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A B S T R A C T

In this work, we present a novel MPC-integrated multiphase IB framework that can compute the optimal
energy-maximizing control force ‘‘on-the-fly’’ by dynamically interacting with a high-fidelity numerical wave
tank (NWT). The computational model closely mimics the working setup of the device at its site of operation.
Due to the requirement of solving a constrained optimization problem at each time step of the IB simulation, the
MPC algorithm utilizes a low-dimensional dynamical model of the device that is based on the linear potential
theory (LPT). The multiphase IB solver, on the other hand, is based on the high-dimensional fictitious domain
Brinkman penalization (FD/BP) method, which fully-resolves the hydrodynamic non-linearities associated with
the wave–structure interaction (WSI). A time-series forecasting auto-regressive model is implemented that
predicts wave heights (from the past NWT data) to estimate the future wave excitation/Froude–Krylov forces
for the MPC algorithm. Moreover, we also experiment with non-linear Froude–Krylov (NLFK) forces for the first
time in an MPC formulation. The NLFK forces are computed efficiently using a static Cartesian grid, in which
the WEC geometry is implicitly represented by a signed distance function. Under varying sea conditions, the
predictions of the MPC-integrated multiphase IB solver are compared to the widely popular LPT-based solvers.
In agitated sea conditions and/or under aggressive control, the LPT-based WSI solvers produce too optimistic
(and misleading) power output values. Overall, six WSI/MPC solver combinations are compared for a heaving
vertical cylinder to determine the reasons for discrepancies between high- and low-fidelity predictions. We also
determine the pathway of energy transfer from the waves to the power take-off (PTO) system and verify the
relationships using IB simulations. Additionally, three different sea states are simulated within the IB simulation
to test the adaptive capability of MPC for WECs. MPC is demonstrated to adapt to changing sea conditions
and find the optimal solution for each sea state.

The interaction between the distributed-memory parallel multiphase IB solver (written in C++) and the
serial MPC solver (written in MATLAB) is fully described to facilitate reproducibility. A bespoke communication
layer between the two solvers is developed, which can be easily modified by the WEC community to experiment
with other optimal controllers and computational fluid dynamics (CFD) solvers. All codes for this work are
made open-source for pedagogical and research purposes.
1. Introduction

Global warming is on the rise and is likely to breach the 1.5 ◦C limit
in the coming decades. It is imperative to switch to clean renewable
energy, including hydro, solar, and wind, in order to mitigate the
effects of climate change and meet the growing energy demands. A
combination of renewable energy technologies and existing energy
sources is necessary to accelerate the transition from carbon-based
sources. This can be achieved, in part, through ocean energy, which
remains a largely untapped energy resource. It has been demonstrated
that wave energy can be harvested, but commercial devices have
yet to be developed. This is mainly because wave energy converters
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(WEC) operate in harsh marine environments, which causes salt water
corrosion, marine growth, sub-system failure, and high maintenance
costs. The highly irregular nature of sea waves further complicates
device design and the controller’s task of optimizing performance. The
testing of expensive WEC devices and power take-off units (PTO) in
physical wave tanks is another challenge.

Numerical modeling of WECs is an efficient way to compare differ-
ent designs and control strategies. A widely popular modeling approach
in WEC research is the boundary element method (BEM) or its time-
domain variant, the Cummins equation (Cummins, 1962) based on the
linear potential theory (LPT) (Journée and Massie, 2001; Holthuijsen,
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2007) due to its simplicity, low computational cost, and flexibility
in simulating the wave structure interaction (WSI) of a variety of
WEC devices and control strategies. The linear models, which were
created originally to model large sea vessels, ships, and similar sea-
keeping applications, assume small body motion with respect to the
wave amplitudes and lengths. Additionally, inviscid, irrotational, and
incompressible flows are assumed. The BEM solvers perform exception-
ally well for relatively calm sea states with small wave amplitudes.
Nevertheless, the assumptions upon which linear methods are based are
severely challenged in conditions of agitated seas or aggressive control.
We demonstrate that, under these operating conditions, linear methods
overestimate the converter’s dynamics and power consumption. Addi-
tionally, BEM solvers use low-dimensional dynamical models that do
not provide insights into fluid dynamics resulting from fluid–structure
interaction (FSI), such as vortex shedding, wave breaking, and wave
overtopping.

