International Energy Agency Implementing Agreement on Ocean Energy Systems

KEY FEATURES AND IDENTIFICATION OF NEEDED IMPROVEMENTS TO EXISTING INTERCONNECTION GUIDELINES FOR FACILITATING INTEGRATION OF OCEAN ENERGY PILOT PROJECTS

March 2009

A report prepared by Powertech Labs Inc. for the IEA-OES under ANNEX III on Integration of Ocean Energy Plants into Distribution and Transmission Electrical Grids

IEA-OES Document No: T0312

Powertech

KEY FEATURES AND IDENTIFICATION OF NEEDED IMPROVEMENTS TO EXISTING INTERCONNECTION GUIDELINES FOR FACILITATING INTEGRATION OF OCEAN ENERGY PILOT PROJECTS

Final Annex III Technical Report IEA-OES Document No: T0312

Authors:

Jahangir Khan, Gouri S. Bhuyan, and Ali Moshref Powertech Labs Inc 12388-88th Avenue, Surrey British Columbia, Canada, V3W 7R7

Disclaimer

The IEA-OES also known as the Implementing Agreement on Ocean Energy Systems functions within a framework created by the International Energy Agency (IEA). Views, findings and publications of the IEA-OES do not necessarily represent the views or policies of the IEA Secretariat or of all its individual member countries.

Neither the authors nor the participating organizations nor the funding organisations makes any warranty or representations, expressed or implied, with respect to use of any information contained in this report, or assumes any liabilities with respect to use of or for damages resulting from the use of any information disclosed in this document.

Suggested Citation

The suggested citation for this report is:

J. Khan, G. Bhuyan, and A. Moshref (2009). *Key Features and Identification of Needed Improvements to Existing Interconnection Guidelines for Facilitating Integration of Ocean Energy Pilot Projects,* a report prepared by Powertech Labs for the IEA-OES Annex III, [Online], Available: www.iea-oceans.org

Availability of Report

A PDF file of this report is available at: <u>www.iea-oceans.org</u> <u>www.powertechlabs.com</u>

FORWARD

The International Energy Agency (IEA) is an autonomous body within the framework of the Organization of Economic Co-operation and Development (OECD), which carries out a comprehensive program of energy co-operation among different countries. The Implementing Agreement on Ocean Energy Systems (IEA-OES) is one of the several IEA collaborative agreements within the renewable energy domain.

This report has been prepared under the supervision of the Operating Agent for the IEA-OES Annex III on Integration of Ocean Energy Plants into Distribution and Transmission Electrical Grids by

Gouri S. Bhuyan Powertech Labs Inc 12388-88th Ave, Surrey, British Columbia, Canada

In co-operating with experts of the following countries:

Canada, United Kingdom, Ireland, Spain and New Zealand

It has been approved by the Executive Committee of the IEA-OES program.

This report summarises the work performed in Work Package 1 of Annex III. The work activities for this work package were led by Powertech Labs. Other contributing organisations for this report are AEA Technology of the UK, Hydraulics and Maritime Research Centre (HMRC) at the University of Cork, Ireland, Tecnalia of Spain, and AWATEA of New Zealand.

ACKNOWLEDGEMENTS

Primary funding for this work package was provided by Distribution Innovation Technology (DIT) working group of BC Hydro and Powertech Labs Inc. Funding support was also provided by the UK Department of Energy and Climate Change (DECC), Sustainable Energy Ireland (SEI), Tecnalia of Spain and AWATEA of New Zealand

The authors of this report would like to acknowledge the valuable inputs provided by the following individuals to the report:

- Dr. Raymond Alcorn and Dr. Dara O'Sullivan of Hydraulics and Maritime Research Centre (HMRC), Ireland
- Mr. Alan Morgan of DECC, UK
- Mr. Howard Rudd of AEA Technology, UK
- Mr. Jose Luis Villate and Mattia Scuotto of Tecnalia, Spain
- Dr. John Huckerby, AWATEA, New Zealand

EXECUTIVE SUMMARY

Wave and tidal current conversion technologies are advancing to the commercial stage. The conversion processes involved are highly diverse and novel, and the energy resources are variable. Several pilot projects are now connected to electrical grids, and some large-scale projects are in planning stages.

Network interconnection guidelines are essential elements to accommodate such alternative energy technologies in the more traditional marketplace. These frameworks not only accelerate the system design process, but also bring confidence amongst the network owners and operators. Development of appropriate interconnection guidelines, based on solid technical understanding of power outputs from the conversion devices and local grid constraints, will pave the path for market integration of ocean power.

Several interconnection guidelines and standards already exist for connecting generating technologies with variable power outputs, such as wind and photovoltaic (PV). Ocean energy, being a nascent field of energy engineering, can benefit significantly by adapting the technological solutions available from these industries.

The IEA-OES Executive Committee approved an Annex (Annex III) in 2007 with an overall aim: to provide a forum for information exchange and co-operative research related to the short-term and long-term integration of ocean energy into electrical systems. The Annex consisted of three work-packages and co-ordination with other relevant initiatives within IEA.

This report presents the work carried out through Work Package 1 of the Annex. It focuses on analyzing existing interconnection guidelines, codes and standards. Based on the analysis, the report identifies the areas where these guidelines could be modified to develop a suitable marine energy interconnection guideline. It is suggested that existing wind (onshore/offshore) energy standards, once revised in the marine energy context, will aid both small-scale pilot or large-scale commercial projects.

