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Abstract

The optimal design of wave energy converters requires coupling of many different disciplines such as
hydrodynamics, controls and geometry. Joint sensitivity calculation of all the disciplines is required for the gradient
based optimization of the system objective. The adjoint method is the only viable method for calculating sensitivities
with respect to a large number of input parameters at once as required in system design optimization problems. To
this end, a discrete adjoint method is formulated, and the sensitivity of hydrodynamic coefficients is calculated for a
point absorber system modeled as a sphere. The sensitivity are separated into real and imaginary sensitivities which
one could interpret as the sensitivity for added mass and damping respectively. First, a differentiable boundary
element method (BEM) based hydrodynamics code for fluid-structure interaction is developed in the Julia
programming language. Automatic differentiation capabilities in Julia are then used to calculate the required partial
derivatives for the adjoint equations. The accuracy of the automatic differentiation of Green's function and the
resulting coefficients are compared with analytical derivation and the finite differences. The resulting sensitivities
can be used in a large-scale gradient-based design optimization. The main contribution of this work is to formulate
the discrete adjoint equations for the integral equations and modernize hydrodynamics BEM software to be able to
provide necessary gradients. Thus, the method and formulation to get the sensitivities are discussed while the
verification of the obtained gradients is an ongoing work.
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1. Introduction

The hydrodynamic coefficients , along with many other parameters are necessary for the calculation of electric
power from a wave energy converter. A unified multidisciplinary approach to the design of WECs is necessary
however this involves coupling the sensitivities of the electrical power with respect to all the design parameters. The
change in shape/size or any other coupled analysis requires the hydrodynamic governing equation to be solved again
using BEM for new state variables and the new objective evaluations. Design sensitivity analysis using BEM has a
rich history in acoustics, electromagnetics [13] etc literature but the application to marine energy has been lacking.
Although most of the theory of the integral equations are similar to other domains, the lack of adoption in
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hydrodynamics is most likely due to the mathematically complicated kernel function aka free surface Green's
function[7]. Different complicated mathematical approximations of this Green's functions exist[10]. Approximation
of the higher order derivative will have to be derived manually resulting in more mathematical complication. We
use the recently derived global approximation for the Green's function as the kernel in the BIE [8]. This kernel is
shown by the author to provide mostly accurate hydrodynamic coefficients for practical purposes. We use the
automatic differentiation of this Green's function to estimate the gradient of added mass and damping with respect to
a design parameter. Although accuracy decrease for the derivative of the Green's function is expected [5], we are
interested in how much the gradients of the hydro-coefficients (added mass in this paper) themselves differ as they
are of more practical use.

There are few ways to get the gradients of the hydro-coefficients discussed in structure, acoustics literatures [13]
mainly; Finite difference method, Adjoint solver and the implicit differentiation of the integral equations with the
design variables. In this paper, the derivatives of the BEM matrices are algorithmically computed with respect to the
collocation points.One could also compute these derivatives with finite differences but the dense and complex
matrices in BEM increases the cost and also since they are functions of wave frequency, extensive numerical study
needs to be performed for each omega and mesh resolution. Additionally, we also explore the application of
automatic differentiation in the BEM methods.

2. Methods

Existing open source BEM solvers [2] are already mature for hydrodynamic simulation and analysis purposes.
These solvers are referred to as forward solvers. Most solvers are based on a reformulation of the linear boundary
value problem for diffraction and radiation potentials . The associated Laplace equation, free- surface boundary
condition, sommerfield radiation condition and kinematic boundary conditions is rewritten as boundary integral
equations (BIEs) over the surface mesh of the floating body. These BIEs and the associated method (BEM) are well
suited for wave problems [3] and solved via collocation points. This is usually solved by distributing the sources and
dipoles over the surface of the body[4]. The BEM method from a shape optimization point of view, is very attractive
as the mesh regeneration and the mesh change propagation across the domain (volumetric mesh) is not needed in
contrast to the CFD based shape optimizations. Thus BEM is compatible for large scale simulation, sensitivity
analysis and multidisciplinary optimization needed for complex marine energy systems. These systems level
analysis require the availability of gradients from each of the subsystems. Unfortunately, existing hydrodynamic
solvers do not provide the gradients right out of the box and have to rely on numerical differentiation. The errors and
time complexity of numerical differentiation are difficult to ignore.

Additionally, only a few of these solvers are open source. In these solvers, performant code of the solvers and the
user facing codes are separated inviting the complications for new users to contribute to the source codes and
integrate the modern methods. Thus, a new solver that supports modern features such as the automatic
differentiation, GPU kernels, with all the code in one language is created. Note that the geometry and meshing
modules are not created yet. Traditionally, operator overloading can be used to create the differentiable code by
employing AD tools such as tapenade etc however such an approach will be suboptimal as the implementation
routines, parallelization, memory requirements etc of the forward solver significantly affects the efficiency of the
adjoint solver [9] and it requires extensive familiarity with the language the solver is based on (Fortran).
Additionally, with this new implementation, it's easier to extend the code to use the analytical gradients[5] to reduce
the error, which magnifies with higher and higher order differentiation and for second order forces. As of now, no
speed optimization or accuracy enhancement is done and only the framework and method of this new kind of solver
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is discussed.. The accuracy check for a hydro coefficient of simple hemisphere is shown below.
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Figure 1: Comparison of added mass between BEMJulia, Capytaine and analytical
results.

