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 A B S T R A C T

Accurately predicting wave-structure interactions is critical for the effective design and analysis of marine 
structures. This is typically achieved using solvers that employ the boundary element method (BEM), which 
relies on linear potential flow theory. Precise estimation of the sensitivity of these interactions is equally 
important for system-level applications such as design optimization. Current BEM solvers are unable to provide 
these sensitivities as they do not support automatic differentiation (AD). To address these challenges, we have 
developed a fully differentiable BEM solver, MarineHydro.jl, for marine hydrodynamics, capable of calculating 
diffraction and radiation coefficients, and their derivatives with high accuracy. MarineHydro.jl implements 
both direct and indirect BEM formulations and incorporates two Green’s function expressions, offering a 
trade-off between accuracy and computational speed. Gradients are computed using reverse-mode AD within 
the Julia programming language. As a first case study, we analyze two identical floating spheres, evaluating 
gradients with respect to physical dimensions, inter-sphere distance, and wave frequency. Verification studies 
demonstrate excellent agreement between AD-computed gradients and finite-difference results. In a second 
case study, we leverage AD-computed gradients to optimize the mechanical power production of a pair of 
wave energy converters (WECs). This represents the first application of exact gradients obtained from BEM 
solver in WEC power optimization. Both studies offer valuable insights into hydrodynamic interactions and 
advance the understanding of layout optimization. Beyond power optimization, the differentiable BEM solver 
highlights the potential of AD for offshore design studies. It paves the way for broader applications in machine 
learning integration, optimal control, and uncertainty quantification of hydrodynamic coefficients, offering new 
directions for advancing wave-structure interaction analysis and system-level optimization.
1. Introduction

The determination of the wave-induced response of an offshore 
structure depends on its hydrodynamic coefficients. These coefficients 
are determined by considering both the wave diffraction problem (how 
waves are scattered by a stationary structure) and the wave radiation 
problem (how waves are generated by the motion of the structure 
itself). Several methods exist to solve both the wave diffraction and 
radiation problems, including analytical approaches (Hulme, 1982), 
and numerical solvers (Ancellin and Dias, 2019; Liu, 2019; Babarit 
and Delhommeau, 2015). Surrogate models are also created from the 
numerical and experimental data for cheaper evaluation of the coeffi-
cients (Zhang et al., 2020). Analytical and surrogate models, however, 
are often limited in their applicability due to geometrical assumptions 
(e.g., axisymmetry of a structure), modeling methods (e.g., a solution 
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being comprised of certain basis functions) or rely on pre-trained data 
(e.g., in the case of surrogate model). Consequently, numerical solvers 
remain the preferred choice for general hydrodynamics problems due 
to their flexibility and accuracy across diverse geometries.

Numerical hydrodynamic solvers generally utilize the boundary 
element method (BEM) which focuses on the boundaries of the domain 
rather than the entire volume, thereby significantly reducing computa-
tional effort while maintaining the accuracy. This approach transforms 
the governing partial differential equations (PDEs) into boundary in-
tegral equations (BIEs), making it particularly effective for problems 
with infinite or semi-infinite domains as is the case for analyzing the 
hydrodynamic forces on offshore bodies. Mature BEM solvers (Ancellin 
and Dias, 2019; Babarit and Delhommeau, 2015; Lee and Newman, 
2003; Liu, 2019) are currently used for the design and analysis of large 
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offshore structures such as, offshore wind turbines (Ashuri et al., 2014), 
and wave energy converters (WECs) (Teixeira-Duarte et al., 2022).

Recent advancements in computational methods highlight the im-
portance of sensitivity analysis in engineering design (Martins and 
Kennedy, 2021). Sensitivity analysis elucidates how variations in input 
parameters (such as ocean wave frequency) influence model outputs 
(such as electrical power output of a WEC), enabling optimization, 
uncertainty quantification, and robust design. Automatic differentiation 
(AD), also known as algorithmic differentiation, is a powerful technique 
for exact gradient calculation. Exact gradients refer to those com-
puted directly and accurately for the discretized numerical problem, 
in contrast to approximate gradients obtained through methods such 
as finite differences or other numerical approximations. AD works by 
systematically applying the chain rule of differentiation to computer 
programs, enabling precise and efficient derivative computations. It 
does so by augmenting the original program with additional code to 
compute derivatives alongside the original computations (Griewank, 
2003; Bartholomew-Biggs et al., 2000). Unlike finite difference meth-
ods, AD computes derivatives analytically, ensuring high accuracy 
and computational efficiency. This technique has been successfully 
applied in fields such as design optimization (Martins and Ning, 2022), 
machine learning (Rumelhart et al., 1986), optimal control (Grund, 
1985), inverse problems (Tortorelli and Michaleris, 1994), and uncer-
tainty quantification using adjoint-based formulations (Bigoni, 2015). 
In computational fluid dynamics (CFD), for example, AD has enabled 
the development of gradient-based optimization algorithms that sig-
nificantly improve the design of aerodynamic systems (Kenway et al., 
2019; Towara and Naumann, 2013). In optimal control, AD has fa-
cilitated the precise calculation of control sensitivities, enhancing the 
performance of control systems in applications ranging from aerospace 
to robotics (Grund, 1985).

However, these AD-enabled advancements are yet to be widely 
adopted in marine hydrodynamics. Unlike domains such as acous-
tics (Takahashi et al., 2022; Silva et al., 2023), structures (Ho Choi 
and Man Kwak, 1990), and electromagnetics (Koh et al., 1992), where 
BEM solvers integrate gradient computations, the hydrodynamic ker-
nel function called the free-surface Green’s function poses numerous 
numerical difficulties such as singularity for its evaluation and differ-
entiation (Newman, 1985; Liang et al., 2021). While existing marine 
hydrodynamic BEM solvers are powerful, they are not inherently differ-
entiable, as they lack support for AD, a critical limitation for optimiza-
tion and sensitivity analysis. Consequently, optimization workflows 
using traditional BEM solvers have relied either on gradient-free meth-
ods, such as statistical (Sobol’, 2001) or heuristic (Teixeira-Duarte et al., 
2022) algorithms, or on gradient-based techniques that approximate 
sensitivities using finite difference (Gomes et al., 2012). However, finite 
difference methods are both computationally expensive and prone to 
inaccuracies. These limitations make such approaches impractical for 
large-scale problems involving many interacting bodies, where the cost 
of repeated gradient evaluations becomes prohibitive. Gradients can be 
accurately computed in the case of analytical and surrogate model due 
to availability of the closed form expression. But, analytical methods 
are constrained by simplifying assumptions, while surrogate models, 
despite balancing efficiency and accuracy, suffer from limited applica-
bility outside their training domains (Forrester and Keane, 2009).

The lack of accurate and efficient gradients for hydrodynamic co-
efficients restricts system-level applications, where scalable methods 
are essential for analyzing subsystems in one coupled model. Multi-
disciplinary Design Optimization (MDO), a framework that integrates 
and optimizes across multiple interacting disciplines or subsystems 
simultaneously, has shown promise in addressing this challenge. Recent 
studies underscore the advantages of incorporating gradients into MDO 
frameworks for offshore floating structures (Patryniak et al., 2022). For 
example, analytical gradient derivations for substructures of offshore 
floating wind turbines have been integrated with broader analysis, ad-
vancing practical engineering capabilities (Dou et al., 2020). Gradients 
2 
Fig. 1. A differentiable solver provides both the performance of the design as well as 
the sensitivity of the performance to the design parameters.

also offer new opportunities for the development of marine renewable 
energy systems, as emphasized in the U.S. DOE ‘‘Next Generation 
Marine Energy Software Needs Assessment’’ report (Ruehl et al., 2023), 
and hold potential for accelerating machine learning-based marine 
hydrodynamic innovations (Zheng et al., 2024).

In contrast to traditional BEM solvers, this paper introduces a new 
BEM solver–referred to as MarineHydro.jl for the remainder of this 
paper specifically developed to address the limitations outlined above. 
MarineHydro.jl is a differentiable hydrodynamic solver implemented in 
Julia (Bezanson et al., 2017), capable of computing not only accurate 
hydrodynamic coefficients but also their exact gradients with respect 
to input parameters such as wave frequency, geometry, and degrees of 
freedom. This enables precise sensitivity analyses and gradient-based 
optimization, which are otherwise hindered in existing BEM solvers due 
to the absence of AD. MarineHydro.jl directly propagates derivatives 
throughout its computational pipeline using AD. This ensures that the 
gradients reflect the true behavior of the discretized numerical system, 
without the numerical noise or computational overhead associated with 
finite differences.

The gradients as computed by MarineHydro.jl are exact, meaning 
that no approximation was done specifically for computing the hy-
drodynamic gradients. This is slightly different from saying that we 
compute the exact analytical gradient of the true Green’s function 
(approximation free). While one of the Green’s functions used, Wu 
et al. (2017), is itself an approximation of the exact free-surface Green’s 
function, the gradients computed are exact with respect to this approx-
imation. For the Delhommeau’s exact Green’s function (Delhommeau, 
1987), this solver does calculate the exact Green’s function derivative 
using AD. Both of these Green’s functions are included in the solver.

By supporting both direct and indirect boundary integral formula-
tions (Ancellin, 2024) and multiple Green’s function models, Marine-
Hydro.jl offers flexibility in balancing computational cost and accu-
racy across different stages of the design process. Its differentiable 
architecture makes it well-suited for integration into modern design 
frameworks such as Multidisciplinary Design Optimization (MDO) and 
opens new possibilities for advancing the design of offshore systems 
including wave energy converters and floating wind turbines where 
gradient-based methods can significantly improve performance, robust-
ness, and development speed. A comparison between differentiable and 
traditional solvers is illustrated in Fig.  1.

The remainder of this paper is organized as follows. In Section 2, we 
discuss the formulation of MarineHydro.jl and the underlying Green’s 
function approximation. Following in Section 3, we discuss Marine-
Hydro.jl’s adjoint-based differentiation approach as well as detail its 
implementation in Julia. Section 4 demonstrates MarineHydro.jl’s capa-
bilities using two case studies: the first to demonstrate the applicability 
of computing accurate gradients for two identical heaving floating 
spheres; and the second to demonstrate the ability of MarineHydro.jl to 
be used in gradient-based optimization of mechanical power for a pair 
of identical WECs. We then conclude and outline avenues for future 
work in Section 5. The code for this paper is available open source at 
https://github.com/symbiotic-engineering/MarineHydro.jl.

2. Formulation and hydrodynamic verification

MarineHydro.jl uses an integral equation formulation based on the 
free-surface Green’s function (Falnes, 2002; Newman, 1985). We refer 
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to the standard textbook Refs. (Falnes, 2002) for detailed descrip-
tion on the wave structure interaction problem, linear water wave 
theory assumptions, and associated boundary conditions (for infinite 
depth case). In Section 2.1, we discuss the Green’s functions used in 
MarineHydro.jl.