TABLE OF CONTENT

Forward	3
Acknowledgements	4
Executive Summary	5
List of Figures	7
List of Tables	8
1 Introduction	9
2 Ocean Wave, Tidal Current and Wind Energy Systems	1
3 Literature Review and Improvement Needs	4
4 Outline of a Generic Interconnection Guideline	9
5 Outline of a Ocean Energy Interconnection Guideline	4
6 Summary: Pilot Project Guidelines	7
References	8

LIST OF FIGURES

Figure 4-1: Distribution and transmission system operators' jurisdictions and project	
scope	19
Figure 4-2: Example of interconnection process for generators with transmission impact	t]
	20
Figure 4-3: Example of interconnection process for generators without transmission	
impact	20
Figure 5-1: Example of a flow-chart for ocean energy interconnection guideline	
development for west coasts of North America	24

LIST OF TABLES

Table 3-1: Existing interconnection standards and guidelines	15
Table 4-1: Key components of a generic interconnection guideline	21
Table 5-1: Possible ocean energy system interconnection requirement issues	25

1 INTRODUCTION

Continuous and reliable operation of a power system requires systematic co-ordination among various utilities, power producers and system operators. In addition to a number of technical requirements, such as power quality, electrical interconnection, protection and supervisory control, a set of non-technical aspects dominates the overall management of such a large system. Elements of commercial fairness, competition, cost of operation and safety are incorporated at various degrees within the network framework. In order to facilitate a mutually agreed process, interconnection guidelines, requirements or standards are generally prescribed and affect both the power producers and network authorities.

While conventional electric power from large hydro, thermal or nuclear energy sources has long been accommodated into the networks through numerous established norms, many renewable technologies require special attention in this regard. New guidelines are needed relating to resource variability, system diversity and use of relatively novel technologies (e.g., power electronics, doubly fed induction generator, etc.). Ocean energy is another emerging alternative energy field where interconnection guidelines may be needed in the short and long run. Such an initiative needs to keep sufficient balance between its present state of development and its immense future potential.

To manage the technological risks and to generate greater confidence among various stakeholders, demonstrations and short-term pilot projects will precede large-scale commercial deployment of ocean wave and tidal current devices. At present, technological advancement and general enthusiasm around the ocean energy industry have gained considerable attention[1][2]. Several landmark deployments in Europe have renewed the case of harnessing the untapped potential of the world's oceans [3][4].

The objective of this report is to review existing interconnection literature and suggest ways to aid the adoption of ocean energy (wave and tidal stream) as utility-scale pilot projects. Key aspects that form the basis of this study include:

- The scope of pilot projects as emerging technologies that may see near-term deployment
- Existing and upcoming ocean wave and tidal current technologies fit for such pilot projects
- Plant locations and use of distribution/transmission networks
- Resource variability and operational impacts on the electrical network
- Technology trends and considerations for progression into full-scale commercial farms
- Interconnection paradigms within the wind energy industry, distributed generation concepts and offshore engineering practices

Conventional bulk power generating schemes are subject to a set of rather stringent requirements, commonly known as "standards" or "codes," that aim at securing a reliable, economic and safe operation of power systems. By contrast, pilot projects could

probably be accepted with more permissive criteria, typically termed "guidelines" or "best practices." Considering the level of technological maturity and the need for establishing sufficient supporting mechanisms, ocean energy technologies may deserve such an approach.

Resource variability, intermittency and predictability are significant aspects of wave and tidal energy conversion processes. While these technologies have general similarities with other renewables, such as wind or solar energy, their operation is dependent on resource variation at varying time frames and uncertainty levels. In addition, the wide diversity of operating principles of wave energy converters compared with tidal stream devices [1][2], coupled with their varying system architecture, have created equivocal perceptions among the governing authorities and energy marketers. The absence of sufficient commercial experience and lack of confidence in integrating such ocean energy systems into the electrical network could pose challenges that need to be addressed through the development of guiding mechanisms.

2 OCEAN WAVE, TIDAL CURRENT AND WIND ENERGY SYSTEMS

In order to develop an interconnection guideline suitable for ocean wave and tidal current technologies, sufficient attention needs to be given to the unique design and operational aspects attributed to such systems. While the basic electrical characteristics (such as, voltage and frequency) should ideally be in synchronism with other conventional forms of generation, these devices may require additional attention with regard to their acceptability in the grid system. Wave energy devices use the kinetic and/or potential energy of ocean waves to generate electric power, typically through a cascade of conversion processes. On the other hand, most tidal stream converters harness the kinetic energy of flowing tidewater by means of electromechanical units very similar to wind turbines. Project location, multi-unit farm operation and plant reliability (i.e., availability under normal and rough sea conditions) are several aspects that include both tidal and ocean energy devices.

In addition, resource variability and intermittency issues are common to both classes with varying degrees of time-scale and predictability. While many ocean devices are completely different from wind systems in terms of design and operation, an electric grid generally identifies all such components as of similar electrical properties. Wind energy, being one of the most mature renewable technologies, can provide insight into the existing wave and tidal stream systems and help identify subtle features of interest. In addition, existing wind-integration standards and guidelines can be enhanced or modified to accommodate ocean energy technology integration issues. Aiming to identify a set general interconnection aspects, below is an outline of technological similarities and differences between tidal and wave systems in comparison to wind energy devices:

Tidal Stream Converters

Similarities

- The system layout of a typical tidal device is analogous to a wind turbine, where a rotor coupled to an electrical machine transfers power via a mechanical transmission line. The grid interface (i.e., use of induction, synchronous, or power electronics) is almost identical to that of wind turbines with additional requirements for operation at sea conditions (sealing, lubrication, etc.).
- System modelling and subsequent gird connection studies pertaining to tidal stream devices can be carried out through the established concepts and norms of the wind industry. The existing knowledge base in the wind energy literature may provide significant input to such investigations.
- Tidal energy density is typically higher in narrow channels close to the shore. Therefore, a tidal plant is expected to see deployment in near-shore areas and may face design and operational constraints very similar to an offshore wind farm.

