring further exploration is when the
deployment area considered becomes larger, such that the lag between
peak velocities across the site becomes notable. This can lead to bias
towards certain regions and therefore for sites on the potential scale
of hundreds of turbines, adjustments would need to be made to this
method to avoid this bias.

Further exploration is also required for the special case of using only
two flow fields (e.g. OB-DF2) where the OB technique is inefficient. This
is because no binning is actually performed when limited to a single
flow field for each ebb and flood tide. In the current implementation,
the field corresponding to the average value for each bin will be used,
which will statistically be of a relatively low energy. Therefore, one
modification to potentially improve the OB technique without a specific
methodology for this case, is to change the method of flow field selec-
tion for each bin. This entails using the field that corresponds to the
50% point in cumulative energy, rather than the 50% value of power.
This special case is of particular interest where instead of instantaneous
flow fields whole cycles must be identified to capture the transient
dynamic features. Including transient runs such as through adjoint-
based optimisation will have higher memory requirements, and thus
further work should explore a strategy towards a representative cycle
selection for optimisation. This is another limitation of the study, as
only the custom greedy algorithm has been deployed, which has its own
limitations as discussed in [25]. Instead, we present the implications of
the use of the flow field methodology for other optimisation strategies
in Appendix C.

6. Conclusions

We present a statistical objective-driven approach to provide a
reduced representation of tidal flow. This is applied in the context of
tidal array optimisation, where the objective driven approach selects
instantaneous flow fields or cycles based on realisable energy of specific
device characteristics. Flow field selection has previously been per-
formed empirically, which we show here to have tangible implications
for array shape and size. Also, the objective-driven method results in
an array optimisation procedure that is 4%–5% more productive than
simply using unweighted transient approaches (and up to 2% improve-
ment against using peak flow fields), for a metric-based optimisation of
11 
the Inner Sound of the Pentland Firth. The statistical approach ensures
that the inputs presented to the optimisation procedure offer a fair
representation in terms of the desired objective (e.g. energy, yield),
instead of the frequency of occurrence of simpler parameters used for
model calibration (e.g. velocity). This approach subsequently reduces
potential losses in array capacity factor in the optimisation, in addition
to demonstrating that a reduced number of flow fields can be used in
this process without loss in the final optimisation objective function.
We find that the spatial variability of the flow is influential in flow field
selection, as use of a single point in selecting representative flow fields
leads to less productive arrays. This is significant as array sites are often
insufficiently resolved and their potential is assessed in models based
on a single time series.

Whilst this work has been conducted for tidal array resource, it
serves as a useful approach for reduced modelling for any non-linear
objective function where the frequency of primary parameters (i.e.
velocity, depth) are not suitable for selecting flow fields for analysis
or control/optimisation.
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Appendix A. Array design algorithm

Algorithm 2 describes the process for array design within FLORIS.
t each iteration, the location of highest energy is determined and
turbine is added to the array. If each turbine within the array

atisfies the constraints defined, then the turbine is accepted. Each
ccepted or rejected turbine then masks the selection process for the
ext iteration. This algorithm completes once the number of desired
urbines within the array is finished, or when the solution region has
een fully explored.

Algorithm 2 Sequential addition of turbines to domain using greedy
optimisation.

𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁𝑆: Each turbine must meet a minimum 𝐴-% average
turbine capacity factor, have maximum reduction of power to any
other turbine of 𝐵-% and maximum reduction of power to the sum of
ndividual turbines (that face power output reductions) of 𝛤 -%.

𝑂𝑁𝑆𝑇𝑅𝐴𝐼𝑁𝑇𝑆 (𝛥,𝐸): Minimum distance constraints for turbine
lacement, specified in turbine diameters away from considered
oordinate.