2.1. Evaluation of the Green’s function

Numerous approaches have been explored in the literature to for-
mulate and compute the Green’s function for the linear potential flow 
problem (Xie et al., 2018). Developing computationally efficient ap-
proximations for the Green’s function and its gradients remains an 
active area and evolving field of research, as highlighted in stud-
ies such as Xie et al. (2018), Mackay (2019), John (1950). New-
man (1985) outlines efficient numerical algorithms for evaluating the 
free-surface Green’s function and its derivatives for linearized three-
dimensional wave motions, considering both infinite and constant finite 
fluid depths (Newman, 1985, 1986). By leveraging series expansions 
and multi-dimensional polynomial approximations, Newman’s methods 
significantly enhance the computational efficiency of Green’s func-
tion calculations compared to traditional numerical integration tech-
niques. These polynomial approximations replace the exact computa-
tions, which are often difficult to evaluate and differentiate with the 
required level of accuracy (Liang et al., 2021). Other approximations 
of the Green’s function utilize computational domain decomposition, 
such as the six-domain approach in Newman’s method (Lee and New-
man, 2003), and apply specialized techniques like Legendre or double 
Chebyshev polynomial approximations for different ranges (Xie et al., 
2018).

MarineHydro.jl, developed in this paper, allows users to choose 
between either an exact expression for the Green’s function derived 
by Delhommeau (1987) or a recently derived global approximation 
developed by Wu et al. (2017) for the case of infinite depth. The exact 
expression implementation is significantly slower but is highly accurate 
and is included for verification. Though we only discuss one approxima-
tion for the Green’s function in the implementation presented here, the 
software architecture of MarineHydro.jl enables seamless integration 
of any Green’s function formulation, allowing users to compute hy-
drodynamic coefficients and their gradients efficiently. This flexibility 
supports design optimization workflows, permitting the use of faster 
Green’s function approximations during early-stage design studies and 
transitioning to more precise but computationally intensive options 
for late-stage analyses, all within the same software framework. This 
architecture also supports future integration of finite-depth Green’s 
function approximations, particularly those that build upon or reuse 
infinite-depth solutions.

Fig.  2 summarizes the architecture of MarineHydro.jl and its various 
operations. MarineHydro.jl calculates the influence matrices (opera-
tors) 𝑆 and 𝐷 or 𝐾 (see Appendix  C for further details) for a floating 
body discretized into flat panels. The choice of direct and indirect 
BIE formulation (see Appendix  C for further details) and the choice 
of the Green’s function affects the accuracy and efficiency of hydrody-
namic forces calculation. The wave environment parameters are wave 
frequency (𝜔) and wave direction (𝛽).

The remainder of this section will focus on the implementation 
of the approximation of the Green’s function derived by Wu et al. 
(2017). This Green’s function approximation is accurate enough for 
the determination of accurate hydrodynamic coefficients, and hence 
sufficient for design optimization studies (Liang et al., 2018).

In this formulation, the Green’s function, 𝐺, is written as 

4𝜋𝐺 = − 1
𝑅

+ 𝐿 +𝑊 (1)

where 𝑅 represents the Euclidean distance between the source point 
𝑃 (𝑥, 𝑦, 𝑧 ≤ 0) and field point 𝑄(𝑥̄, 𝑦̄, 𝑧̄ ≤ 0), and 𝐿 and 𝑊  account 
for non-oscillatory local flow and pulsating surface waves on the free 
surface components, respectively. The first term in Eq.  (1), − 1 , is often 


3 
referred to as the ‘‘Rankine’’ term. All coordinates and the Green’s 
function are expressed in non-dimensional form, normalized by the 
wavenumber (𝑘).

The wave component 𝑊  can be expressed as: 
𝑊 (ℎ, 𝑣) = 2𝜋

[

𝐻0(ℎ) + 𝑖𝐽0(ℎ)
]

𝑒𝑣 (2)

where 𝐻0(ℎ) and 𝐽0(ℎ) are the zeroth-order Struve and Bessel functions, 
respectively, ℎ =

√

(𝑥 − 𝑥̄)2 + (𝑦 − 𝑦̄)2 is the horizontal distance and 
𝑣 = (𝑧 + 𝑧̄) ≤ 0 is the vertical distance (from the free surface) between 
the panels containing points 𝑃  and 𝑄. The approximations for 𝐻0(ℎ)
and 𝑌0(ℎ) are detailed in Newman (1984).

The local flow component 𝐿 is approximated as: 

𝐿 ≈ −1
𝑑

+ 2
1 + 𝑑3

+ 𝐿′ (3)

where 
 ≡ 𝑒𝑣

(

log𝑑 − 𝑣
2

+ 𝛾 − 2𝑑2
)

+ 𝑑2 − 𝑣 (4)

and 
𝐿′ ≈ (𝜌(1 − 𝜌)3(1 − 𝛽))𝐴(𝜌) − 𝛽𝐵(𝜌) −

𝛼𝐶(𝜌)
1 + 6𝛼𝜌(1 − 𝜌)

+ 𝛽(1 − 𝛽)𝐷(𝜌) (5)

where 𝑑 =
√

ℎ2 + 𝑣2, 𝜌 = 𝑑
1+𝑑 , 𝛽 = ℎ

𝑑 , 𝛾 is Euler’s constant, and 𝐴(𝜌), 
𝐵(𝜌), 𝐶(𝜌), and 𝐷(𝜌) are 9th-order polynomials in 𝜌 with coefficients 
specified in Wu et al. (2017). The first term in (3), 1𝑑 , is often referred 
to as the mirror effect or sometime ‘‘reflected Rankine’’ term. Wu et al. 
(2017) similarly derive an approximation for local flow component (𝐿∗) 
and the wave component (𝑊ℎ) for ∇𝐺 = [𝐺𝑥, 𝐺𝑦, 𝐺𝑧].

This approximation eliminates the need for complex integral eval-
uations of 𝐿 by expressing it as a single polynomial approximation 
valid across the entire domain, enabling faster computation and simpler 
implementation through basic polynomial evaluations. The parameters 
𝑅, ℎ, 𝑣, and 𝑑 define the computational domain and characterize the 
interactions between the source point 𝑃  and the field point 𝑄. In BEM 
codes, the computational flow domain is primarily determined by ℎ and 
𝑣, representing the horizontal and vertical distances between the points 
𝑃  and 𝑄 relative to the free surface.

Several methods outlined in Xie et al. (2018) partition the flow 
domain into multiple subregions and rely on extensive tabulation and 
interpolation. In contrast, Wu et al. (2017) formulate the solution 
using elementary functions that are valid and consistent across the full 
domain. This not only avoids the additional computational overhead 
but also ensures that the solution and its derivatives are easily acces-
sible. From a numerical perspective, this method is well-suited for AD 
due to its inherent simplicity and efficiency. Both forward and back-
ward passes can be parallelized, making this approach computationally 
efficient and straightforward to implement.

2.2. Verification of hydrodynamic coefficients and excitation forces

In this subsection, we verify the accuracy of MarineHydro.jl by 
comparing its computed hydrodynamic coefficients against analytical 
solutions for a surface-piercing hemisphere. Specifically, we assess the 
solver’s ability to compute added mass and damping coefficients by 
referencing the analytical results provided in Hulme (1982). The com-
parison, detailed in Figs.  3 and 4 for the heave and surge coefficients, 
respectively, shows good agreement between MarineHydro.jl and the 
analytical solutions. Any discrepancy in the coefficients compared to 
analytical results is likely due to the use of a simpler integration method 
(one point approximation) over the panels. Future work will address 
this by incorporating more accurate and differentiable integration or 
quadrature methods.

Similarly, we compute the wave excitation forces for comparison 
purposes. Fig.  5 presents the comparison of the Froude–Krylov and 
diffraction forces for a surface piercing unit hemisphere obtained from 
MarineHydro.jl with those obtained using the exact expression for the 
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Fig. 2. Julia implementation of BEM software. 𝜔 and 𝛽 are the wave frequency and direction, respectively, 𝐷,𝑆, an 𝐾 are the BEM matrices obtained by evaluating and integrating 
Green’s, 𝐺, function, and 𝑏 is the boundary condition. 𝜙 is the hydrodynamic potential and 𝐴 and 𝐵 are the hydrodynamic coefficients after integrating 𝜙 over the immersed body 
surface.

Fig. 3. Comparison of the non-dimensional heave hydrodynamic coefficients for (a) added mass and (b) damping, as computed by the MarineHydro.jl, with analytical (Hulme, 
1982) results for a surface piercing unit hemisphere. Added mass is non-dimensionalized as 𝐴

2∕3𝜌𝜋𝑟3
 and damping as 𝐵

2∕3𝜌𝜔𝜋𝑟3
.

Fig. 4. Comparison of non-dimensional surge hydrodyamic coefficients for (a) added mass and (b) damping, as computed by the MarineHydro.jl, with and analytical results for a 
surface piercing unit hemisphere from Hulme (1982). Added mass is non-dimensionalized as 𝐴

2∕3𝜌𝜋𝑟3
 and damping as 𝐵

2∕3𝜌𝜔𝜋𝑟3
.
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Fig. 5. Comparison of the non-dimensional heave excitation force (a) Froude–Krylov component and (b) diffraction component, as computed by the MarineHydro.jl, with BEM 
solver Capytaine (Ancellin and Dias, 2019) for a surface piercing unit hemisphere. Froude–Krylov and Diffraction forces are normalized by 𝜋𝜌𝑔𝐻𝑟2, where H is wave height and 
r is the radius.
Table 1
Comparison of open-source solvers based on their capabilities.
 Solver Green’s function method Formulation Irreg. Freq. removal Parallelization Differentiable 
 Wu et al. (2017) 

(Wu et al., 2017)
Delhommeau (1987) 
(Delhommeau, 1987)

 

 MarineHydro.jl v0.1.0 Yes Yes Direct & Indirect No No Yes  
 Capytaine v2.2.1 
(Ancellin and Dias, 2019)

No Yes Direct & Indirect Yes Yes No  

 HAMS (Liu, 2019) Yes No Direct only Yes Yes No  
Green’s function derived by  Delhommeau (1987) as implemented in 
the BEM software Capytaine (Ancellin and Dias, 2019). This compar-
ison highlights the solver’s accuracy in calculating wave excitation 
forces, a critical component for assessing wave-structure interactions.