Differences

- At present most tidal current turbines are being designed and built in a modular architecture to be deployed in array configurations in the sea. This resembles the concept of wind farms employing multiple wind machines. However, wind turbines are fixed installations, whereas many tidal turbines may incorporate floating/movable structures.
- Although tidal turbines are of similar construction to wind converters, the former systems mostly operate at low rotation-high torque conditions. This requires high-ratio gearboxes or use of direct-drive generators with power electronic interfacing for grid connection at a given frequency. Depending on the design of the rotors and use of subsequent conversion techniques, the so-called "nP" frequency ripple effects may propagate into the neighbouring electrical network in the forms of flicker or fluctuations.
- The electrical collection system of the tidal plants can be laid out in various forms and this depends on factors such as site location, plant size and turbine arrangement (bottom mounted, partially submerged, or floating). Therefore, design of an offshore electrical network, fault studies and aggregated effects of multi-unit tidal farm on the power system may require a different approach for investigation than that of offshore wind farms.
- Tidal conditions can be predicted with high degree of certainty and existing measurement and forecasting facilities may meet the need for resource prediction. Also, in selected geographical locations, tidal phase mismatch may yield an averaging effect at the electrical output. These factors enhance the possibility of considering tidal plants as dispatchable units. Although for pilot projects this may not be the case, large-scale deployment would certainly require attention in this regard.

Ocean Wave Converters

Similarities

- Although the wave energy devices are significantly different in terms of front-end and intermediate conversion processes, the final stages (i.e., the grid interfacing apparatus) are very similar to wind and tidal units. In some devices, linear permanent magnet machines are being considered and this may introduce some unique issues while connecting to the grid.
- Similar to tidal plants, some wave energy conversion systems (especially shoreline and bottom-mounted nearshore devices) are expected to face technical challenges similar to those encountered in offshore wind farms. However, innovative schemes (such as Wave-HubTM) may expose or resolve unique issues related to integration of different types of wave devices through a common terminal.

Differences

- Design of wave energy converters typically involves modular units to be placed in the ocean in an array or wave-farm. However, most wave machines are floating systems and are not permanent installations, as they are in the wind energy industry.
- The conversion processes of wave energy systems are very diverse and engage a multitude of principles of fluid mechanics and electrical/mechanical engineering. Most devices have a front-end process where any combination of heaving, pitching, or surging effects is captured. In addition, many devices operate on an intermediate scheme (pneumatic, hydraulic, open-surface air or water) that transfers power to conventional electro-mechanical units.
- The structural and operational uniqueness of wave energy devices may require new paradigms of system modelling that would suit power system studies. In addition, technology maturity and wide system diversity need to be accommodated while conducting such investigations.
- Short-term energy storage capacity inherent to many wave energy units may introduce several interesting features, such as power smoothing and equipment downsizing.
- Aggregation of multiple units into a farm would also require attention in terms of plant layout design, fault mitigation and system reliability. As wave energy density progressively increases further offshore, deep-water installation and network type (DC or AC) may contribute to factors such as reactive power and harmonics.
- Wind turbines are usually permanent installations, while offshore wave energy converters are often designed to be transported for maintenance activities. This could require intermediate electrical connectors for connection and disconnection of converters.
- Wind turbines usually include the voltage transformer for a medium-voltage connection. Some wave energy devices, due to size constraints, are not able to include the transformer and they would use a low-voltage connection.
- Ocean wave converters have the potential to generate power pulsations of high amplitude at the dominant wave frequencies. This effect may require significant energy storage and/or creative control strategies in order to mitigate the propagation of flicker into the neighboring network and to avoid breaking the network codes on voltage limits and power ramp rates.

As the technology reaches further maturity and factual information becomes available, these observations may take newer forms. At the current stage of ocean energy technologies, a grid integration guideline may attempt to accommodate some of these aspects, leaving the need for further scrutiny as an on-going process.

3 LITERATURE REVIEW AND IMPROVEMENT NEEDS

Being a nascent industry, operational experience and relevant knowledge of gridconnectivity pertaining to ocean energy technologies is limited. However, various analytic studies, observations and investigations within the realms of ocean power and in renewable energy generally have been initiated in recent times [5][6][7][8]. A comprehensive review of existing literature regarding ocean energy and its grid interconnection issues has yielded a handful of documents mostly in their draft stages [9][10][11][13]. Taking a broader approach, this search has been extended to capture insight into other areas such as:

- Wind and other generators
 - North American utility standards (BPA, FERC, BCTC, BCH)
 - European Standards (especially UK, Germany and Denmark)
 - Standards and guidelines from other organizations (IEA, AWEA, MEASNET)
- Distributed generation
 - North American context (IEEE standards, Canadian guideline)
 - Distribution network general requirement and test and protection guidelines
- Offshore engineering
 - Electrical installation design and operational codes (IEC)
 - Relevant codes by IMO

Considering the scope of an ocean energy pilot project and its possible interactions with an electrical network accepting power through a remote network, a short-list of these documents has been prepared (Table 3-1). The level of relevance is set on the basis of discussion outlined in the previous section and limitations typical to a smaller-sized project (e.g., use of distribution network, avoidance of dispatchability requirements, etc.).