In recent years, models based on the non-linear potential flow the-
ory (NLPT) have been proposed Davidson and Costello (2020), Penalba
et al. (2017). By simulating the actual free water surface and including
large body displacements, these models provide more accurate power
estimates of the device than LPT-based models. The NLPT-based models
are computationally expensive and are not easily applicable to the
model-based control of WECs. An acceptable compromise, which is
also sufficiently accurate, is the partially non-linear BEM model, which
accurately resolves the hydrodynamical interactions between waves
and devices (Merigaud et al., 2012; Retes et al., 2015; Giorgi et al.,
2016; Giorgi and Ringwood, 2017). This can be accomplished by mod-
ifying the wave excitation force in the linear time-domain Cummins
equation. In particular, the wave excitation or Froude–Krylov (FK)
force is computed by integrating the incident wave pressure force
over an instantaneous wetted surface area instead of assuming it is
stationary at its mean equilibrium position. In this work, the Cummins
equation-based WSI solver employing the non-linear Froude–Krylov
(NLFK) method is referred to as the BEM-NLFK solver, and its linear
counterpart as the BEM-LFK solver.

Although the NLPT-based models are more accurate than those
based on LPT, they still do not account for the viscous phenomenon
or other major hydrodynamical non-linearities, such as wave-breaking
and vortex shedding. Computational fluid dynamics (CFD) provides
the most accurate description of WSI of WECs (Penalba et al., 2017;
Agamloh et al., 2008; Ghasemi et al., 2017; Anbarsooz et al., 2014;
Dafnakis et al., 2020; Khedkar et al., 2021). Some groups have recently
begun performing control-integrated CFD simulations of WEC devices.
These studies, however, are mostly limited to classical control laws,
such as reactive control (also called proportional–derivative control) or
latching control (also called phase control or bang–bang control); see
for example Penalba et al. (2018), Agamloh et al. (2008), Giorgi and
Ringwood (2016), Windt et al. (2021). Agamloh et al. (2008) performed
CFD simulations of a cylindrical buoy, in which the PTO was modeled
as an ideal linear damper to generate a control force proportional to
the device velocity, that is, the derivative control law. In Agamloh
et al. (2008), the optimal damping coefficient was estimated offline
and kept constant throughout the simulation. To accurately capture
the motion of the body, their CFD technique remeshed the domain
at every time step. Giorgi and Ringwood (2016) used the latching
control strategy for a 2D heaving cylinder subject to regular waves
and compared BEM-LFK and CFD solvers. This is the first paper to
implement a latching control for a WEC device within a CFD frame-
work. The authors computed the optimal latching period offline using
a combination of analytical techniques and free decay tests of the
WEC device in the CFD-based numerical wave tank (NWT). According
to Giorgi and Ringwood (2016), the BEM-LFK solver overestimates
heave amplitude (and therefore power production) compared to the
CFD solver. Recently, Windt et al. (2021) compared the performance
of a heaving WEC using BEM-LFK and CFD solvers. The predictions
2

for three controllers were compared: (1) classical resistive (derivative)
control; (2) classical reactive (proportional–derivative) control; and
(3) moment-matching optimal control (Faedo et al., 2018). As for the
resistive and reactive controllers, their optimal coefficients/gains were
computed offline and kept constant throughout the simulation, while
the moment-matching controller used a pre-computed/offline optimal
control force sequence. Similarly to Giorgi et al. Windt et al. also found
that the BEM-LFK solver over-predicts power absorption of the WEC
device (for all three controllers).

Unlike previous control-integrated CFD studies that used pre-
computed controller gains or optimal control force sequences, this work
uses the model predictive control (MPC) algorithm to compute the opti-
mal energy-maximizing control force online. Due to its ability to handle
many types of device and PTO topologies, model predictive control
of WECs has been dubbed the ‘‘Tesla’’ of controllers (Previsic et al.,
2020). In our modeling approach, the MPC interacts with the CFD-
based NWT that sends the wave elevation and device dynamics data to
the controller, which then solves a constrained optimization problem to
find the optimal control force sequence. In the NWT, both regular and
irregular sea conditions are modeled. A time-series forecasting auto-
regressive model is implemented to predict wave heights (from past
NWT data) to estimate the future wave excitation forces required by
the MPC. Due to the requirement of solving a constrained optimization
problem at each time step of the CFD simulation, the MPC algorithm
is formulated using the computationally efficient LPT. Moreover, we
include NLFK forces for the first time in an MPC formulation. The
NLFK forces are computed efficiently using a static Cartesian grid,
in which the WEC geometry is implicitly represented by a signed
distance function. The predictions of the MPC-integrated CFD solver
are compared to the MPC-integrated BEM solvers under varying sea
conditions. For a heaving 3D vertical cylinder device, six WSI/MPC
solver combinations are compared. The current study is the first of
its kind and comprehensively examines the reasons for prediction
discrepancies between different solvers. We also determine the pathway
of energy transfer from the waves to the power take-off (PTO) system
and verify the relationships using IB simulations. Additionally, three
different sea states are simulated within a CFD simulation to test the
adaptive capability of MPC of WECs. MPC is demonstrated to adapt
to changing sea conditions and find the optimal solution for each sea
state.