MarineHydro.jl is sufficiently accurate for practical use in both 
diffraction and radiation problems, particularly in early-stage design 
and sensitivity analyses. The deviation observed in these comparisons 
at some frequencies may be attributed to the influence of irregular 
frequencies, a known challenge in such simulations, and will be in-
vestigated further in future work. Irregular frequencies arise when 
the numerical solution of the BIEs becomes non-unique at certain 
discrete frequencies. These correspond to non-trivial solutions of the 
homogeneous equations (Fredholm of the second kind) used in Green’s 
function formulations for surface-piercing bodies, leading to either non-
unique or undefined solutions (Lee and Sclavounos, 1989). Although 
they do not reflect any physical phenomenon, irregular frequencies can 
significantly distort the computed hydrodynamic coefficients and their 
gradients. Therefore, any method used to suppress or eliminate these 
frequencies (Liu and Falzarano, 2017; Burton and Miller, 1971; Lee and 
Sclavounos, 1989) must also preserve the differentiability of the solver 
to ensure gradient propagation remains accurate.

2.3. Solver capability comparison

MarineHydro.jl integrates multiple capabilities for hydrodynamic 
coefficient calculation including both direct and indirect BIE formula-
tions (see Appendix  C for further details of these formulations). Table 
1 compares the current capabilities of MarineHydro.jl against other 
open-source solvers. 

In the next section, we discuss the differentiation of MarineHydro.jl 
and review concepts relevant to developing the differentiable code.

3. Differentiability of the BEM solver

A naive way to obtain the gradients of the computed hydrodynamic 
coefficients and excitation forces is to numerically approximate them 
using finite differences. However, this method involves solving the 
hydrodynamic problem multiple times — once for each design variable 
— resulting in a computational cost of 𝑂(𝑚×𝑛3) for the case of the direct 
5 
BIE solver, where 𝑚 is the number of design variables and 𝑛 represents 
the panels in the floating body. This makes the approach computation-
ally expensive for high-dimensional problems. Alternatively, AD can be 
used to compute the gradient of complex numerical code, especially 
in cases where manual derivation, symbolic differentiation, or finite 
difference approximation are challenging or impractical.

The required Jacobian (𝐽𝑀×𝑁 ) of the 𝑀 hydrodynamic coefficients 
with respect to 𝑁 input parameters (e.g., wave frequency, body ge-
ometry variables, etc.) can be constructed either column-by-column 
or row-by-row. These two approaches correspond to two AD modes: 
Forward mode (also called pushforward) and reverse mode (also called 
pullback, backpropagation, or adjoint mode). The forward mode opera-
tion computes the Jacobian-vector product (JVP), which propagates an 
input perturbation (𝜕𝑥) through the function to compute the resulting 
perturbation in the output (𝜕𝑦): 
𝜕𝑦 = 𝐽 ⋅ 𝜕𝑥. (6)

This approach is useful for building the Jacobian column-by-column, as 
it calculates the effect of a small change in each input on the outputs.

The backward mode computes the vector-Jacobian product (VJP) 
by introducing a perturbation in the output space (𝜕𝑦) and propagating 
it back through the function to determine the impact on the input space 
(𝜕𝑥): 
𝜕𝑥 = 𝐽⊤ ⋅ 𝜕𝑦. (7)

This method is ideal for building the Jacobian row-by-row as it com-
putes how small changes in each output affect all inputs simultane-
ously. It is particularly efficient when dealing with optimization ob-
jectives or constraints where only a few outputs matter (Organization, 
2024; Griewank and Walther, 2008).

Although the solver can perform both forward- and reverse-mode 
AD, we adopt the reverse-mode formulation (adjoint mode) throughout 
this work because most design-optimization problems involve many 
design variables but only one or a few objective functions. Follow-
ing Jameson’s pioneering application to transonic-aircraft design in 
1988  (Jameson, 1988)—itself an outgrowth of Pironneau’s optimal-
control ideas (Grund, 1985), discrete adjoint have become a mainstay 
of high-dimensional optimization (Giles and Pierce, 2000). Contempo-
rary surveys detail the adjoint-based method and how it is applied to 
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decouple the cost of sensitivity computation from the number of design 
variables across different applications (Allaire, 2015; Lettermann et al., 
2024; Mader et al., 2008).

Traditional BEM solvers have not prioritized gradients, resulting 
in separate performant solvers and user-facing post-processing tools, 
which complicates integration with modern differentiation-based meth-
ods. While tools like Tapenade (Hascoet and Pascual, 2013) and other 
algorithmic differentiation frameworks (Elliott, 2018) facilitate differ-
entiability through techniques such as operator overloading or program 
transformations, these methods are often ill-suited for BEM imple-
mentations that comprise legacy codes and a mix of programming 
languages. Transforming BEM code (using algorithmic tools like Tape-
nade) as it is currently written can lead to inefficiencies; the forward 
solver’s design, including aspects like parallelization strategies and 
memory management, plays a critical role in determining the efficiency 
and accuracy of the differentiability (Towara and Naumann, 2013). 
Moreover, these methods often require significant modifications or 
entirely new solvers, as demonstrated by Rohrer and Bachynski-Polić 
(2024), whose workaround using adjoint solver in OpenMDAO (Gray 
et al., 2019) still faced memory limitations and inefficiencies for large-
scale design tasks. These approaches often fix the mesh resolution and 
skip differentiating the influence matrix assembly process, and instead 
perform finite-difference approximations of the matrix entries, limiting 
their accuracy and ability to adapt to design changes. This fixed-matrix 
approach is not ideal for optimization tasks, as highlighted by Rohrer 
and Bachynski-Polić (2024), who emphasized the need for solvers 
inherently designed for differentiability. Accuracy and efficiency chal-
lenges arise in practical applications, such as WEC layout optimization, 
where multiple linear solves may be required for analyses involving 
multiple interacting bodies and an additional adjoint solve is required 
for each linear solve.

MarineHydro.jl described in this paper makes differentiability a core 
feature. MarineHydro.jl implements AD through the Green’s function 
evaluation and its integrals that assemble the influence matrix, enabling 
exact gradient computation under any mesh refinement — this is unlike 
conventional approaches that numerically finite-difference gradients 
using precomputed entries of an influence matrix. This provides flex-
ibility for large-scale design optimization studies where an optimizer 
may make significant design adjustments and mesh refinement may 
be necessary. The novel contribution of MarineHydro.jl is its ability 
to combine adjoint formulations with AD to compute exact gradients, 
eliminating the need for numerical approximations.

3.1. Deriving the adjoint

Two primary approaches exist for formulating adjoints in the con-
text of flow control and optimization (PDE-constrained optimization) 
problems: optimize-then-discretize (OtD) (Gunzburger, 1987) and
discretize-then-optimize (DtO). The OtD approach formulates the op-
timization problem (using the continuous equations) and derives its 
discrete form afterward, while the DtO approach first discretizes the 
governing equations and then derives the optimization problem, often 
resulting in different numerical behavior. Nadarajah and Jameson 
(2012) (Nadarajah and Jameson, 2000) review these approaches in 
the context of aerodynamic design problems and Bradley (2010) also 
discusses them in detail for general setting (Bradley, 2010). While both 
methods theoretically yield equivalent results, practical considerations 
favor one over the other depending on the specific problem (Bradley, 
2010).

The OtD approach involves deriving the unconstrained optimization 
problem in its continuous form by formulating the Lagrangian: 
(𝜃, 𝑢, 𝜆) =  (𝜃, 𝑢) + 𝜆𝑇𝑙  (𝜃, 𝑢), (8)

where 𝜃 are the design variables, 𝑢 are the state variables,  (𝜃, 𝑢) is 
the objective function,  (𝜃, 𝑢) represents the constraints (e.g., boundary 
conditions or flow field equations), and 𝜆  are the Lagrange multipliers 
𝑙
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used to enforce each of these constraints. The stationarity condition 
for optimality, ∇𝑢 = 0, provides the sensitivity of the boundary condi-
tions, 𝐹 (𝜃, 𝑢), with respect to the state variables 𝑢. Solving the resulting 
Karush-Kuhn–Tucker (KKT) conditions, discretized as a linear system, 
yields the solution to the adjoint boundary value problem (Ragab, 
2004). Ragab (2004) applied the OtD approach to free-surface flows, 
implementing a time-domain panel code for hydrodynamic ship de-
sign under forward speed in waves using translating and pulsating 
free-surface Green’s function. The work formulated a wave resistance 
functional and a target pressure distribution for ship surfaces. They 
modified the panel code for the adjoint free-surface condition. How-
ever, the gradients derived in this approach were restricted to the 
specific objective function and may deviate from numerical results after 
discretization, as observed by Ragab (2004) who found up to 6% error 
in the gradients when compared with finite differences (Ragab, 2004). 
This could be due to discretization inconsistencies between the two 
solvers.

In contrast, MarineHydro.jl described in this paper adopts the DtO 
approach, also known as the discrete adjoint method. This method is 
preferred for working with numerical solvers as it directly uses the 
discretized equations ensuring that the computed gradients are consis-
tent with the numerical scheme and approximations used in forward 
solution. This consistency between the computed function value and 
its gradients is crucial for reliable optimization, particularly when the 
objective function depends on these values. It is worth noting that these 
gradients differ from analytical gradients derived from the continuous 
adjoint formulation. This distinction arises from the use of the discrete 
adjoint method, which enables the solver’s differentiability for the 
numerical problem being solved. This is a deliberate feature of our 
methodology and not a limitation of the solver itself.

Consider minimizing  (𝜙(𝜃), 𝜃) with respect to 𝜃, where 𝜙(𝜃) is 
defined implicitly by the equation 
𝐷(𝜃)𝜙(𝜃) − 𝑆(𝜃)𝑏(𝜃) = 0. (9)

where 𝐷 and 𝑆 are 𝑛 × 𝑛 asymmetric complex-valued dense square 
matrices where 𝑛 is the number of panels.   is the objective function 
dependent on the potentials on each panel, 𝜙, and the design variables, 
𝜃.

The total derivative of   with respect to 𝜃 is expressed as: 
𝑑
𝑑𝜃

= 𝜕
𝜕𝜃

+
(

𝜕
𝜕𝜙

)

𝜕𝜙
𝜕𝜃

. (10)

where implicit differentiation gives 
𝜕𝐷
𝜕𝜃

𝜙 +𝐷
𝜕𝜙
𝜕𝜃

− 𝜕𝑆
𝜕𝜃

𝑏 − 𝑆 𝜕𝑏
𝜕𝜃

= 0, (11)

and therefore 
𝜕𝜙
𝜕𝜃

= 𝐷−1
(

𝑆 𝜕𝑏
𝜕𝜃

+ 𝜕𝑆
𝜕𝜃

𝑏 − 𝜕𝐷
𝜕𝜃

𝜙
)

. (12)

An additional linear system can be formed to solve for the adjoint 
variable (𝜆) by letting: 

𝜆𝑇𝐷 = 𝜕
𝜕𝜙

. (13)

The gradient of   with respect to 𝜃 in Eq. (10) can then be expressed 
as: 
𝑑
𝑑𝜃

= 𝜕
𝜕𝜃

+ 𝜆𝑇
(

𝑆 𝜕𝑏
𝜕𝜃

+ 𝜕𝑆
𝜕𝜃

𝑏 − 𝜕𝐷
𝜕𝜃

𝜙
)

, (14)

where the expensive partial derivatives 𝜕𝜙𝜕𝜃  is skipped. The total deriva-
tive 𝑑𝑑𝜃  efficiently combines contributions from the boundary condition 
𝑏 and its perturbation 𝜕𝑏𝜕𝜃 , the influence matrix 𝑆, matrix perturbations 
𝜕𝑆
𝜕𝜃  and 𝜕𝐷𝜕𝜃 , and the solution vector 𝜙. Similar derivation through the 
method of Lagrange multipliers can be done and is included in the 
Appendix  F for interested readers.