Name	Туре	Emphasis	Ref.	Rel*	Comments
Ocean Energy					
WaveNet-	Guideline	Ocean Energy	[9]	High	 Separate interconnection
Thematic Network	(Draft)	and			and safety guideline
		Interconnection			 Considers large and
					commercial-scale projects in
					the European context
BPA-	Guideline -	Ocean Energy	[10]	High	- Important document in
Interconnection	Questionnaire	and			identifying a project's
Question	(Draft)	Interconnection			scope
					 Improvements needed to
					set the margins of
					acceptability for pilot
					projects
Powertech Labs –	Guideline -	Ocean Energy	[[1]]	High	 Identifies broad areas
Accepting Criteria	Keview	and Intercomposition			where an interconnection
		Interconnection			standard should be
					- Addition of questionneire
					and setting the selection
					criteria may suffice for
					pilot projects
Carbon Trust-	Guideline-	Ocean Energy	[12]	Med.	 Overview of design
Guideline for	Review	and	[]		commissioning, de-
Design and		Broad issues			commissioning, safety,
Operation					interconnection, reliability
-					and a broad range of
					issues discussed.
EMEC. – Marine	Draft Standard	Grid interface of	[13]	High	 Concise draft guideline
Energy Draft		ocean energy			including power quality,
Standard		generators			islanding, grounding and
					other issues
North American –	Pacific Northwes	t Utility Perspective	es		
BPA-	Technical	Any Generator	[14]	High	 Details the specifications for
Transmission	Requirement				generator (conventional)
Interconnection					connection to BPA's
					transmission network
					- Necessary guideline for
					other generation (e.g., wind)
DDA Small	Standard	Any Concretor	[15]	Uigh	Outlines a serveral bandies
Generator	Δ greement	Any Generator	[15]	nıgıı	- Outlines a comprehensive
Interconnection	and Procedure		[10]		for all types of generating
Interconnection	and Trocedure				stations
					- There exists a set of Large
					Generator Interconnection
					documents through BPA
					- May only need an annex
					to keep provision for
					ocean energy systems

Table 3-1: Existing interconnection standards and guidelines

Name	Туре	Emphasis	Ref.	Rel*	Comments
Federal - Small	Agreement	Any Generator	[17]	Med.	 Similar to BPA Small
Generator	and Procedure				Generator Interconnection
Interconnection					mechanism
					- There exists a set of Large
					Generator Interconnection
					documents through FERC
					and annexes for wind
					integration (LVRT and
					agreement process)
BC Hydro Low	Standard	Any Generator	[18]	High	 Outlines requirements for
Voltage					low voltage/distribution
Interconnection					grids
					– Sufficiently
					comprehensive and may
					only require an annex
BCTC	Standard	Any Generator	[19]	Med.	 Considers transmission
					networks and possibly
					large generator
					interconnection
					 Wind integration issues
					(LVRT, etc.) were
					discussed through an
					annex
ABB	Guideline -	Wind Generator	[20]	Low	 Overviews wind
	Draft and				integration issues and
	Review				progression around the
					world and recommends
					practices suitable for BC
					 Same approach can be
					taken as the ocean
					industry matures,
					restricting such method
					for pilot projects
Distributed Genera	ation (DG) and D	istribution systems	I		I
IEEE Std 1547	Standard	Distributed	[21]	High	 Developed through a
		Generator -			comprehensive review
		Interconnection			process
					 Concise form of
					requirements (technical)
					may contribute
					significantly in
					developing a complete
				_	guideline
MicroPower	Guideline	Distributed	[22]	Low	 Considers distributed
Connect		Generator -			systems (<600V) and
		Interconnection			power electronically
			[00]		interfaced systems only
IEEE Std	Standard	Distribution	[23]	High	 Identifies the desired and
C62.41.2 ¹ -2002		Network			acceptable characteristics
					of the distribution system
				-	for North-American grids
IEE EN 50160	Standard	Distribution	[24]	Low	– Similar standard for
		Network			European systems

Name	Туре	Emphasis	Ref.	Rel*	Comments
IEEE Std	Standard	Distributed	[25]	Med.	 Test procedure
1547.1 ^{тм} -2005		Generator - Test			complementing IEEE Std
IEEE Std 1452TM	Standard	Tost Procedure	[26]	Mad	1547 Fliat and in the first
2004	Stalluaru	Test Flocedule	[20]	wieu.	 Flicker emission testing procedures
2001					 May become necessary
					for pilot projects
					developed in weak
					networks
IEEE Std. 519-	Standard	Test and Practice	[27]	Med.	 Harmonics emission test
1992		Procedure			and mitigation procedures
					- Similar to Incker emission harmonics can
					be a problem for power
					electronically interfaced
					ocean devices
IEEE Std	Standard	Test Procedure	[28]	Low	 Complements the IEEE
C62.45 ^{1M} -2002					Std C62.41.2 TM -2002
JEC (211)	0, 1, 1		[20]	T	standard
IEC 62116	Standard	Protection	[29]	Low	- Power electronically interfaced (for PV system)
		Requirement			- Islanding protection
					method
UL 1741	Standard	Protection	[30]	Low	 Similar islanding
		Requirement			protection schemes for
					North American grids
IREC	Review	Any Distributed	[31]	Low	- General overview and
		Generator			challenges in developing
					standards
					 May provide input for
					ocean energy systems
Wind Engine					
E ON Offshore	Requirements	Offshore Wind	[32]	High	 Concise and relevant
Wind	Requirements	Park Integration	[52]	ingn	requirements for
		C			voltage/frequency,
					real/reactive power etc.
					 Although specified for
					offshore wind farms,
					ocean power farms (large-
					this document.
IEC 61400-3 Ed	Standard	Offshore Wind –	[33]	Low	- Design aspects of offshore
1.0		Design			wind, which may be
					extended/considered for
					ottshore wave/tidal
IEC61400-1	Standard	Wind - Safety	[34]	Low	Systems
1201400-1	Standard	The - Safety	[3+]	LOW	- Safety standards for wind turbine design may
					provide insight into ocean
					devices