1: while iteration no. < maximum no. of iterations do
2: while no. of turbines < maximum no. of turbines do
3: Calculate and add turbine wakes to each flow field of

selected tidal cycles.
4: Calculate a moving average flow magnitude field (a moving

average deters turbine placements on wake edges).
5: Identify coordinate of highest average velocity magnitude

as a candidate turbine location.
6: Add turbine at candidate site and impose wake on each flow

field of selected tidal cycles.
7: Calculate the average power (using each individual field)

for all turbines including the new turbine.
8: if 𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁𝑆 are met then
9: Add candidate site to list of accepted coordinates.
0: Impose a restriction for turbine placement within a

limiting distance 𝛥 around new coordinate.
1: else
2: Add candidate site to list of blocked coordinates.
3: Impose a restriction for turbine placement within a

limiting distance of 𝐸 around blocked coordinate.
4: end if
5: end while
6: end while

Appendix B. Analytical wake modelling using FLORIS

FLORIS utilises a number of analytical models to predict the mean
wake velocities and power output of turbine arrays [42]. In the present
study, we make use of FLORIS’s Gaussian model originally introduced
by Bastankhah and Porté-Agel [34] which computes the normalised
velocity deficit via the expression
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(B.1)

where 𝑈∞ is the approaching streamwise velocity, 𝑧 is the wall-normal
coordinate with 𝑧ℎ the turbine hub height, 𝑘∗ is the growth rate of the

ake (𝜕𝜎∕𝜕𝑥), 𝑑0 is the diameter of the wind turbine and 𝜖 is the nor-
alised Gaussian velocity deficit at the rotor plane. For our calculations

he local wake growth rate 𝑘∗ is estimated using the local streamwise
turbulence intensity,  [43]. Turbine power output on the other hand,
is calculated using a power thrust–velocity relationship specified for
12 
Table B.4
Calibrated wake parame-
ters for Gaussian model,
with support structure in-
cluded in Thetis.
𝑘𝑎 0.002173
𝑘𝑏 0.02272
𝛼 0.5751
𝛽 0.2974

each individual turbine. This requires a combination model to ac-
count for the contributing wake velocity deficit from upstream and
other neighbouring turbines. Here, we have selected to use the free-
stream linear superposition (FLS) method to account for the cumulative
wake effects within the tidal array. The velocity deficit, 𝛥𝐮 (𝑥, 𝑦), at a
ownstream location (𝑥, 𝑦) is calculated as,

𝛥𝐮(𝑥, 𝑦) =
𝑁
∑

𝑖=1

(

𝛥𝐮𝑖|(𝑥,𝑦)
)

, (B.2)

where 𝛥𝐮𝑖|(𝑥,𝑦) is the contribution the wake of each turbine 𝑖 at the
downstream location (𝑥, 𝑦) [44].

Wake-specific parameters for the AR2000 turbine were calibrated
in [26] to replicate the velocity deficits exhibited when modelled in
Thetis. These include 𝑘𝑎 and 𝑘𝑏, parameters that relate to turbulence
intensity and wake width. These combine and determine the value of
the wake growth rate, 𝑘∗, which eventually enters the Gaussian velocity
deficit Eq. (B.1) calculated as,

𝑘∗ = 𝑘𝑎 ⋅  + 𝑘𝑏. (B.3)

The second set of parameters 𝛼 and 𝛽 are used for the quantity, 𝑥0,
which defines the onset of the far wake,

𝑥0 = 𝐷
1 +

√

1 − 𝐶𝑡
√

2
(

4𝛼 ⋅  + 2𝛽
(

1 −
√

1 − 𝐶𝑡

)) . (B.4)

Calibration was performed using differential evolution (as implemented
within SciPy’s optimisation library [45]) as described in [25]. The final
parameters are presented in Table B.4.

Appendix C. On alternative optimisation methodologies and im-
plications for the micro-siting process

We can make several inferences on the potential impact of this
flow field methodology on other studies from the discussion presented
in Section 5.2. In [24], turbine positions were restricted based on a
structured grid, so we might expect that turbines are too closely spaced
as a result of using only the peak flood and ebb fields. Similarly,
in [12], only a singular flood steady state simulation was used with the
primary objective being the demonstration of the adjoint methodology.
Whilst the application was unrealistic, we can still hypothesise that
if more appropriate flow fields were used by the OB method or if a
flood/ebb tidal cycle was used with energy as the objective, we would
see larger spacing between rows of turbines whilst still exploiting array
scale blockage. In [22,23], optimal array structure spacings are found
by using mathematical functions to estimate the predicted yield of a
turbine given a set number of prescribed model runs. In this setting, we
can take advantage of the OB method to use minimal computationally
expensive steady-state 3D model runs and subsequently achieve results
that are reflective of the temporal complexities present in marine
problems. This can be further extended to large eddy simulation studies
such as Ouro et al. [46], where the selection of time period is critical
due to the computational cost.