In Eq. (10), 𝜕𝜕𝜃 = 0 in most applications, though for applications 
where there may be direct dependence of objective function to inputs, 
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it can be calculated using AD. A similar derivation from the indirect 
BIE could also be performed to obtain the indirect BIE adjoint linear 
system.

To compute the partial derivatives required in the adjoint equation, 
Eq. (14), various methods can be utilized, including finite differences, 
complex-step differentiation, symbolic differentiation, or AD. However, 
the accuracy and efficiency of gradient computation depend heavily on 
the selected approach.

Finite differences, for example, can suffer from inefficiencies and 
truncation errors. This method approximates the derivative as: 

𝑓 ′(𝑥) ≈
𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)

ℎ
, (15)

where ℎ represents a small perturbation in each input. Each input 𝑥
perturbation requires two function 𝑓 evaluations, and this process must 
be repeated for all inputs thus this method scales with number of inputs. 
For BEM solvers, this approach becomes computationally expensive due 
to the high cost of evaluating the Green’s function and solving the 
discretized boundary integral equation.

Complex-step differentiation reduces the truncation error; however 
it requires the real and imaginary values be separable and does not im-
prove upon the efficiency of finite differences (Martins and Ning, 2022). 
This requirement may necessitate modifications to the algorithms and 
Green’s function implementation in the computer code to support 
complex number inputs. Symbolic differentiation is exact but may be 
cumbersome to derive especially for computer programs. Out of these, 
AD is exact and scalable and is thus used in this solver. Differentiation is 
performed with respect to input variables which can be panel properties 
(e.g., vertices and centers), the dimensions of floating bodies, or the 
ocean wave frequency.

As illustrated in the derivation above, the adjoint method reduces 
the number of the linear solves to just two, regardless of the number 
of the design variables (Allaire, 2015). This is equivalent to solving an 
additional adjoint boundary value problem for a single scalar function 
output. The computational cost, therefore, decreases from 𝑚 ×𝑂(𝑛3) to 
2×𝑂(𝑛3), where 𝑚 is the number of design variables, and 𝑛 is the size of 
the dense, asymmetric matrices. Furthermore, for a factorization-based 
solver such as LU decomposition, the factorization (𝐴 = 𝐿𝑈 ) can be 
reused for both forward and adjoint solve and the complexity will be 
just 𝑂(𝑛3). Additionally, the matrix required for the adjoint solver is 
the transpose of the matrix from the forward solver. This ensures that 
the matrix’s conditioning remains consistent, eliminating the need for 
higher precision in the Green’s function evaluations in the adjoint solve.

3.2. Automating adjoint derivation

Manually deriving and assembling the adjoint equation can be 
complex and error prone. For example, in WEC design optimization, 
evaluating the objective function may require repeatedly solving the 
state equation along with additional linear systems, such as the equa-
tions of motion. A solver that abstracts this process can greatly en-
hance usability and streamline the design workflow. Reverse-mode 
AD is an effective alternative, assembling the partial derivatives re-
quired for the adjoint equation without explicitly solving for adjoint 
variables. This approach works by propagating output sensitivities 
backward through the computational chain. Unlike forward-mode AD, 
which traces input perturbations, reverse-mode AD is better suited for 
high-dimensional problems involving scalar objectives (Elliott, 2018). 
Notably, reverse-mode AD and the adjoint method are conceptually 
analogous.

Differentiable BEM solvers have two choices of applying AD through
a solver algorithm (which is generally not efficient) or using AD with
a solver algorithm (i.e., doing an explicit solve to apply the implicit 
function theorem but using AD to get the terms that form the linear 
system for the solve). We chose the latter implementation. Relying on 
AD to differentiate through linear solvers (sometime iterative solvers 
like GMRES), can introduce inefficiencies and errors (Griewank and 
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Walther, 2008). In implicit differentiation, for a system, 𝐹 (𝑥, 𝑢) = 0, 
where 𝑢 represents the solution and 𝑥 is a design variable, gradients 
are obtained by solving a linear system at optimality, 𝐹 (𝑥, 𝑢(𝑥)) = 0. 
This bypasses the need for AD to ‘‘unroll’’ external iterative solver com-
putations. We utilize libraries like ImplicitAD (Ning and McDonnell, 
2023) and Zygote.jl (Innes, 2018) to implicitly differentiate through the 
linear solver, allowing for efficient and automated adjoint setup within 
a single differentiable pipeline. This approach is solver-agnostic, mean-
ing users can adopt any state-of-the-art linear system solver without 
modification, ensuring compatibility with a wide range of Julia-based 
scientific computing tools.

In our solver implementation, in addition to automating the ad-
joint of the linear solver, we differentiate the Green’s function, which 
presents singularity challenges (Liang et al., 2021). In the case of the 
Rankine and reflected Rankine terms (mirror effect), which are both 
of the form 1𝑥 , 𝑥 → 0 results in singularities. These are handled using 
a Rankine integration algorithm described by Newman (1986), with 
AD applied directly to compute derivatives of the integral efficiently. 
Similarly, in case of integration for the exact expression by Delhom-
meau (Delhommeau, 1987), the differentiable HCubature method is 
adopted available in Julia package Integrals (SciML, 2025). We apply 
AD to the midpoint quadrature method for integrating the Green’s func-
tion, noting that the accuracy of the results is influenced by the chosen 
integration method. This method is employed for constant panels, 
offering a balance between simplicity and computational efficiency.

The frequency-dependent Green’s function depends on the horizon-
tal (ℎ) and vertical (𝑣) distances between panels relative to the free 
surface. However, spatial derivatives can become problematic when 
𝑑 =

√

ℎ2 + 𝑣2 → 0 (Liang et al., 2021). The derivative of 𝑑 with 
respect to ℎ or 𝑣 is undefined at (0, 0), as the limits of the gradient 
differ: limℎ→0 ∇𝑑(ℎ, 0) ≠ lim𝑣→0 ∇𝑑(0, 𝑣). This issue is mitigated by 
introducing a small regularization constant (𝑑 + 𝜖), ensuring gradi-
ent consistency with finite difference approximations. Regularization, 
relaxation, and reparameterization are common techniques in differen-
tiable codes to stabilize gradients and ensure differentiability almost 
everywhere, making programs robust and fully differentiable (Blondel 
and Roulet, 2024). We can employ either an approximate or exact 
Green’s function in the forward solve; thus its gradients should align 
consistently with the discretized forward solution to ensure the solver’s 
reliability and accuracy in design optimization studies. Liang et al. 
(2021) highlighted discrepancies between direct differentiation of ap-
proximated Green’s functions and analytically derived results. To assess 
the accuracy of our approach, we compare the gradients of hydrody-
namic coefficients computed via AD with those obtained through finite 
difference approximations. The results show excellent agreement with 
numerical approximation via finite difference. This serves as extension 
study of the validation by Wu et al. (2018) (Liang et al., 2018), 
who demonstrated that the approximated Green’s function (Wu et al., 
2017) is sufficiently accurate for design applications. Similarly, these 
gradients are sufficient for practical design optimization studies where 
sensitivities of coefficients are of importance.

3.3. Verification of the Green’s function gradients and radiation force 
derivatives

To verify the performance of MarineHydro.jl, we evaluate its ability 
to compute the gradients of the Green’s function as well as the gradients 
of the radiation forces on a surface piercing unit hemisphere using the 
adjoint formulation with AD as compared to those obtained through 
the finite-difference method. There exists a difference in accuracy of 
the two components of Green’s function: wave and Rankine. The wave 
component of the Green’s function (the second term in Eq. (1) which 
is frequency dependent) is an approximation that results in reduced 
accuracy compared to exact analytical values. The wave component can 
be viewed as effect from the free surface as discussed in Section 2.1. 
Consequently, its gradients may not perfectly align with analytical 
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Fig. 6. Comparison of the analytical and AD-computed normalized gradients 
(

1
𝐴

𝜕𝐴
𝜕𝑟

)

of added mass (𝐴) for a surging hemisphere sphere in still water shows that the AD 
computed sensitivities match the analytical results.

results. In contrast, the gradients of the Rankine component (the first 
term in Eq. (1) which is frequency independent) can be evaluated 
exactly. Thus, we can directly compare against the analytical added 
mass of a submerged sphere resulting from just the Rankine component 
of Green’s function. This is equivalent to added mass of a submerged 
sphere in still water which does not include a free surface term. 
Specifically, the gradient for the added mass of a sphere in surge in 
still water (and no free surface), given by 
1
𝐴

𝜕𝐴
𝜕𝑟

=
2𝜋𝜌𝑟2
2
3𝜋𝑟

3𝜌
, (16)

is compared with the result obtained using AD, as illustrated in Fig. 
6. As we can see from the figure, the two methods align well, indi-
cating the accuracy of the AD implementation in MarineHydro.jl. The 
accuracy is expected to improve and converge toward analytical results 
with an increase in the number of panels.

From the velocity potential over each body’s immersed surface (at 
each panel), the first order radiation force is computed for body𝑘 and 
body𝑙 due to their motion is computed based on (Kashiwagi et al., 
2005): 

𝐅(𝑘)(𝑙)
𝑖𝑗 = 𝜔2𝐀(𝑘)(𝑙)

𝑖𝑗 − 𝑖𝜔𝐁(𝑘)(𝑙)
𝑖𝑗 = −𝜌∬𝑆𝑘

Φ𝑙
𝑗 𝐧

𝑘
𝑖 𝑑𝑆 (17)

where 𝐀(𝑘)(𝑙)
𝑖𝑗  is the matrix of added mass coefficients, where each 

element represents the added mass for the 𝑖th degree of freedom of the 
𝑘th body due to the 𝑗th mode of motion of the 𝑙th body and similarly 
𝐁(𝑘)(𝑙)
𝑖𝑗  is the matrix of radiation damping coefficients. Φ𝑙

𝑗 is the velocity 
potential field for the 𝑗th mode of the 𝑙th body. 𝐧𝑘𝑖  is the generalized 
normal vector for body𝑘. Note that, this only provides the contribution 
to this generalized force component related to each mode of the bodies.