Name	Туре	Emphasis	Ref.	Rel*	Comments
IEC 61400-12-1	Standard	Wind – Testing	[35]	Low	 Power performance testing for wind turbines and can be used with regards to issues such as harmonics, flicker, etc.
IEC 61400-21	Standard	Wind – Power quality Wind –	[36]	Med or High	 Measurement and assessment of power quality characteristics of grid connected wind turbines, including: voltage fluctuations, current harmonics, voltage drops, active power, reactive power, grid connection, reconnection time Proposes "test procedures" for all of these topics
IEC 15 61400-25	Standard	Communication and Control	[37]	Low	 For wave/tidal farms operating at harsh conditions a robust communication and control guideline may ensure availability and dispatchability
Offshore Engineeri	ng				
IEC 60092	Standard	Design and Operation	[38]	Low	 Electrical installations in ships
IEC 61892	Standard	Design and Operation	[39]	Low	 Electrical aspects of mobile and fixed offshore units
IMO MODU Code 1989	Standard	Design	[40]	Low	 Drilling equipment construction
IEC publication 60092-504	Review/Draft	Operation	[41]	Low	 Electrical equipment in ships and their control
Relevance in the co	ontext of ocean er	ergy pilot projects			

4 **OUTLINE OF A GENERIC INTERCONNECTION GUIDELINE**

Interconnection guidelines and standards may appear in a very generic form (such as, IEEE, IEC) or can take network-specific attributes (e.g., BPA, BCTC, BCH formats). In addition, technologies such as wind, photovoltaic or ocean energy may require a separate document or extension to an existing one. Therefore, depending on the need of the public or private utility, governing authorities and the technology in question, a guideline may reflect diverse views. An ocean energy development project may fall within the jurisdiction of a distribution or transmission system operator. This implies connection of a plant into either a low-voltage (LV) or high-voltage (HV) system. Assuming smaller projects would appear as pilot projects that would not require complete dispatachability features, the framework of operational domain can be observed through the diagram in Figure 4-1.

Figure 4-1: Distribution and transmission system operators' jurisdictions and project scope [9]

From planning to realisation, completing a project development cycle requires thorough understanding of the associated repercussions. Establishing a systematic approach coupled with a sufficiently comprehensive guideline is an important first step. Examples of such processes with and without having impacts on the transmission network are shown in Figure 4.2, and Figure 4.3, respectively.

The essential contents of a generic interconnection guideline are given in Table 4-1. This table lists the key elements of North American utilities grid-integration requirements. Depending on the project scope and location, a more specific set of criteria can be derived using this table.

Figure 4-2: Example of interconnection process for generators with transmission impact [42]

Figure 4-3: Example of interconnection process for generators without transmission impact [43]

Scope	Applicable Codes, Standards, Criteria and Regulations						
•	Environmental Considerations of the National Environmental Policy Act						
	Safety, Protection and Reliability						
	Responsibilities						
	Special Disturbance Studies						
	Cost Estimates						
Application	Applicability						
	Pre-Application						
	Interconnection Request						
	Modification of the Interconnection Request						
	Site Control						
	Queue Position						
Interconnection	Feasibility Study						
Studies	System Impact Study						
	– Powerflow						
	- Stability (Voltage, Transient, Small-signal, Frequency)						
	– Short-circuit						
	Facilities and Logistics Study						
General	Considerations at Point of Interconnection						
Requirements	 General Configurations and Constraints 						
-	- Special Configurations and Constraints						

 Table 4-1: Key components of a generic interconnection guideline

	– Powerflow					
	- Stability (Voltage, Transient, Small-signal, Frequency)					
	– Short-circuit					
	Facilities and Logistics Study					
General	Considerations at Point of Interconnection					
Requirements	 General Configurations and Constraints 					
	 Special Configurations and Constraints 					
	 Operating Voltage, Rotation and Frequency 					
	- Interconnection to Main Grid (Transmission)					
	Safety and Isolating Devices					
	Disconnect Device Requirements					
	Transformer Considerations					
	Transmission and Substation Facilities					
	Insulation Coordination					
	Substation Grounding					
	Inspection, Test, Calibration and Maintenance					
	Station Service and Start-up Power					
	Isolating, Synchronizing and Blackstarting					
D (Station Service and Ancillary Services					
Performance	Electrical Disturbances Requirement					
Requirements	System Operation and Power Quality					
	- Power Parameter Information System					
	- Voltage Fluctuations and Flicker					
	- Voltage and Current Harmonics					
	– Phase Unbalance					
	Switchgear					
	- General					
	- Circuit Breaker Operating Times					
	Transformers, Shunt Reactance and Phase Shifters					
	Generators (General Requirements)					
	- Generator Reactive Power Requirements					
	- Excitation Equipment Requirements					
	- Governor Requirements					
	 Voltage and Frequency Operation During Disturbances 					
	– Contingencies					