Our CFD solver is based on the multiphase fictitious domain
Brinkman penalization (FD/BP) technique. FD/BP is a fully-Eulerian
version of the immersed boundary (IB) technique (Angot et al., 1999)
which solves a single set of equations in the entire domain, including
the air, water, and solid WEC regions. In comparison with body
conforming grid techniques that have previously been used to simu-
late WEC dynamics, the FD/BP method is computationally efficient,
since it eliminates the need to remesh the domain to account for
body motion. To accurately resolve the wave and WEC dynamics in
the specific regions of interest, we also make use of locally refined
Cartesian grids. As a result, the computation costs of 3D simulations
are low. For reproducibility of the technique, the interaction between
the distributed-memory parallel CFD solver (written in C++) and
the serial MPC solver (written in MATLAB) is fully described here.
Using the open-source PETSc library (Balay et al., 2021), a custom
communication layer is developed between the solvers. Furthermore,
the communication layer can be easily customized to experiment with
other optimal controllers and CFD solvers by the WEC community. We
have made all code freely available at https://github.com/IBAMR/cfd-
mpc-wecs.

The paper is structured as follows. In Table 1, we list the abbrevia-
tions that are frequently used throughout the paper. Section 2 discusses
the LPT-based dynamical models, MPC formulation with device con-
straints and regularization/penalization of the objective function, and
LFK/NLFK force estimation. In Section 3, we describe the numerical

wave tank setup to simulate regular and irregular sea conditions.
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Table 1
Frequently used abbreviations in the paper.
Abbreviation Entity

AR Auto-regression
BEM Boundary element method
CFD Computational fluid dynamics
FSI Fluid–structure interaction
LFK Linear Froude–Krylov
LPT Linear potential theory
MPC Model predictive control
NLFK Non-linear Froude–Krylov
NWT Numerical wave tank
PTO Power take-off
WEC Wave energy converter
WSI Wave–structure interaction

Fig. 1. Schematic representation of a 1 DOF heaving cylindrical wave energy converter
device.

Section 4 describes continuous equations of motion and their spatiotem-
poral discretizations. The section also deduces the pathway for energy
transfer from the waves to the PTO system. Section 6 discusses the
interactions between MPC and CFD codes. Section 7 simulates a bench-
marking example from the literature to validate our implementations of
the BEM and MPC solvers. The same section includes a motivation ex-
ample illustrating the stark differences between the power predictions
of the BEM and CFD solvers. We conduct a spatial and temporal grid
resolution study in Section 8 in order to determine the optimal mesh
spacing and time-step size for the IB solver. In the results and discussion
Section 9, a systematic comparison is conducted. Lastly, Section 10
summarizes the findings and draws the main conclusions of this study.

2. Dynamical model and model predictive control of WEC devices

Model-based optimal control is only possible when a dynamical
model describing the system/plant is available and is computationally
efficient. For WEC devices, the linear potential theory, also known
as the Airy wave theory, provides a dynamical model that is com-
putationally efficient. Thus, in this section we first outline the linear
dynamical model of the converter, which is well-suited for its optimal
control. Discussion includes pros and cons of the linear model and
improvements in terms of incorporating non-linear wave excitation
forces. Afterwards, model predictive control of WEC is presented using
the first-order hold method. We also discuss some of the key concepts of
a WEC’s MPC, including defining the cost function, device constraints,
regularizing/penalizing the cost function, and predicting future wave
excitation forces.
3

2.1. Linear potential theory-based WEC dynamical model

The WEC device considered in this study is a one degree of free-
dom (DOF) cylindrical point absorber.1 that heaves on the air–water
interface. A schematic representation of the device is shown in Fig. 1
Axisymmetric point absorbers are among the most common WEC-
types that mainly absorb wave energy due to their heaving motion.
Therefore, for such devices, motion in the other DOFs can be neglected
(or is constrained). If the amplitude of the motion of the device is
significantly smaller than the wave height, then according to the LPT,
the total force acting on the body is a linear sum of the hydrostatic
restoring force Fℎ, radiation force F𝑟, wave excitation (including wave
diffraction) force Fexc, and the viscous drag force F𝑣. The wave-induced
motion of the device is retarded by the controller to extract the electri-
cal energy. The WEC controller is typically embedded within a power
take-off unit, which exerts the actuator/control force FPTO on the
device.