For the verification test case, we only consider one heaving body; 
thus, the coefficients 𝐴 and 𝐵 are scalar values and obtained using 
MarineHydro.jl. In this context, let 𝑓 ∶ R → C map the dimension 
of the floating device (𝜃) to the radiation force. Then, 𝑓 can be differ-
entiated by treating it as 𝑓 ∶ R → R2, where the real and imaginary 
parts are differentiated independently. To compute the derivative of 
the radiation force 𝐹𝑅𝑖

 in the 𝑖th degree of freedom with respect to the 
design variable 𝜃, the real and imaginary components of the complex 
valued 𝐹𝑅𝑖

 are differentiated separately given in Eq. (17), as follows: 
𝜕𝐹𝑅𝑖

𝜕𝜃
=

𝜕ℜ𝐹𝑅𝑖

𝜕𝜃
+ 𝑖

𝜕ℑ𝐹𝑅𝑖

𝜕𝜃
(18)

where ℜ𝐹𝑅𝑖
 and ℑ𝐹𝑅𝑖

 are the real and imaginary parts of the radiation 
force, respectively. By Eq. (17), this effectively amounts to differentiat-
ing each of the hydrodynamic coefficients (𝐴(𝑘)(𝑙)

𝑖𝑗  and 𝐵(𝑘)(𝑙)
𝑖𝑗 ) separately 

for interacting bodies.
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Figs.  7 and 8 demonstrate that these real and imaginary gradients 
as computed from MarineHydro.jl are exact when compared to those 
computed with finite differences, confirming their accuracy. In Figs. 
7(a) and 7(b), we take the gradient with respect to the radius of the 
sphere, 𝑟, for a fixed incoming wave frequency 𝜔 = 1.03 rad/s. We see 
that for both added mass and damping in heave, the gradient computed 
using AD with respect to radius for a range of hemisphere radii (1 m to 
5 m) is nearly the same as that computed using finite difference, with 
an absolute error of ≤ 10−7 kg/m in added mass and ≤ 10−7 Ns/m in 
damping.

Figs.  8(a) and 8(b) show the gradient with respect to the incident 
wave frequency, 𝜔, for a fixed sphere radius, 𝑟 = 1 m. We see that for 
both added mass and damping in heave, the gradient computed using 
AD for a range of incident wave frequencies (0 rad/s to 3.6 rad/s) 
is nearly the same as that computed using finite difference, with an 
absolute error of ≤ 10−7 kg/m in added mass and ≤ 10−7 Ns/m in 
damping.

Similarly, MarineHydro.jl can calculate the sensitivity in the case 
of either the direct and indirect BIE formulations, with a comparison 
for added mass and damping shown in Fig.  C.18 in Appendix  C. Note 
that these sensitivities are as accurate as they can get given the im-
precise nature of the finite difference method. Thus, the AD computed 
sensitivities are accurate for the practical purposes.

In the next subsection, we delve into the implementation details of 
the solver.

3.4. Implementation for differentiability

MarineHydro.jl is implemented in the Julia programming language 
and makes differentiability a core feature. This approach allows AD 
tools like Zygote to ‘‘natively’’ differentiate the source code via source-
to-source AD. The implementation primarily rewrites the existing
Fortran-based Green’s function (Liu, 2019; Wu et al., 2017; Ancellin 
and Dias, 2019) and integral algorithms, adopting functional program-
ming paradigms where appropriate. Zygote.jl supports reverse-mode 
differentiation, which is crucial for design optimization, the primary 
motivation for this solver. Forward-mode differentiation, enabled by 
Julia’s dual number support, is also available and can be extended 
by implementing forward chain rules (as outlined in the following 
Section 3.5), though reverse-mode remains the focus for optimization 
tasks.

When a user needs to calculate the gradient of an output such as 
power, which depends on the BEM solution, this solver automatically 
records each step of the solution process. It decomposes the process 
into elementary operations, computes the analytical derivatives for 
these operations, and reassembles them to obtain the full gradient. 
For the linear solve, the solver sets up an adjoint equation using the 
computed gradients and solves it for gradient evaluation with respect 
to the input variables. This is unlike the existing approach by Rohrer 
and Bachynski-Polić (2024) where Jacobian of the influence matrices 
are estimated using finite differences in the adjoint equation. Since 
the Green’s function itself is approximated and has some errors when 
directly differentiating (Liang et al., 2021), the finite difference will 
compound such errors. Additionally, their implementation approach is 
memory bound due to the need to estimate and store large Jacobian 
matrices. The approach and architecture of MarineHydro.jl is scalable 
and computes exact analytical derivatives. Efficient Green’s function 
approximation and its derivatives can be included and differentiated 
with ease because of the differentiation rules (chain rules) that can be 
provided to the solver.

The adjoint solver in MarineHydro.jl, constructed using an AD 
engine like Zygote.jl, is automatically generated when a user requests 
gradients for specific inputs. During the backward solve (reverse-mode 
or adjoint-mode), the solver propagates sensitivities back through the 
computational graph from the output to the inputs. This approach 
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Fig. 7. Comparison of gradients computed by AD to those computed by finite difference (FD) for (a) heave added mass 𝜕𝐴
𝜕𝑟
|𝜔=1.03 rad/s (b) and heave damping 𝜕𝐵

𝜕𝑟
|𝜔=1.03 rad/s. Note 

that added mass is non-dimensionalized as 𝐴
2∕3𝜌𝜋𝑟3

 and damping as 𝐵
2∕3𝜌𝜔𝜋𝑟3

.

Fig. 8. Comparison of gradients computed by AD to those computed by finite difference (FD) for (a) heave added mass 𝜕𝐴
𝜕𝜔

|𝑟=1 m (b) and heave damping 𝜕𝐵𝜕𝜔 |𝑟=1 m. Note that added 
mass is non-dimensionalized as 𝐴

2∕3𝜌𝜋𝑟3
 and damping as 𝐵

2∕3𝜌𝜔𝜋𝑟3
.

scales with the number of outputs, not inputs, making it highly efficient 
for problems with many input variables.

Notably, while MarineHydro.jl’s interface aligns with familiar
solvers (Ancellin and Dias, 2019), it uniquely automates the backward 
solve process as shown in Fig.  9. Unlike many state-of-the-art solvers 
that rely on users to implement computationally intensive numerical 
methods, such as finite differences, MarineHydro.jl simplifies gradient 
evaluation, requiring minimal effort from the user. By employing the 
adjoint state method and AD, it seamlessly integrates the adjoint solver 
alongside the forward solver.

Although the current implementation is not yet fully optimized for 
memory efficiency, it is designed to overcome the constraints of earlier 
methods and provide high accuracy for realistic, complex design tasks.

In the following subsection, we outline the methodology for en-
abling and propagating gradients throughout the BEM source code.

3.5. Custom chain rules for automatic differentiation

For use cases where MarineHydro.jl may need to be used with 
other external codes, such as a tool that generates a mesh from ge-
ometric parameters, custom differentiation rules can be augmented 
within MarineHydro.jl. For code that is not written in Julia or contains 
unsupported constructs, however, we implement custom gradient prop-
agation rules using the ChainRulesCore.jl package (White et al., 2024). 
For example, for the case studies in Sections 4.1 and 4.4, we leverage 
the external libraries Capytaine (Ancellin and Dias, 2019) for mesh-
ing and hydrostatics, which are not differentiable. We therefore use 
ChainRulesCore.jl to specify custom chain rules to propagate gradients 
through the AD computational graph and calculate the gradients with 
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respect to the dimensions. Future implementations of MarineHydro.jl 
will aim to replace external meshing and hydrostatics routines with 
fully differentiable mesh pre-processing code such that studies in-
volving hydrodynamics are automatically differentiable from geometry 
creation to coefficient calculations.

Mesh pre-processing involves generating the mesh vertices and 
panel properties for the BEM solver. For example, a meshing function 
𝑓mesh(𝑟) → vertices calculates the mesh vertices for a sphere given 
the radius 𝑟. The Jacobian of this function is then computed using 
finite differences and augmented with a custom reverse-mode rule 
for AD in Zygote.jl, enabling gradient propagation. The reverse-mode 
differentiation rule for Zygote.jl computes the vector-Jacobian product, 
𝜕𝑓mesh

𝜕𝑟

⊤
⋅ 𝛿𝑦, where 𝛿𝑦 is the gradient propagated back from the output 

of BEM solver to the meshing function.
This approach can be extended to other mesh panel properties 

required for BEM coefficient calculations. Although finite differences 
are used for mesh pre-processing in MarineHydro.jl, this remains com-
putationally acceptable since these operations are far less computa-
tionally intensive than the hydrodynamic analysis. By defining cus-
tom AD rules, MarineHydro.jl ensures compatibility with differentiable 
pipelines while maintaining accuracy in numerical gradients. Algorithm 
1 in Appendix  D illustrates the implementation process for the cus-
tom reverse-mode differentiation rule for mesh computations used in 
MarineHydro.jl. The custom AD rules developed here are not limited to 
mesh pre-processing but can be extended to any external CAD geometry 
tools, enabling a fully differentiable pipeline for calculating hydrody-
namics coefficients. This approach can also integrate post-processing 
operations and non-computationally intensive tasks in hydrodynamic 
analysis. Non-computationally intensive tasks refer to those that do not 
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Fig. 9. Forward and backward solve workflow of a differentiable BEM solver (MarineHydro.jl): Forward solve computes the hydrodynamic coefficients, while backward solve 
employs adjoint and automatic differentiation (AD) for sensitivities. Backward solve is also referred as adjoint solve or reverse-mode automatic differentiation.
Table 2
Computational cost of Green’s function integrals and influence matrix sensitivities 
with respect to the panel 𝑧-coordinate using reverse-mode AD engine Zygote.jl (Innes, 
2018). Exact calculations are performed between panels for comparison (although 
approximation can be done for panels that are far away from each other). These 
measurements were obtained using Julia (version 1.10.5) running on a Linux platform 
with a single CPU thread and 256 GB memory.
 Green function Integral type  Coefficient (time) Gradient (time) 
 Rankine S 1747.45 ns 768.737 μs  
 Rankine D 3558.83 ns 6.533 ms  
 Wu (Wu et al., 2017) S 74.9424 ns 37.200 μs  
 Wu (Wu et al., 2017) D 238.953 ns 523.291 μs  
 Exact Delhommeau (Del-
hommeau, 1987)

S 138472 ns 1.889 ms  

 Exact Delhommeau (Del-
hommeau, 1987)

D 283603 ns 11.210 ms  

scale with the number of input variables, as opposed to operations that 
scale polynomial like linear solvers, which are more resource intensive.