Discretized Boundary Integral Equation

The integral equation arises due to applying Green's theorem to calculate solution on the boundary/surface rather
than the volume of the domain as the hydrodynamics domain (ocean) would be unbounded.
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The solution of the discrete integral equation is obtained via the resolution of the linear system (see equation 3). The
green’s function is split into G = rankine + reflectedRankine + wave. Each of these terms are added to
satisfy the boundary conditions. These terms have different approximations and calculate individual influence
coefficients. Once the rankine terms and the wave term for each panel are calculated they are to be integrated and
added to get the final S and D (or K for indirect IE formulation) matrices. In the next section, we discuss how we
calculate the sensitivity of the pressure on each collocation point given the normal derivative of the potential
(normal velocity) is available for each of the panels.

Differentiation of the Integral Equation with respect to the collocation points

The differentiation of the boundary integral equation can be directly done with respect to the design variable (for
example, shape parameter) or with respect to the collocation point. Both are immediately useful for shape design
sensitivity analysis. The goal here is to get the gradients of the added mass (or any scalar objective like electrical
power) with respect to the collocation and then to the vertices such that an external module can move the vertices to
deform the boundary while keeping it suitable for the linear potential flow analysis. Depending on the size of the
floating body and number of panels, the computational cost and the errors add up significantly. In contrast,
differentiating with respect to the collocation point abstracts away the geometry generation and makes it more
general to any kind of deformation and provides more control over the boundary of the shape. Naively
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differentiating the hydrodynamic solver results in many linear solves, as many as there are design variables. An
adjoint variable method is adopted to reduce the number of the linear solves to only 2 independent of the number of
the design variables[1] equivalent to solving another adjoint boundary value problem for one objective function.
Thus even though for a slightly slow hydro-coefficient evaluation, the gain in speed from this solver is huge for the
design optimization and sensitivity analysis. The computational cost reduction is from ‘P’ linear solves to 2 linear
solves (O(N"3)), N being the dimension of the square asymmetric dense matrices and P being the number of design
variables changing the surface mesh of the floating bodies. Automatic differentiation is usually designed for explicit
operators such as Green's function evaluations. Since, we have to differentiate through the direct linear solver or
sometimes through an iterative process (GMRES), the adjoint state method/reverse mode automatic differentiation
needs to be formulated [11]. For general scalar objective J(¢, 8) gradient with respect to parameters, the total
jacobian using chain rule can be calculated as:
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Assume ] is the added mass of the floating body. For the direct BEM following linear system has to be resolved.
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where D71 - Sn «p TC asymmetric complex valued dense square matrices and are functions of collocation points.

an 5 is the collocation points. d)n 3 is the potential and bn 1 is the boundary condition at each panel and the n is

the number of panels in the floating body. Applying a linear perturbation on both sides and expanding using forward
mode differentiation for matrix multiplication,
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With slight re-arrangement, we get a new adjoint linear system ; solvable by same routine as above
T
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Solving this additional linear system and plugging in on the total derivative provides a gradient with respect to all
the collocation points at once.
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Individual matrix derivatives can be obtained through automatic differentiation or finite difference. Here Julia’s
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The gradients in this current implementation do have high error and seem inaccurate. Some of the error is
expected since the underlying green’s function and its gradients are approximated[5]. Additionally, more error in
low frequency(% wise) could be due to high oscillations and the mathematical singularity of the kernel function near
zero. For low frequency the non-dimensionalized input to the function becomes close to zero and hence high error in
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the evaluation of the function and its gradients. Constant BEM panels are piecewise continuous functions and thus
may cause some errors in the differentiation and we expect some errors due to the meshing resolution as well . Thus,
a mesh convergence for the coefficient and the derivative may need to be performed. Although these gradients are
inaccurate, they are still of practical use as the general trend and the comparable magnitude suggests that these
inexact gradients are still valuable for optimizers and sensitivity analysis. For example, the panels of the sphere with
high sensitivity values (absolute) can be deformed to minimize/ maximize the hydrodynamic coefficients. Thus, this
solver and crude approximation of gradient is still useful for early stage parametric design/optimization studies and
BEM error analysis. Note that the gradient computations are also very slow, probably due to the complicated
computational graph obtained by the existing implementation of the algorithm, especially the rankine integration
algorithms. To conclude, there is quite a bit of work remaining to improve the accuracy of the gradients as well as
improving the forward BEM solver as well.

3. Future Work

The gradients obtained should be numerically verified against the analytical results. Since we suspect some errors on
the gradients obtained, we plan to do more numerical/gradient calculation checks and error analysis of the results
obtained. Another major aspect is to integrate analytical gradients when possible and make them compatible with
chain rules in the Julia AD system. The gradients then will be used to couple multidisciplinary modules of a wave
energy converter system and use gradient based optimization.
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Appendix A.

Al Accuracy of rankine only added mass obtained from AD.

Derivative of added mass with respect to radius
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Figure 3: Analytical rankine added mass with numerical and automatic differentiation
for a submerged sphere without a free surface
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