Using the Newton’s second law of motion, the dynamics of the
device in the heave direction (𝑧) can be written as

𝑚𝑧̈(𝑡) = Fℎ(𝑡) + F𝑟(𝑡) + Fexc(𝑡) + F𝑣(𝑡) + FPTO(𝑡), (1)

in which 𝑚 is the mass of the cylinder, 𝑧(𝑡), 𝑧̇(𝑡), and 𝑧̈(𝑡) are the displace-
ment (from the mean equilibrium position), velocity, and acceleration
of the device in the heave direction, respectively.

The hydrostatic restoring force due to buoyancy is given by

Fℎ(𝑡) = −𝑘stiff ⋅ 𝑧(𝑡), (2)

in which 𝑘stiff is the hydrostatic stiffness coefficient. For a cylindrical
shaped body, the hydrostatic stiffness coefficient is given by 𝑘stiff =
𝜌𝑤𝑔𝜋𝑅2

cyl, in which 𝜌𝑤 is the density of water, 𝑔 is the acceleration
due to gravity, and 𝑅cyl is the radius of the cylinder. The length
of the vertical cylinder is 𝐿cyl. For a vertical heaving cylinder, 𝑘stiff
does not change with time because the water plane area of the body
does not change. A possible means of modeling nonlinear buoyancy
forces for floating bodies whose water plane areas differ is discussed in
Section 2.3.2. In addition, Giorgi et al. (2016), Giorgi and Ringwood
(2017) describe an analytical approach to model nonlinear buoyancy
forces.

The radiation force F𝑟(𝑡) in Eq. (1) is written as

F𝑟(𝑡) = −𝑚∞𝑧̈(𝑡) − ∫

𝑡

0
K𝑟(𝑡 − 𝜏)𝑧̇(𝜏) d𝜏. (3)

Here, 𝑚∞ is the added mass2 at infinite frequency. The radiation force
in Eq. (3) also includes a convolution integral of the radiation impulse
response function (RIRF) K𝑟(𝑡) with the velocity of the body. Physically,
RIRF explains how kinetic energy is dissipated by the water waves
produced by the oscillation of the body, which began its motion at time
𝑡 = 0 and continues to do so until current time 𝑡.

Excitation forces due to incident/incoming waves can be computed
on either a mean or instantaneous wetted surface of the device. In the
former case, excitation forces can be expressed as a convolution integral
between the wave impulse response function (WIRF) K𝑒(𝑡) and the
undisturbed wave surface elevation 𝜂wave(𝑡; 𝑥𝐵) at the device location
𝑥𝐵 :

Fexc(𝑡) = K𝑒 ∗ 𝜂wave = ∫

∞

−∞
K𝑒(𝜏)𝜂wave(𝑡 − 𝜏; 𝑥𝐵) d𝜏. (4)

From Eq. (4) it can be seen that Fexc(𝑡) is non-causal because future
surface elevations affect the current motion of the body. The non-
causality of WIRF has practical implications when it comes to the

1 Point absorber is a WEC device whose characteristic dimensions are much
smaller than the sea/ocean wavelength.

2 The added mass represents the additional inertia of the system due to the
motion of the surrounding fluid.
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implementation of MPC of WECs, since the wave elevations at the
device location must be forecasted. Discussion of wave prediction is
deferred to Section 2.3.1. In Section 2.3.2, we discuss the evaluation of
wave excitation forces using the instantaneous wetted surface.

Lastly, the viscous drag force acting on the body can be written
using the non-linear Morison equation (Sarpkaya, 1986) as

F𝑣(𝑡) = −1
2
𝜌𝑤𝐶𝑑𝜋𝑅

2
cyl|𝑧̇(𝑡)|𝑧̇(𝑡), (5)

in which 𝐶𝑑 is the coefficient of drag. Estimating an accurate value of
𝐶𝑑 for Eq. (5) is a non-trivial task. This work estimates 𝐶𝑑 by equating
the work done

(

∫ 𝑇0 F𝑣𝑧̇ d𝜏
)

by viscous forces on a freely decaying
cylinder that heaves on an air–water interface in a NWT with the work
done by viscous forces defined according to Eq. (5). We chose one
period of the damped oscillation for the integral.