Reverse-mode AD, while powerful, requires more memory than the 
forward mode because it caches all intermediates values during the 
forward solve for use in backpropagation. Future iterations of Marine-
Hydro.jl will explore performance optimizations such as checkpointing 
and the incorporation of analytical derivatives to reduce memory us-
age and enhance efficiency (Griewank and Walther, 2008). Addition-
ally, other AD engines available in Julia will be evaluated to identify 
opportunities for improved performance and scalability.

3.6. Solver computational speed

The per-panel performance of MarineHydro.jl, for both matrix as-
sembly and gradient computation using each Green’s function, is sum-
marized in Table  2. 

Note that the current implementation, while functional, is not yet 
optimized for either coefficient or gradient calculations. Performance 
optimization is beyond the scope of this paper, but future work will 
focus on improving the efficiency of both the forward and gradient 
computations.

In the following sections, we conduct two case studies to demon-
strate some of the capabilities of MarineHydro.jl.

4. Application of AD computed sensitivities

In this section, we employ the differentiable capability of Marine-
Hydro.jl to compute the sensitivities of hydrodynamic coefficients with 
respect to their dimension and wave parameters. MarineHydro.jl makes 
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it straightforward to compute these sensitivities without the need for 
finite-difference approximation.

4.1. Case study I: Sensitivity of hydrodynamic coefficients for two identical 
floating spheres

Exploring the hydrodynamic interactions between closely spaced 
floating bodies can provide valuable insights for designing systems 
that leverage constructive wave interaction effects for power gener-
ation (Konispoliatis and Mavrakos, 2016; Singh and Babarit, 2014). 
Analyzing these interactions can be used to identify a separation dis-
tance at which simpler models, such as the plane wave approximation 
(PWA) (Singh and Babarit, 2013), can be applied to significantly reduce 
the computational costs associated with computing the hydrodynamic 
response of floating bodies in a given wave environment (Zhang et al., 
2022). Currently, this distance is considered to be approximately five 
times the characteristics dimension of the floating body, beyond which 
simpler hydrodynamic coefficients approximations can be used with 
minimal accuracy loss (Singh and Babarit, 2013).

For WECs, understanding how variables such as body dimensions, 
inter-body spacing, and wave climate influence energy absorption is 
essential for designing robust and cost-effective array layouts. These 
factors play a critical role in optimizing power production and ensuring 
the effectiveness of energy farms (Borgarino et al., 2012).

In this case study, we examine two identical point-absorbers shown 
in Fig.  10 using MarineHydro.jl described earlier. Each of the point-
absorbers are considered as one degree-of freedom systems, moving 
in heave only. Through this case study, MarineHydro.jl is extended 
to compute two-body hydrodynamic interactions and their sensitivities 
using adjoint and AD.

For each combination of radius and wavenumber, only one forward 
solution (BEM solution) and a single gradient calculation is required. 
We calculate the local sensitivities of each sphere’s hydrodynamic 
added mass and damping coefficients relative to the influence on other 
sphere. These sensitivities are evaluated with respect to their separation 
distance 𝑥 and the frequency of the wave environment 𝜔 for a fixed-
size spheres of radius 𝑟. The dimensionless parameters 𝑘𝑟 and 𝑥

𝑟  are 
varied to calculate the gradients providing insights into hydrodynamic 
interactions between floating bodies.

The coupled and symmetric added mass matrix (𝐀) is given by:
[

𝐴11 𝐴12
𝐴21 𝐴22

]

,

and the damping matrix (𝐁) is:
[

𝐵11 𝐵12
]

.

𝐵21 𝐵22
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Fig. 10. Schematic of a pair of identical floating spheres used for Case Study I.
Fig. 11. Comparison of sensitivities of added mass and damping coefficients.
are computed for the two heaving spheres. Sensitivities are analyzed to 
understand interactions, with gradients computed using AD in Marine-
Hydro.jl via the exact Green’s function expression by Delhommeau 
(1987).

4.2. Sensitivity results and observations

The sensitivity of the added mass 𝐴11 and damping 𝐵11 for a unit 
hemisphere (𝑟1 = 1 m) at 𝜔 = 1.03 rad/s, and for a nearby sphere of 
radius 𝑟2, with respect to their dimensions can be used to determine an 
interaction cutoff range for the PWA (Singh and Babarit, 2013). This 
helps justify the use of simplified interaction models at sufficiently large 
separations. Based on numerical studies (Singh and Babarit, 2013), the 
cutoff distance is typically taken to be five times the characteristic 
dimension of the bodies involved. For the flow problem considered 
here, this dimension is taken to be the diameter (𝑑 = 2 m) of the 
hemisphere.

Fig.  11(a) illustrates 𝜕𝐴11
𝜕𝑟2

 and 𝜕𝐵11
𝜕𝑟2

 approaching zero as the separa-
tion distance increases, indicating that sphere 1’s coefficients become 
independent of sphere 2’s dimension. This result aligns with expec-
tations, as the added mass and damping of a body are influenced 
by fluid flow around the body, which depends on the geometry of 
nearby obstacles such as the sea bed or other floating bodies. For 
the infinite-depth case considered in this solver, the sea bed is not a 
nearby obstacle. Similar numerical studies can be conducted for various 
geometries before implementing simplified models at large distances. 
For instance, Singh and Babarit (2013) used a distance of five times 
the characteristic dimension as a cutoff to build an approximation 
model for hydrodynamic interaction. They discuss the application of 
the PWA in the context of wave interaction within arrays of wave 
energy converters. Their numerical experiment showed that at such 
separation distance, the PWA showed reliable results for wave periods 
ranging from 4–15 s. This is based on the observation that the curvature 
of outgoing waves diminishes at such distance making them resemble 
plane waves.

From Fig.  11(a) it seems that this is a good guideline for the 
diagonal elements of the added mass and damping matrices (𝐴  and 
11
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𝐵11, respectively), however the same cannot be said for the off-diagonal 
𝐴12 and 𝐵12 terms. The sensitivity of 𝐴11 and 𝐵11, representing self-
interaction, tend to stabilize and show minimal sensitivity to variations 
in separating distance (at large distances). This aligns with the assump-
tions of the PWA. Fig.  11(b) shows that the sensitivity of the interaction 
coefficients is oscillatory with the separation distance. This oscillatory 
sensitivity arises from the constructive and destructive interference 
patterns in the wave field. Similarly, the sensitivities, as expected, also 
have a 𝜋2  phase difference between them. It is also noteworthy that the 
rates at which the sensitivities of added mass and damping decrease 
to zero differ, reflecting the distinct hydrodynamic influences on these 
coefficients.

Therefore, while the PWA serves as a useful tool for simplified 
hydrodynamic analysis at far distances for self-interaction effects, more 
analysis is necessary when the precise mutual interaction effects (off-
diagonal terms) are critical. These effects are influenced significantly 
by the relative positioning of the floating bodies in the wave field. In 
these cases, BEM sensitivity analysis using the AD computed gradients 
as presented here is recommended.

Figs.  12 and 13 illustrate the sensitivities of the coupled added mass 
𝐴12 and coupled damping 𝐵12 coefficients, respectively, with respect 
to the dimension of the pair of identical spheres 𝑟, swept over the 
separation distance ratio 𝑥

𝑟  and non-dimensional radius 𝑘𝑟. In Figs. 
12 and 13, we are calculating the sensitivities of identical spheres, 
essentially perturbing both radii at the same time and calculating 
sensitivities across different wave conditions. This study mirrors the 
layout and design optimization studies where identical WECs are sized 
and placed in different wave conditions (Teixeira-Duarte et al., 2022). 
Fig.  12 shows that the sensitivity of 𝐴12 varies from normalized values 0 
to 1 (corresponding to 420.4 kg/m to −750 kg/m dimensionally) show-
ing strong spatial dependency. Negative-to-positive gradient transitions 
highlight regions where increasing 𝜔 significantly alters the coupled 
effect, likely due to wave interference.

Similarly, Fig.  13 shows that the damping sensitivities with respect 
to radius range from normalized values 0 to 1 (corresponding to 
2148.89 Ns/m to −1291.43 Ns/m dimensionally). The damping coeffi-
cients exhibit regions of increasing or decreasing sensitivity depending 
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Fig. 12. Sensitivity of added mass (𝐴12) with respect to radius (𝑟) for unit spheres: 
𝜕𝐴12

𝜕𝑟
|

|

|𝑟=1 m
.

Fig. 13. Sensitivity of damping (𝐵12) with respect to radius (𝑟) for unit spheres: 
𝜕𝐵12

𝜕𝑟
|

|

|𝑟=1 m
.

on the distance and sphere size. Both added mass and damping sen-
sitivities demonstrate non-uniform variations with separation distance 
and frequency. Note that, since the irregular frequencies have not yet 
been removed in MarineHydro.jl yet, the coefficients and their sensi-
tivities may exhibit some accuracy issues at some of those frequencies. 
However, the variations exist across the frequency range and thus, this 
study underscores the importance of layout optimization. For instance, 
in WEC arrays where the dimensions of identical WECs typically change 
during optimization iterations.

Thus, the AD capabilities of MarineHydro.jl can be used for calcu-
lating the sensitivities for any kind of geometry, essentially providing 
a direct and easy approach to the analysis performed by Singh and 
Babarit (2013) to gain intuition for design studies.

4.3. Implications for design and optimization

These results reveal critical ‘‘transition regions’’ in sensitivities, em-
phasizing the need to account for realistic wave climates (encompassing 
all relevant 𝜔) in layout optimization studies. For instance, certain 
changes in sphere dimensions can offset sensitivity changes due to 
increased separation distances. Ringwood (2025) reviewed a number 
of design aspects including separation distance and wave scenarios 
essential for the design optimization of WECs and their controls. With 
this case study, we confirm that the sensitivities show various non-
intuitive interactions. This interplay exists across different frequencies 
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and thus should be exploited in optimization tasks using optimization 
algorithms to achieve desired performance metrics, such as maximizing 
energy absorption.

The spatial sensitivities computed using the approximation by Wu 
et al. (2017) align within 2% of those derived from the exact Delhom-
meau expressions (Delhommeau, 1987) as shown in Appendix  B, Fig. 
B.17, verifying the solver’s accuracy for design optimization tasks when 
using the faster Green’s function approximation. These exact sensitiv-
ities are essential for guiding experimental setups and improving the 
practicality of large-scale numerical design optimization.

4.4. Case study II: Optimization of mechanical power from pair of point 
absorbers

In this section, we demonstrate the capabilities of MarineHydro.jl 
by optimizing the mechanical power of two identical point absorbers 
WECs heaving independently for a fixed wave frequency 𝜔 = 1.03 rad/s 
as shown in Fig.  14. The objective is to identify the optimal device 
dimensions and spacing between the absorbers that maximize mechan-
ical power. While realistic wave spectra, wave roses, and larger WEC 
arrays are typically considered in practical applications, this example 
is intentionally simplified to highlight the solver’s functionality.