	Asynchronous Generators
	Synchronous Generators.
	Generator Performance Testing, Monitoring and Validation
	Generator Blackstart Capability
	Power System Disturbances and Emergency Conditions
	Reliability and Availability
	Transformer Requirements
	Line Design Requirements (Transmission)
	 Conductor Size
	– Line Insulation
	– Shield Wire
	Line Design Requirements (Distribution)
	 Primary Voltage Distribution Line
	– Insulation
	 Primary Phase Conductors
Protection	Protection Criteria
Requirements	Protection System Selection and Co-ordination
	General Requirements
	- Sensitivity and Coordination
	 External Fault Detection
	- Equipment Rating
	 Unbalance and Undervoltage
	Entrance Protection
	- Protection with Relays and Circuit Breaker
	 Drotection with Fuses and Loadbreak Switch
	Detection of Ground Faults
	- Detection of Phase Faults Pequirements
	- Detection of Flase Faults Requirements Breaker Eailure Protection of DC HV Circuit Preaker
	- Dieakei Failule Protection of PO HV Clicuit Dieakei Drevention of Energisetion of Ungrounded Transmission Line
	- Prevention of Energisation of Ongrounded Transmission Line
	Voltage Operation
	Flectromagnetic Interference and Surge Withstand
	Off-Nominal Frequency Operation
	Frequency Relay Requirements
	Batteries / Chargers / DC Supplies
	DC System Requirements
	Line Protection Requirements (Transmission)
	Generator Protection – Special Requirements
	Special Protection or Remedial Action Schemes
	Installation and Commissioning Test Requirements for Protection Systems
	Disturbance Monitoring
Metering and	Telemetering Control Center Requirements
Telemetry	Data Requirements for Control Area Services
•	Generation and Network Interchange Scheduling Requirements
	Revenue and Interchange Metering System
	Calibration of Metering, Telemetering, and Data Facilities
Control and	Introduction
Telecommunication	Voice Communications
Requirements	Data Communications
	Telecommunications for Control and Protection
	Telecommunications During Emergency Conditions

System Operating	Generating Reserves
Requirements	Generation Dispatching
1	Remote Synchronization
	Generation Shedding
	Generation Islanding
	Ancillary Services
Commissioning	General Commissioning Requirements
Requirements	Generator Commissioning Requirements
•	Generating Unit Service Re-entry Requirements
	Protection Equipment
	Telecommunications Equipment
	Operating, Measurement and Control Systems Commissioning Requirements
	Apparatus Commissioning Requirements
Maintenance	General Maintenance Requirements
Requirements	Scheduled Outages Requirements
	Preventive Maintenance Requirements
	Protection and Telecommunications Equipment
Regulatory and	WECC Reliability Requirements
Reliability	
Requirements	
Contractual	Reasonable Efforts
Agreement	Disputes
	Interconnection Metering
	Commissioning
	Confidentiality
	Comparability
	Record Retention
	Interconnection Agreement
	Co-ordination with Affected Systems
Information	System Requirements
Requirements for	Connection Location
Generators	Electrical Data
	Commissioning
	Operation and Maintenance
Declaration of	Declaration of Compatibility – Load
Compatibility	Declaration of Compatibility – Generator (Synchronization)
	Declaration of Compatibility – Generator (Operating)
Other Information	Glossary of Terms
	Certification Codes and Standards
	Application, Procedures and Terms and Conditions for Interconnecting
	Feasibility Study Agreement
	System Impact Study Agreement
	Facilities Study Agreement

5 OUTLINE OF A OCEAN ENERGY INTERCONNECTION GUIDELINE

With limited experience of ocean energy devices in grid-connected mode of operation, it is both impractical and inappropriate to set strict requirements. However, using the perceived knowledge from the wind energy sector and integrating various unique aspects of ocean wave and tidal stream conversion processes, the following table has been generated. While this list only serves the purpose of identifying several areas of interest, further investigation needs to be carried out in quantifying the ranges of these possible requirements.

A guideline for ocean energy systems may appear in the form of a separate document or as an annex to an existing standard. For the North American region, similar approaches can be taken using available interconnection requirements adapted for the specific issues associated with ocean wave or tidal stream energy, as indicated in Table 5-1. Depending on the nature of the project (pilot or full-commercial, distribution or transmission system connection), the content of the guideline can be adjusted using the flow-chart shown in **Error! Reference source not found.**. At present, any such document would inherently contain elements of uncertainty and issues of contradiction. With further technological advancement and accumulation of practical experience, these guidelines can be reevaluated and modified for more comprehensive recommendations.

Figure 5-1: Example of a flow-chart for ocean energy interconnection guideline development for west coasts of North America