To deal with the temporal variation in tidal flows [21] or [27]
made use of a ‘‘tidal rose’’. However, in these approaches the flow
field velocity is kept uniform, thus only targeting wake interaction

minimisation whilst failing to deal with the inherent spatial variation in
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the ambient condition. Nonetheless, the methodology of Lo Brutto et al.
[21] still takes an initial step towards a better representation of the flow
when using a combination of the instantaneous power as an objective
by introducing a weighting based on the frequency of occurrence. With
the OB method we can substantially reduce the number of fields used,
and rather than using velocity, we use an objective function related to
the optimisation objective, which is a better representation of the flow
for layout optimisation purposes.

Whilst this methodology has been applied in the context of instan-
taneous flow field selection, similar results are expected when applied
to simultaneous placement and full-cycle approaches to optimisation.
For example, Zhang et al. [17] performed optimisation for neap, inter-
mediate and spring tides and found that the optimal turbine density
changes depending on the tides used. A continuous representation of
the array was used and the number of turbines was not set, thus the
results are not directly comparable to the work presented here, but
nevertheless support the hypothesis that there must be an optimal
period for micro-siting. During neap tides, where velocity magnitudes
are low, the optimisation compensated by increasing the density to
fill the entire deployment area. As velocity magnitude increases, the
turbine density becomes more consistent. In this case, lack of rated and
cut-out speeds may impact this result, hence the benefit of using the
OB method to select optimal cycles for realistic turbine specifications.
However, for studies such as Phoenix and Nash [29], where a spring
cycle is used with discrete, realistic turbine representation, we might
anticipate too much emphasis on high-density packing of turbines. In
addition, not only is there variation over a lunar month, Thiébot et al.
[2] estimated that over an 18.6 year cycle, there is a variation of up to
±10% in KPD per year. This may also have implications for harnessing
local and array scale blockage effects that lead to higher flow speeds
and potentially support denser array configurations, as demonstrated
in [16].

Array layout is not contingent only on energy. In [18], environmen-
tal impacts were studied through the form of minimising the velocity
deficit incurred by the array, using a steady state peak flood field to
minimise computational cost whilst demonstrating the methodology.
However, the lack of temporal variability presents a flaw not only in the
optimisation, as the array layout will change substantially with the in-
troduction of the ebb tide, but also a flaw in obtaining the Pareto front.
The Pareto front is used in multi-objective optimisation to describe
the set of solutions that satisfy all of the objectives efficiently. At the
‘middle’ of the Pareto front, the solution may solve all objectives with
equal emphasis on each. Without the temporal variability included,
the array will tend towards over-packing into energetic regions, and
thus the Pareto front will shift further toward minimising overall array
deficit, which is achieved by increasing turbine-array interaction. This
is complicated in [18] by allowing turbines to be placed one on top of
the other and in [19] by continuous representation of the array. Should
temporal variability be included, a more accurate and balanced Pareto
front that satisfies both objectives should be obtained. This also applies
for any studies where LCOE is formulated within the optimisation
objective function with a weighting factor between profitability and
power such as Goss et al. [15] or Culley et al. [13]. Examining Goss
et al. [15], a highly simplified headland channel model was used to
demonstrate how array layouts change in response to varying eco-
nomic parameters. Again, as the objective is primarily to demonstrate a
methodology, we can only hypothesise how results would vary for ap-
plication with realistic spatial and temporal representation. However,
the use of only an M2 like signal means that each cycle is identical and
we sacrifice array performance over the full lifecycle of a project by
optimisation that does not consider the full spatio-temporal complexity
of the problem. We can anticipate that correct choice of cycle for
optimisation would be critical for an accurate emulator and a better
balanced Pareto front.

Regardless of optimisation methodology and constraints, array pro-
ductivity is contingent on the three key factors outlined in Section 3.
These can all be linked to the spatio-temporal variation of the problem,
and thus balanced array design will not be achieved without using a

representative cycle and corresponding optimal metrics, where used.
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