4.5. Methodology

To propagate the gradients efficiently, the dynamics, control sys-
tems, and power calculations for the WECs were implemented in Julia, 
with hydrostatics made differentiable using custom chain rules as de-
scribed in Appendix  D. A resistive controller is used, setting the power 
take-off (PTO) stiffness to zero (𝑘𝑖 = 0), and the PTO damping co-
efficient is set to be equal to the hydrodynamic damping coefficient 
𝑑 = diag(𝐁) for each sphere.

For linear PTO devices, the time-averaged power, P, for each WEC𝑖
is given by: 

P𝑖 =
1
2
𝑑𝑖
|

|

|

𝑗𝜔E𝑖(𝑖𝜔)
|

|

|

2
, (19)

where E𝑖(𝑖𝜔) is the complex amplitude of heave motion. The coupled 
dynamics of the system are solved using the frequency-domain linear 
equation: 
E⃗(𝑖𝜔) =

[

−𝜔2(𝐌 + 𝐀) − 𝑖𝜔(𝐁 + diag(𝑑)) + 𝐂 + diag(𝑘⃗)
]−1F⃗(𝑖𝜔), (20)

where 𝐀 is the 2 × 2 added mass matrix, 𝐁 is the 2 × 2 hydrodynamic 
damping matrix, F⃗(𝑗𝜔) is the 1 × 2 wave excitation force vector, 𝐂 is 
the 2 × 2 hydrostatic stiffness matrix, 𝐌 is the 2 × 2 diagonal mass 
matrix, diag(𝑑) is a diagonal matrix of the PTO damping coefficients 
for unit wave amplitude. The hydrodynamic coefficients and wave 
exciting force (𝐀, 𝐁, F⃗(𝑖𝜔)) are computed using MarineHydro.jl, while 
𝐂 is obtained from Capytaine (Ancellin and Dias, 2019) and integrated 
into the differentiable pipeline via custom chain rules as described in 
Section 3.5. Note that, 𝐂 is not a function of 𝜔. Although geometry 
and hydrostatic gradients are estimated using finite differences, this 
process is still automated by the AD engine (using custom reverse 
rules), requiring no manual assembly by the user. Custom rules allow 
the user to provide the derivative rule when AD engines encounter code 
external to them such as geometry creation. This allows users to use 
any tool they prefer for geometry and mesh creation. For this study, 
the focus is on hydrodynamics, as it varies with frequency 𝜔. Hydrody-
namic coefficients involve significantly more computationally intensive 
operations, such as Green’s function evaluation, integration, and linear 
solving, making an efficient method for hydrodynamic sensitivities 
critical to the design optimization studies.

MarineHydro.jl automates the differentiation of both the BIEs and 
the equations of motion. This automation eliminates the need for 
manual adjoint derivations when additional post-processing tasks, such 
as computing Response Amplitude Operators (RAOs) are part of the 
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Fig. 14. Pair of point absorbers separated by distance 𝑥.
Table 3
Comparison of gradients: Finite difference vs. AD.
 Design variable Finite difference gradient AD gradient Absolute error 
 radius (1 m) 170.437647446 170.43764737445 ≤ 10−9  
 separation distance (5 m) −0.2635335396 −0.2635335398 ≤ 10−9  
sensitivity calculations. For instance, in scenarios where WECs inter-
act across multiple degrees of freedom, the discretized BIE must be 
solved for each degree of freedom. To demonstrate MarineHydro.jl’s 
scalability, consider a WEC farm with 𝑁 interacting bodies, each 
moving in one degree of freedom, and 𝑊  wave frequencies 𝜔 within 
a wave spectrum. For this analysis, the computation involves solving 
𝑊  influence matrices, each of size scaling with 𝑁 ×𝑁 . These matrices 
account for interactions between the 𝑁 bodies and are computed using 
a fixed number of panels per body. The matrices are to be generated for 
both radiation and diffraction problems. Similarly, the computational 
cost for nearby body configuration is higher due to the cost of Green’s 
function evaluation while for bodies far away, simplified approximation 
is used. Thus, the cost for some configuration will be higher than 
other for both forward and adjoint solve for same number of panels, 
interacting bodies and wave frequencies.

The automated handling provided by MarineHydro.jl makes such 
complex scenarios more manageable and computationally feasible.

The optimization problem for this case study is formulated as fol-
lows:

Minimize  (𝜽̂) =
∑𝑛

𝑖 Pi
4
3𝜋𝑟

3
, (21)

by varying 𝜽̂ = [𝑟, 𝑥], (22)

subject to 𝑥 > 0, (23)

while solving 𝐷(𝜃;𝜔)𝜙 − 𝑆(𝜃;𝜔)𝑏 = 0, (24)

− 𝜔2(𝐌(𝜽) + 𝐀(𝝓,𝜽)
)

− 𝑖𝜔
(

𝐁(𝝓) + diag( ⃗𝐁(𝝓))
)

+ 𝐂(𝜽)E⃗(𝑖𝜔) − ⃗F(𝜃)(𝑖𝜔) = 0, (25)

where   is the total mechanical power per unit volume, 𝜃̂ is vector of 
design variables, 𝑟 is the radius of the point absorber, 𝑥 is the separation 
distance, 𝑆 and 𝐷 are influence matrices, 𝑏 is the boundary condition 
defined in (A.3) and (A.4), and 𝑛 = 2 is the number of interacting WECs. 
Fig.  15 showcase a typical adjoint based design optimization using the 
new differentiable solver.

A detailed step-by-step comparison of the computations using the 
adjoint method and finite difference in this design optimization study 
is provided in Appendix  G.

4.6. Results and discussion

The accuracy of the gradients of the objective function with respect 
to the design variables computed by the MarineHydro.jl was verified 
against finite difference results. Table  3 shows excellent agreement 
between the methods. 

Table  3 also shows that, at the chosen ocean wave frequency (𝜔 =
1.03 rad/s), the sensitivity of the power calculation for two point 
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Fig. 15. Adjoint based design optimization using the new differentiable solver.

absorbers depends more on their body dimension than their separation 
distance.

To see how MarineHydro.jl scales with additional design variables, 
the optimization problem was modified to include some ‘‘dummy’’ 
design variables which have no effect on the objective function value. 
Fig.  16 compares the computation times for gradients obtained via 
numerical finite differences and AD in MarineHydro.jl. It demonstrates 
that as the number of design variables increases, the time required for a 
single gradient evaluation using finite difference grows significantly. In 
contrast, AD maintains a constant computation time regardless of the 
number of design variables. The current AD implementation exhibits 
higher computation times, reflected in the elevated 𝑦-intercept, due to 
unoptimized reverse-mode differentiation, and this cost increases with 
mesh resolution. Future versions of MarineHydro.jl aim to significantly 
reduce these runtimes through targeted performance optimizations.

The optimization was carried out using the Limited-memory
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm via Optim.jl
(Mogensen et al., 2024). The nominal and optimal design variables as 
well as the optimal objective function value are summarized in Table  4. 
The optimizer converged in three iterations and 857 s, selecting point 
absorbers with the smallest allowed radius and maximum separation 
distance when using AD.

This case study demonstrates the scalability of AD for high-dimensi-
onal problems, as the cost of gradient computation remains constant 
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Fig. 16. Comparison of computation times: finite difference vs. AD as the number of 
design variables increase.

Table 4
Summary of optimization results.
 Variable Bounds Nominal value Optimal value 
 Radius (𝑟 [m]) [1.0, 4.0] 2.0 1.0  
 Separation Distance 
(𝑥 [m])

[1.0, 4.0] 2.0 3.9  

 Optimal Objective
Function Value

24.48  W/m3

regardless of the number of design variables. Although this case study 
only considers two design variables, real-world WEC layout optimiza-
tion typically involves numerous interacting bodies across a range of 
wave frequencies within a spectrum (Teixeira-Duarte et al., 2022). 
Importantly, AD’s computational efficiency ensures that gradient cal-
culations are equally cost-effective for both small-scale and large-scale 
optimization tasks, making it well-suited for complex, high-dimensional 
scenarios.

The current example, with just two variables, is not ideal for show-
casing the full potential of reverse-mode AD but serves as a simplified 
demonstration. Reverse-mode AD is particularly advantageous for high-
dimensional problems, such as the design optimization of multiple 
interacting bodies in wind-wave layout configurations. For realistic 
applications, detailed optimization would require greater computa-
tional resources, but using this solver with gradient based optimizers 
is expected to incur significantly lower costs compared to traditional 
methods like finite differences or heuristic optimization.

5. Conclusion and future work

In this work, we developed and implemented a novel fully differ-
entiable BEM solver capable of accurately computing hydrodynamic 
coefficients and their gradient calculations, known as MarineHydro.jl. 
By leveraging adjoint and AD, MarineHydro.jl achieves precise and 
scalable gradient calculations, overcoming limitations in traditional 
BEM solvers that often requires researchers to rely on finite differences 
or heuristic methods. The solver also incorporates both exact and 
approximate Green’s functions and supports direct and indirect BIE 
formulations, thus improving the design workflow by allowing faster 
Green’s function approximations during early-stage design studies and 
transitioning to more precise but computationally intensive options for 
late-stage analyses.

Through rigorous numerical experiments, we verified MarineHy-
dro.jl’s accuracy against analytical benchmarks and demonstrated its 
practical utility in two case studies. The first case study analyzed 
hydrodynamic interactions between two identical floating spheres, re-
vealing critical insights into the sensitivity of coupled hydrodynamic 
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coefficients to design and environmental parameters. The second case 
study utilized the sensitivity to optimize the mechanical power produc-
tion of a WEC array, illustrating the potential of MarineHydro.jl for 
system-level design optimization.

This work highlights the potential of integrating differentiable code 
into marine hydrodynamics. By eliminating the need for manual adjoint 
derivation and enabling seamless gradient propagation, the proposed 
solver simplifies workflows and extends the capabilities of traditional 
BEM approaches. This advancement opens avenues for integrating 
sensitivity analysis, machine learning and data-driven approaches in 
offshore engineering challenges such as WEC farm layout optimization, 
floating wind turbine design, and other applications. As the offshore 
industry shifts toward more complex and integrated design frameworks, 
the adoption of differentiable tools like MarineHydro.jl will be crucial 
for advancing engineering innovation and operational efficiency.