Putting all terms together, the governing equation for the 1 DOF
heaving WEC reads as

𝑧̈(𝑡)+ 1
𝑚 + 𝑚∞ ∫

𝑡

0
K𝑟(𝑡−𝜏)𝑧̇(𝜏)d𝜏+

1
𝑚 + 𝑚∞

𝑘stiff ⋅𝑧(𝑡) = 𝑢(𝑡)+𝑣(𝑡)+
F𝑣(𝑡)

𝑚 + 𝑚∞
,

(6)

n which

(𝑡) =
FPTO(𝑡)
𝑚 + 𝑚∞

, 𝑣(𝑡) =
Fexc(𝑡)
𝑚 + 𝑚∞

.

To obtain Ke(𝑡) and 𝑚∞, we use the boundary element method software
ANSYS AQWA (ANSYS, 2014). The radiation convolution integral given
by Eq. (3) is approximated in a state-space form Yu and Falnes (1995)
with velocity of the device 𝑧̇(𝑡) as input and the approximated con-
volution integral as output. The state-space representation offers both
computational efficiency (Taghipour et al., 2008) and representational
convenience for matrix-based MPC control. Following Yu and Falnes
(1995), the state-space representation of the radiation convolution
integral reads as

𝒙̇𝒓(𝑡) = 𝐀𝒓𝒙𝒓(𝑡) + 𝐁𝒓𝑧̇(𝑡)

∫

𝑡

0
K𝑟(𝑡 − 𝜏)𝑧̇(𝜏)d𝜏 ≈ 𝐂𝒓𝒙𝒓(𝑡), (7)

in which 𝒙𝒓 ∈ R𝑛𝑟×1, 𝐀𝒓 ∈ R𝑛𝑟×𝑛𝑟 , 𝐁𝒓 ∈ R𝑛𝑟×1, 𝐂𝒓 ∈ R1×𝑛𝑟 , and 𝑛𝑟 = 3
s the approximation order of the radiation force used in this work.
he viscous drag force acting on the cylinder is linearized around the
urrent velocity of the cylinder 𝑧0(𝑡) and is approximated as

𝑣(𝑡) ≈ −𝛽 |
|

𝑧0|| 𝑧0 + 2𝛽 |
|

𝑧0|| 𝑧̇, (8)

n which 𝛽 = − 1
2𝜌𝑤𝐶𝑑𝜋𝑅

2
cyl. Using Eqs. (6)–(8), a continuous-time,

linear state-space form governing the dynamics of the WEC device is
obtained as

𝐗̇𝒄 (𝑡) = 𝐀𝒄𝐗𝒄 (𝑡) + 𝐁𝒄
(

𝑢𝑐 (𝑡) + 𝑣𝑐 (𝑡) − 𝛽 ||𝑧0|| 𝑧0
)

, (9)

𝐙𝒄 (𝑡) = 𝐂𝒄𝐗𝒄 (𝑡), (10)

in which the subscript 𝑐 denotes the continuous-time quantities and

𝐀𝒄 =

⎡

⎢

⎢

⎢

⎣

0 1 𝟎
− 𝑘stiff

(𝑚+𝑚∞)
2𝛽| ̇𝑧0(𝑡)|
(𝑚+𝑚∞) − 𝐂𝒓

(𝑚+𝑚∞)
0 𝐁𝒓 𝐀𝒓

⎤

⎥

⎥

⎥

⎦

∈ R(𝑛𝑟+2)×(𝑛𝑟+2),

𝐁𝒄 =
⎡

⎢

⎢

⎣

0
1
𝟎

⎤

⎥

⎥

⎦

∈ R(𝑛𝑟+2)×1,

𝐂𝒄 =
[

1 0 𝟎
0 1 𝟎

]

∈ R2×(𝑛𝑟+2), 𝐗𝒄 (𝑡) =
⎡

⎢

⎢

⎣

𝑧(𝑡)
𝑧̇(𝑡)
𝒙𝒓(𝑡)

⎤

⎥

⎥

⎦

∈ R(𝑛𝑟+2)×1,

𝐙𝒄 (𝑡) =
[

𝑧(𝑡)
𝑧̇(𝑡)

]

∈ R2×1.
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Let us note that except for the linearized drag coefficient, all entries of
matrices 𝐀𝒄 and 𝐁𝒄 are time invariant. Therefore, the dynamical system
described by Eqs. (9) and (10) is quasi linear time invariant (QLTI).
The dynamical system is reduced to an LTI one if the drag coefficient
is linearized around a fixed point, e.g., around the mean equilibrium
position of the device.