Technology	Ocean Wave or Tidal Current
Туре	Device Classification
J I	Conversion Process (Front End, Intermediate, Final)
	Device Location (Shore-line, Near-shore, Offshore)
	Plant layout and Connection Diagram
	Single Unit or Multi-Unit System
	Generator type and Common Interconnection Points
	Transformer Location
Operational	Low Voltage Ride Through (LVRT)
Requirements	Reactive Power
	Frequency control
	Dispatchability
Generator Units	Submarine Cable Conductor
to Shoreline	Short Overhead Cable Connection to Close-In Unit
Interface	Floating Cable Connection
	Distance From Generator to Shore-Line Interface
	Voltage Rating
	Voltage Rating vs. Ampacity
	Conductor Size vs. Loading/Generation Block Size
	Double-Ended/Looped vs. Single-Ended/Radial
	Line Maintenance
	Voltage Drop And Losses
Shoreline	Underground Vault Splices – Continued Underground
Interface –	Pole-Top Cable Potheads – Continued Overhead Open-Wire
Simple	Pole-Top Cable Potheads – Continued Overhead Spacer Cable
Conductor Inter-	Disconnecting Means at Shoreline Interface
Connect	
Shoreline	Pole-Mounted Fused Disconnect
Interface –	Pole-Mounted 3-Phase Automatic Circuit Recloser
Circuit	Pad-Mounted Fused Disconnect
Breaker/Fuse	Pad-Mounted 3-Phase Automatic Circuit Recloser
	Remote Indication of Breaker Trip/Blown Fuse
Shoreline	Simple Pad-Mounted Transformer with Fuse Protection
Interface – Step-	Existing Substation Near Shoreline Interface
Up Transformer	New Substation, Complete with Transformer Equipment
	- Dasic Transformer And Line Protection
	- Required Protective Relaying
	- Remote indication of Outages
	- Real-Time Data Telefinetry
	 – Kwiii Metering with Keniole Query for Data – SCADA Control and Pamota Indiaction
	- SCADA Control and Remote Indication
	– Maintenance
	- Vianceance - Single-Ended Radial Tie
	- Singic-Ended Looped Tie
	- Redundant Transformers
	- Breaker-And-A-Half Or Ring-Rus Configuration
	 Redundant Transformers Breaker-And-A-Half Or Ring-Bus Configuration

 Table 5-1: Possible ocean energy system interconnection requirement issues [10]

Shoreline	Voltage Level
Interface to	Voltage Rating vs. Ampacity
Grid/Subgrid	Conductor Size vs. Loading/Generation Block Size
Interconnection	Double-Ended/Looped vs. Single-Ended/Radial
	Voltage Drop and Losses
	Existing Network and Load
	New Network
Interconnection -	Existing Substation with Upgrades and Additions
Dedicated Line(s)	 Transformer and Line Protection
To Substation	 Required Protective Relaying
	 Remote Indication of Outages
	 Real-Time Data Telemetry
	 kWh Metering with Remote Query for Data
	 SCADA Control and Remote Indication
	New Substation Complete with Transformer Equipment
	 Basic Transformer and Line Protection
	 Required Protective Relaying
	 Remote Indication of Outages
	 Real-Time Data Telemetry
	 kWh Metering With Remote Query For Data

6 SUMMARY: PILOT PROJECT GUIDELINES

Being an emerging technology, a pilot project in the ocean energy sector is expected to employ marginally proven schemes and methods. Considering the current state of this technology, it is reasonable to assume that the project size would be in the range of 100 kW to 10 MW. While some developers envision limited power generation for isolated communities, most are expecting to graduate into larger full-scale commercial projects in the long run. Therefore, a pilot ocean energy project guideline detailing the grid interconnection requirements may encompass the following aspects:

- Developing a streamlined guideline where both the project developer and the utility can work in a coordinated manner
- Providing sufficient flexibility to accommodate ocean technology as a young and unproven solution
- Maintaining adequate measures to contain the risks of integrating such devices, from the utility perspective
- Encouraging self-imposed certification processes by the project developers
- Allowing the process of knowledge transfer such that a comprehensive long-term standard may reflect the experience gained from smaller projects

REFERENCES

- [1] U.S. Department of Energy, Marine and Hydrokinetic Technology Database, [Online, Accessed on March 09]. Available: http://www1.eere.energy.gov/windandhydro/hydrokinetic/default.aspx
- [2] M.J.Khan, G. Bhuyan, A. Moshref, K. Morison, An Assessment of Variable Characteristics of the Pacific Northwest Region's Wave and Tidal Current Power Resources, and their Interaction with Electricity Demand & Implications for Large Scale Development Scenarios for the Region, Powertech Labs Inc. report No.17845-21-00 (REP 3). [Online, Accessed on March 09]. Available: http://www.powertechlabs.com/cfm/index.cfm?It=106&Id=58
- [3] PelamisWave Power Ltd., Press Release. (2008, 23 Sept.); World's First Commercial Wave Power Project goes live; [Online]. Available: http://www.pelamiswave.com/news.php?id=26
- [4] Marine Current Turbines Ltd., Press Release (2008, 17 Nov.); SeaGen Enters Final Stage of Commissioning, [Online]; Available: http://www.marineturbines.com/3/news
- [5] Econnect Consulting, Ocean Energy Conversion Expert Group, Report from Meeting in Vancouver, April 2006, project No: 1698.
- [6] Anna Estanqueiro, "Grid Integration on Ocean Energy Systems, Integration of Ocean Power Systems in the Grid: The Experience from Other REs," IEA-OES Meeting, Copenhagen, Denmark, November 2004.
- [7] Polinder, H., Scuotto, M., "Wave Energy Converters and their Impact on Power Systems," in International Conference on Future Power Systems, Nov. 2005.
- [8] Satoshi Morozumi, NEDO Research Related to Battery Storage Applications for Integration of Renewable Energy, New Energy and Industrial Technology Development Organization (NEDO), [Online, Accessed March 09], Available: http://www.sandia.gov/regis/presentations/S_Morozumi-NEDO.pdf
- [9] WaveNet, "Results from the work of the European Thematic Network on Wave Energy, European Community, Tech. Rep. ERK5-CT-1999-20001, 2000-2003, URL: http://www.oreg.ca/docs/WaveNet%20Full%20Report(11.1).pdf.
- [10] John Schaad, "Interconnection Questions Wave and Tidal Energy Projects (Draft), Bonneville Power Administration," Customer Service Planning & Engineering, 86000 Highway 99S, Eugene, OR 97405, Jan 2008, ver. 1.06 (Draft).
- [11] Powertech Labs Inc., "Acceptance Criteria for Wave Generated Power," BC Hydro Project, Tech. Rep. Project 14118-32, Report 14118-02-REP1.
- [12] The Carbon Trust, Guidelines on design and operation of wave energy converters: A guide to assessment and application of engineering standards and recommended practices for wave energy conversion devices, May 2005.
- [13] EMEC, A (draft) standard for The Grid Interface of Marine Electrical Generator Installations, [Online], Available: http://www.emec.org.uk/national_standards.asp
- [14] BPA, "Bonneville Power Administration Technical Requirements for Interconnection to the BPA Transmission Grid," June 15 2005, REVISION 0.
- [15] —, Small Generation Interconnection 20-MW BPA Transmission; FERC Order 2006 Small: Generation Interconnection Procedure (SGIP). [Online, Accessed on March 09]. Available: http://www.transmission.bpa.gov/business/generation_interconnection/
- [16] —, Small Generation Interconnection 20 MW BPA Transmission; FERC Order 2006 Small: Generation Interconnection Agreement (SGIA). [Online, Accessed on March 09]. Available: http://www.transmission.bpa.gov/business/generation_interconnection/
- [17]—, FERC, Small Generator Interconnection Agreement (SGIA)-(For Generating Facilities No Larger Than 20 MW). [Online, Accessed on March 09]. Available: http://www.ferc.gov/industries/electric/indus-act/gi/small-gen/procedures.doc
- [18] BC Hydro, "35 kV and Below, Interconnection Requirements For Power Generators," Nov. 2006.
- [19] British Columbia Transmission Corporation (BCTC), "69 kV to 500 kV, Interconnection Requirements for Power Generators," December 2006.