Future research will aim to enhance MarineHydro.jl’s efficiency for 
both forward computations and backward gradient propagation, opti-
mizing performance on both CPU and GPU architectures. In addition 
to performance improvements, we aim to extend MarineHydro.jl’s ap-
plication to large-scale systems engineering challenges, such as design 
optimization and uncertainty quantification in wave-structure interac-
tion analyses. The extension of this solver for finite depth scenario 
will also be considered in future iterations. Finally, we plan to con-
tinue developing the package to support the mesh pre-processing and 
hydrostatics components in Julia (which currently relies externally 
on Capytaine), improving the modularity to handle multiple bodies, 
ensuring a fully integrated and differentiable workflow.
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Appendix A. Direct and indirect boundary integral equations

To solve the Laplace equation efficiently using BEM, the problem is 
reformulated as a BIE. Following Ancellin (2024), two primary methods 
for this transformation are discussed and summarized in the following 
sections: the direct and indirect BIE. Reference textbooks on this topic 
include Sauter and Schwab (2011) and Gaul et al. (2003).

A.1. Direct boundary integral equations

The direct BIE, often referred to as the ‘‘potential’’ or ‘‘sources-and-
dipoles’’ formulation, is widely used in existing BEM solvers WAMIT
(Lee and Newman, 2003) and HAMS (Liu, 2019). Denoting the im-
mersed boundary of the body as 𝑆𝐵 , the BIE reads 
𝛷(𝑥)
2

+∬𝑆𝐵

𝛷(𝜉)∇2𝐺(𝑥, 𝜉) ⋅ 𝑛(𝜉)𝑑𝜉 = ∬𝑆𝐵

𝜕𝛷
𝜕𝑛

(𝜉)𝐺(𝑥, 𝜉)𝑑𝜉 ∀𝑥 ∈ 𝑆𝐵

(A.1)

where 𝐺(𝑥, 𝜉) is the fundamental solution (the Green’s function) of the 
governing Laplace equation, 𝑛 is the normal vector, and ∇2 indicates 
the gradient with respect to the second variable in Green’s function, 𝜉
in this case. Using a collocation method and discretizing the boundary 
into 𝑁 panels, the equation becomes: 

𝐷𝛷 = 𝑆 𝜕𝛷
𝜕𝑛

(A.2)

where the matrix 𝑆, sometimes called single-layer operator, is defined 
as 
𝑆𝑖𝑗 = ∬𝑆𝐵𝑗

𝐺(𝑥𝑖, 𝜉)𝑑𝜉 (A.3)

and the 𝐷 matrix, sometimes referred to as the double-layer operator, 
is defined as 

𝐷𝑖𝑗 =
𝛿𝑖𝑗
2

+∬𝑆𝐵𝑗

∇2𝐺(𝑥𝑖, 𝜉) ⋅ 𝑛𝑗𝑑𝜉 (A.4)

where 𝛿𝑖𝑗 is the Kronecker delta and 𝑛𝑗 denotes the normal vector of 
panel 𝑆𝐵𝑗

.

A.2. Indirect boundary integral equations

One commonly used indirect BIE approach is the ‘‘sources’’ for-
mulation, which introduces a new scalar field, 𝜎, defined on 𝑆𝐵 . The 
equations for 𝛷(𝑥) are formulated as: 

𝛷(𝑥) = ∬𝑆𝐵

𝜎(𝜉)𝐺(𝑥, 𝜉)𝑑𝜉 ∀𝑥 ∈ 𝑆𝐵 (A.5)

and 
𝜕𝛷
𝜕𝑛

(𝑥) = 𝜎
2
+∬𝑆𝐵

𝜎(𝜉)∇1𝐺(𝑥, 𝜉) ⋅ 𝑛(𝑥)𝑑𝜉 ∀𝑥 ∈ 𝑆𝐵 (A.6)

where ∇1 denotes the gradient taken with respect to the first variable 
(𝑥 in this case).

After discretization as in the direct BIE, these equations are ex-
pressed as: 
𝛷 = 𝑆𝜎 (A.7)
15 
Fig. B.17. Error in added mass and damping sensitivities using Wu’s (Wu et al., 
2017) approximation vs Delhommeau’s (Delhommeau, 1987) exact Green’s function 
at 𝜔 = 1.03 rad/s.

and 
𝐾𝜎 = 𝜕𝛷

𝜕𝑛
(A.8)

where 𝐾 is the adjoint double-layer operator defined as 

𝐾𝑖𝑗 =
𝛿𝑖𝑗
2

+∬𝑆𝐵𝑖

∇1𝐺(𝑥𝑖, 𝜉) ⋅ 𝑛𝑖𝑑𝜉 (A.9)

where 𝑛𝑖 denotes the normal vector of panel 𝑆𝐵𝑖
.

A.3. Relationship between double-layer operators

The relationship between the gradients ∇1𝐺 and ∇2𝐺 is derived 
from the symmetry property of the Green’s function: 
𝐺(𝑥, 𝜉) = 𝐺(𝜉, 𝑥). (A.10)

Differentiating with respect to 𝜉, we have: 
∇2𝐺(𝑥, 𝜉) = ∇1𝐺(𝜉, 𝑥). (A.11)

This symmetry allows for efficient computation of 𝐷 and 𝐾 using 
shared code, with minor adjustments for switching between symmetric 
and antisymmetric components.

Appendix B. Comparison of sensitivities using wu and delhom-
meau’s approximation

Here we compare the hydrodynamic sensitivities computed using 
the Green’s function approximation-based solvers of Wu (Wu et al., 
2017) and Delhommeau (Delhommeau, 1987), with respect to the 
separation distance between the spheres described in Section 4.1.

This comparison verifies that the numerical approximation by
Wuet al. (Wu et al., 2017) for estimating gradient sensitivities aligns 
within 2% of the exact expressions derived by Delhommeau (Del-
hommeau, 1987). Since both expressions are available, either can be 
used, but this comparison confirms that the faster Wu approximation 
is also reliable for gradient estimation, making it a viable option for 
computational efficiency. This highlights the trade-off between using 
the fast, approximate Green’s function and its gradients versus the exact 
but slower Green’s function and its derivatives.

Appendix C. Comparison of hydrodynamic sensitivities for direct 
and indirect BIE formulation

Hydrodynamic sensitivities computed via direct and indirect BIE 
formulation using surrogate Green’s function.
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Fig. C.18. Comparison of gradients computed by AD for direct and indirect BIE formulations for (a) heave added mass 𝜕𝐴
𝜕𝑟
|𝜔=1.03 rad/s (b) and heave damping 𝜕𝐵

𝜕𝑟
|𝜔=1.03 rad/s.
Fig. E.19. Mesh convergence study for both direct and indirect BEM formulations.

Appendix D. Custom rules for geometry and hydrostatics calcula-
tions

See Algorithm 1.
Algorithm 1 Custom reverse-mode differentiation rule (rrule) for mesh 
computations 𝑓mesh(𝑥)
1: Input: 𝑥 (input vector), 𝑑𝑦 (perturbation from the output)
2: Output: 𝑦 (function output), 𝑑𝑥 (gradient w.r.t. 𝑥)
3: Define 𝑓mesh(𝑥) external operation:
4: function rrule(𝑓mesh, 𝑥)
5:  𝑦 ← 𝑓mesh(𝑥) ⊳ Compute the primal value
6:  function pullback(dy)
7:  𝑑𝑓 ← NoTangent() ⊳ No tangent contribution
8:  𝑑𝑥 ←

𝜕𝑓mesh
𝜕𝑟

⊤
⋅ 𝛿𝑦 ⊳ Compute Vector-Jacobian product

9:  return (𝑑𝑓 , 𝑑𝑥)
10:  return (𝑦,pullback)

Appendix E. Mesh convergence

The mesh convergence study in Fig.  E.19 shows that more than 98 
panels are needed to ensure convergence for the coefficients for both 
the indirect and direct BIE methods. The figure also shows that the two 
methods have slightly different convergence behavior and converge 
to different values. It is often mentioned in the literature that these 
two formulations differ in their behavior, but the cause is not well 
explained, although theoretically they should be equivalent (Papillon 
et al., 2020).

Appendix F. Adjoint via method of Lagrange multipliers

Consider minimizing  (𝜙, 𝜃) with respect to 𝜙 and 𝜃, where 𝜙(𝜃) is 
defined implicitly by the equation
𝐷(𝜃)𝜙(𝜃) − 𝑆(𝜃)𝑏(𝜃) = 0.
16 
The minimizer will be a critical point of the Lagrangian

(𝜙, 𝜃, 𝜆) =  (𝜙, 𝜃) − 𝜆𝑇 (𝐷(𝜃)𝜙 − 𝑆(𝜃)𝑏(𝜃)) ,

which has derivatives
𝜕
𝜕𝜙

= 𝜕
𝜕𝜙

− 𝜆𝑇𝐷(𝜃)

𝜕
𝜕𝜃

= 𝜕
𝜕𝜃

+ 𝜆𝑇
(

𝑆 𝜕𝑏
𝜕𝜃

+ 𝜕𝑆
𝜕𝜃

𝑏 − 𝜕𝐷
𝜕𝜃

𝜙
)

𝜕
𝜕𝜆

= (𝐷𝜙 − 𝑆𝑏)𝑇 .

These equations define the necessary conditions for a critical point 
of the Lagrangian. Along the constraint set, the derivative of   with 
respect to 𝜃 is given by 𝜕𝜕𝜃 , where the Lagrange multipliers (𝜆) can be 
computed by setting 𝜕𝜕𝜙  to zero.

Appendix G. Optimization step by step: Adjoint vs finite differ-
ence

Algorithm 2 Adjoint Method for Optimization (using differentiable 
solver)

1. Input: Initial guess for design variables, 𝜃0
2. Output: Optimal design variables 𝜃∗
3. Solve the forward diffraction and/or radiation problem to get the 

objective function 𝑓 (𝜃)
4. Compute the adjoint variables 𝜆 based on the forward problem solution
5. Compute the gradient of the objective function with respect to 

optimization variables using adjoint variable
6. Update design variables using a gradient-based optimization algorithm.
7. Repeat steps 3 to 5 until convergence within tolerance

Algorithm 3 Finite Difference Method for Optimization (naive way 
using existing BEM solvers)

1. Input: Initial guess for optimization variables, 𝜃0
2. Output: Optimal variables 𝜃∗
3. Solve the forward diffraction and/or radiation problem to get the 

objective function 𝑓 (𝜃)
4. for each design variable 𝜃𝑖

(a) Perturb 𝜃𝑖 by a small amount 𝜖: 𝜃+𝑖 = 𝜃𝑖 + 𝜖

(b) Solve the forward problem again with perturbed variable: 𝑓 (𝜃+)
(c) Compute the finite difference gradient:

𝜕𝑓
𝜕𝜃𝑖

≈
𝑓 (𝜃+) − 𝑓 (𝜃)

𝜖

5. Update design variables using the computed gradients
6. Repeat steps 3 to 6 until convergence within tolerance
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