2.2. Model predictive control of WECs

Having discussed the control-oriented dynamical model of the WEC
device, we now focus our attention on model predictive control for
WECs. Its basic principles are straightforward. For each control se-
quence, the controller uses the dynamical model of the plant to predict
the plant’s future trajectory over a prediction horizon (time period) of
ℎ. Out of a large set of possible outcomes, MPC selects the control
sequence which extremizes (maximizes or minimizes) a predefined ob-
jective function. The extremization of the objective function is typically
achieved by solving an optimization problem numerically. The first
part/signal of the optimal control sequence is used to control the plant,
while the rest is discarded. This process is repeated again and again
by receding/moving the prediction horizon forward. With WECs, the
control objective is to maximize the device’s energy output. Thus, to
implement MPC for WECs, we require:

1. A discrete-time dynamical model of the device to predict the
future dynamics over a finite time horizon ℎ. In this work we
use the first order hold (FOH) method of Cretel et al. (2011)
to obtain the discrete-time model (Franklin et al., 1998) from
the continuous-time Eqs. (9) and (10). More specifically, if 𝛥𝑡
denotes the discrete time step size and 𝑘 ∈ N denotes the
(discrete) time index, then the current state 𝐗𝒅(𝑘) is advanced
to the next time level 𝐗𝒅(𝑘 + 1) as

𝐗𝒅(𝑘 + 1) = 𝐀𝒅𝐗𝒅(𝑘) + 𝐁𝒅𝛥𝑢𝑑 (𝑘 + 1) + 𝐅𝒅𝛥𝑣𝑑 (𝑘 + 1), (11)

𝐙𝒅(𝑘) = 𝐂𝒅𝐗𝒅(𝑘), (12)

in which the subscript 𝑑 denotes the discrete-time quantities and

𝐀𝒅 =
⎡

⎢

⎢

⎣

𝝓(𝛥𝑡) Υ Υ

0 1 0
0 0 1

⎤

⎥

⎥

⎦

∈ R(𝑛𝑟+4)×(𝑛𝑟+4),

𝐁𝒅 =
⎡

⎢

⎢

⎣

Λ

1
0

⎤

⎥

⎥

⎦

∈ R(𝑛𝑟+4)×1, 𝐅𝒅 =
⎡

⎢

⎢

⎣

Λ

0
1

⎤

⎥

⎥

⎦

∈ R(𝑛𝑟+4)×1,

𝐂𝒅 =
⎡

⎢

⎢

⎣

1 0 0 ... 0 0 0
0 1 0 ... 0 0 0
0 0 0 ... 0 1 0

⎤

⎥

⎥

⎦

∈ R3×(𝑛𝑟+4),

𝐗𝒅(𝑘) =
⎡

⎢

⎢

⎣

𝐗𝒄 (𝑘𝛥𝑡)
𝑢𝑑 (𝑘)
𝑣𝑑 (𝑘)

⎤

⎥

⎥

⎦

∈ R(𝑛𝑟+4)×1, 𝐙𝒅(𝑘) =
[

𝐙𝒄 (𝑘𝛥𝑡)
𝑢𝑑 (𝑘)

]

∈ R3×1. (13)

Here, 𝐗𝒄 and 𝐙𝒄 denote the possibility of initializing data from
a continuous-time solver at the beginning of the time step 𝑘.
For example, in many cases presented in this work, we use the
continuous-time multiphase IB solver that sends the device state
𝐗𝒄 (𝑘𝛥𝑡) to the MPC algorithm. In the matrices defined above, the
following definitions are used:

𝝓(𝛥𝑡) = 𝑒𝛥𝑡𝐀𝒄 ∈ R(𝑛𝑟+2)×(𝑛𝑟+2),

Υ = 𝐀−1
𝒄 (𝝓(𝛥𝑡) − 𝐈)𝐁𝒄 and Λ = 1

𝛥𝑡
𝐀−1
𝒄

(

Υ − 𝛥𝑡𝐁𝒄
)