- [20] ABB, "Wind Farm Integration in British Columbia," Mar. 2005, report: 2005-10988-2.RO1.3, 2005-10988-2.RO2.2.
- [21] IEEE, "IEEE Std 1547, IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems."
- [22] Canmet Energy, "MicroPower Connect Interconnection Guideline: For inverter based microdistributed resource (DR) systems connected to 600 volt or less distribution systems," 2003, v8.
- [23]——, "IEEE Std C62.41.2TM-2002, IEEE Recommended Practice on Characterization of Surges in Low Voltage (1000 V and less) AC Power Circuits."
- [24] IEE, "IEE EN 50160, Voltage Characteristics in Public Distribution Systems Voltage Disturbances."
- [25] IEEE, "IEEE Std 1547.1-2005, IEEE Standard Conformance Test Procedures for Equipment Interconnecting Distributed Resources with Electric Power Systems."
- [26]——, "IEEE Std 1453-2004, IEEE Recommended Practice for Measurement and Limits of Voltage Fluctuations and Associated Light Flicker on AC Power Systems."
- [27]——, "IEEE Std. 519-1992, IEEE Recommended Practices and Requirements for Harmonic Control in Electric Power Systems."
- [28] ——, "IEEE Std C62.45TM-2002, IEEE Recommended Practice on Surge Testing for Equipment Connected to Low-Voltage (1000V and Less) AC Power Circuits."
- [29] IEC, "IEC 62116, Testing Procedure of Islanding Prevention Measures for Utility Interactive Photovoltaic Inverters."
- [30] —, "UL 1741, Static Inverters and Change Controllers for Use in Photovoltaic Power Systems."
- [31] IREC, "IREC-Connecting to the Grid: A Guide to Distributed Generation Interconnection Issues," 2007, 5 E/d.
- [32] E.ON Netz GmbH, Requirements for Offshore Grid Connections in the E.ON Netz, April 01, 2008, [Online], Available: http://www.eon-
- $netz. com/pages/ene_de/Veroeffentlichungen/Netzanschluss/Netzanschlussregeln/080702ENENAROS2008 eng.pdf$
- [33] IEC, "IEC 61400-3 Ed 1.0 Wind turbines Part 3: Design Requirements for offshore wind turbines."
- [34] ——, "IEC61400-1 Wind Turbine Generator Systems Part 1: Safety Requirements."
- [35] —, "IEC 61400-12-1 Wind Turbines Part12-1: Power Performance Measurements of Electricity Producing Wind Turbines."
- [36]——, "IEC 61400-21 Ed 2.0: Wind turbines Part 21: Measurement and assessment of power quality characteristics of grid connected wind turbines"
- [37] ——, "IEC TS 61400-25 Ed 1.0 Wind turbine generator systems Part 25-1 to -6: Communications for monitoring and control of wind power plants."
- [38]—, "IEC 60092 Electrical installations in ships."
- [39] —, "IEC 61892 Mobile and fixed offshore units Electrical installations."
- [40] IMO, "IMO MODU Code 1989 International Maritime Organization Offshore; Code for Construction and Equipment of Mobile Offshore Drilling Units."
- [41] IEC, "IEC publication 60092-504," Electrical installations in ships, part 504: Special features, control and instrumentation"."
- [42] BC Hydro, Distribution Generator Interconnection (35 KV or Less), [Online, Accessed on March 09], Available: http://www.bchydro.com/etc/medialib/internet/documents/planning_regulatory/acquiring_power/d_interconnection n_cpc.Par.0001.File.d_interconnection_cpc_sept_18.pdf
- [43] BC Hydro, Distribution Connected Generator Interconnection, [Online, Accessed on March 09], Available: http://www.bchydro.com/etc/medialib/internet/documents/info/pdf/info_generator_interconnections_flowchart_wi thout_transm.Par.0001.File.info_generator_interconnections_flowchart_without_transm.pdf