∈ R(𝑛𝑟+2)×1,

𝑢𝑐 (𝑡) = 𝑢𝑑 (𝑘) +
( 𝑡 − 𝑘𝛥𝑡

𝛥𝑡

)

𝛥𝑢𝑑 (𝑘 + 1),

𝑣𝑐 (𝑡) = 𝑣𝑑 (𝑘) +
( 𝑡 − 𝑘𝛥𝑡

𝛥𝑡

)

𝛥𝑣𝑑 (𝑘 + 1),

𝛥𝑢𝑑 (𝑘 + 1) = 𝑢𝑑 (𝑘 + 1) − 𝑢𝑑 (𝑘), 𝛥𝑣𝑑 (𝑘 + 1) = 𝑣𝑑 (𝑘 + 1) − 𝑣𝑑 (𝑘).

(14)
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2. A receding strategy in which only the first part/signal of the
optimal control sequence is used for actuating the device, and
the prediction horizon is moved forward in time to compute
the next optimal control sequence (by taking into account the
latest device state and wave measurements). We use a prediction
horizon of one wave period in this work, unless stated otherwise.
Assuming that a 𝑁𝑝-step prediction horizon is employed, i.e.,
ℎ = 𝑁𝑝 ⋅ 𝛥𝑡𝑝, the output vector, 𝐙𝒅(𝑘), is obtained from
the discrete-time model by time marching Eqs. (11) and (12)
through the prediction horizon as Cretel et al. (2011), Franklin
et al. (1998)

𝐙𝒅(𝑘) = 𝐗𝒅(𝑘) +  𝒖 𝜟𝒖𝒅(𝑘) +  𝒗 𝜟𝒗𝒅(𝑘). (15)

In the equation above

𝐙𝒅(𝑘) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐙𝒅(𝑘 + 1|𝑘)
𝐙𝒅(𝑘 + 2|𝑘)

.

.
𝐙𝒅(𝑘 +𝑁𝑝|𝑘)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

∈ R(3𝑁𝑝×1),

 𝒖 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐂𝒅𝐁𝒅 0 ... 0
𝐂𝒅𝐀𝒅𝐁𝒅 𝐂𝒅𝐁𝒅 ... 0

. . . .

. . . .
𝐂𝒅𝐀

(𝑁𝑝−1)
𝒅 𝐁𝒅 𝐂𝒅𝐀

(𝑁𝑝−2)
𝒅 𝐁𝒅 ... 𝐂𝒅𝐁𝒅

⎤

⎥

⎥

⎥

⎥

⎥

⎦

∈ R3𝑁𝑝×𝑁𝑝 ,

 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐂𝒅𝐀𝒅
𝐂𝒅𝐀2

𝒅
.
.

𝐂𝒅𝐀
𝑁𝑝
𝒅

⎤

⎥

⎥

⎥

⎥

⎥

⎦

∈ R3𝑁𝑝×(𝑛𝑟+4),

 𝒗 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐂𝒅𝐅𝒅 0 ... 0
𝐂𝒅𝐀𝒅𝐅𝒅 𝐂𝒅𝐅𝒅 ... 0

. . . .

. . . .
𝐂𝒅𝐀

(𝑁𝑝−1)
𝒅 𝐅𝒅 𝐂𝒅𝐀

(𝑁𝑝−2)
𝒅 𝐅𝒅 ... 𝐂𝒅𝐅𝒅

⎤

⎥

⎥

⎥

⎥

⎥

⎦

∈ R3𝑁𝑝×𝑁𝑝

(16)

Section 2.3 describes the methods for obtaining the future wave
excitation force values stored in the vector 𝜟𝒗𝒅(𝑘). Note that the
(WSI) solver time step size 𝛥𝑡 is generally different from the MPC
time step size 𝛥𝑡𝑝. In many of the examples presented in this
work, we employ a continuous-time CFD solver with a much
smaller time step of 𝛥𝑡 than 𝛥𝑡𝑝 in order to accommodate the
convective Courant–Friedrichs–Levy (CFL) number restriction.

3. An objective function to determine the optimal control sequence
over the prediction horizon. Here, the goal is to maximize the
amount of energy absorbed by the WEC device, which can be
expressed by the relation

𝐽0 = −(𝑚 + 𝑚∞) ∫

𝑡+h

𝑡
𝑢(𝜏) ⋅ 𝑧̇(𝜏)d𝜏. (17)

The negative sign in the objective function indicates the flow of
energy from the device to the power grid. Using the trapezoidal
rule to evaluate the definite integral of Eq. (17), we obtain

𝐽0 = −(𝑚 + 𝑚∞)𝛥𝑡𝑝

×
⎛

⎜

⎜

⎝

1
2
𝑢𝑑 (𝑘)𝑧̇(𝑘) +

𝑘+𝑁𝑝−1
∑

𝑖=𝑘+1
𝑢𝑑 (𝑖|𝑘)𝑧̇(𝑖|𝑘)

+ 1
2
𝑢𝑑 (𝑘 +𝑁𝑝|𝑘)𝑧̇(𝑘 +𝑁𝑝|𝑘)

⎞

⎟

⎟

⎠

(18)

For purposes of extremization of 𝐽0, we can remove the constant
pre-factor and the known term at time level 𝑘 (𝑢 (𝑘)𝑧̇(𝑘)) from
5

𝑑

the discrete summation and redefine the objective function to be

𝐽1(𝑘) =
𝑘+𝑁𝑝−1
∑

𝑖=𝑘+1
𝑢𝑑 (𝑖|𝑘)𝑧̇(𝑖|𝑘) +

1
2
𝑢𝑑 (𝑘 +𝑁𝑝|𝑘)𝑧̇(𝑘 +𝑁𝑝|𝑘) (19)

Since the (constant) negative pre-factor −(𝑚 + 𝑚∞)𝛥𝑡𝑝 has been
dropped from 𝐽0 to obtain 𝐽1, the initial maximization problem
is now a minimization problem. Moreover, the objective function
can be expressed in terms of the output vector as follows:

𝐽1(𝑘) =
1
2
𝐙𝑇𝒅 (𝑘) 𝐐 𝐙𝒅(𝑘), (20)

in which

𝐐 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐌
⋱

𝐌
1
2
𝐌

⎤

⎥

⎥

⎥

⎥

⎦

∈ R3𝑁𝑝×3𝑁𝑝 and 𝐌 =

⎡

⎢

⎢

⎢

⎣

0 0 0
0 0 1
0 1 0

⎤

⎥

⎥

⎥

⎦

∈ R3×3

By substituting Eq. (15) into Eq. (20) and expanding the terms,
we get

𝐽1 =
1
2
𝜟𝒖𝒅𝑇 𝑇

𝒖𝐐 𝒖𝜟𝒖𝒅 + 𝜟𝒖𝒅𝑇 𝑇
𝒖𝐐(𝐗𝒅 +  𝒗𝜟𝒗𝒅)

+ 1
2
(𝐗𝒅 +  𝒗𝜟𝒗𝒅)𝑇𝐐(𝐗𝒅 +  𝒗𝜟𝒗𝒅) (21)

The minimization of 𝐽1 with respect to the unknown control
sequence 𝜟𝒖𝒅 yields the optimal control 𝜟𝒖𝒅⋆ for the entire
prediction horizon. Observe that the last term of Eq. (21) does
not contribute to the evaluation of 𝜟𝒖𝒅⋆ and can be safely
dropped. Therefore, the objective or in this case the cost function
to minimize reads as

𝐽1 =
1
2
𝜟𝒖𝒅𝑇 𝑇

𝒖𝐐 𝒖𝜟𝒖𝒅 + 𝜟𝒖𝒅𝑇 𝑇
𝒖𝐐(𝐗𝒅 +  𝒗𝜟𝒗𝒅). (22)

The cost function 𝐽1 is quadratic in 𝜟𝒖𝒅 and is assumed to be
positive semi-definite. We use the quadratic programming (QP)
methods available in MATLAB (MATLAB, 2019) to obtain the
optimal control sequence 𝜟𝒖𝒅⋆. The objective functions 𝐽0 and
𝐽1 assume that the PTO is ideal with no mechanical to electrical
conversion losses. Thus, the conversion efficiency 𝜀 is taken to
be 100%, i.e., 𝜀 = 1. Readers are referred to Tona et al. (2015),
who formulated a MPC problem with 𝜀 < 1 and investigated how
a non-ideal PTO affects device dynamics and absorbed power.3

.2.1. Including device/path constraints in MPC
In general, if the cost function 𝐽1 is minimized as is, the device

isplacement, velocity, or actuator force will exceed the physical limits.
n unconstrained control force could, for instance, cause the device to
vershoot the free surface and slam into water with large impact forces.
his can be avoided by using the following path/device constraints in
PC (Cretel et al., 2011; Wang, 2009; Faedo et al., 2017):

min ≤ 𝑧(𝑘) ≤ 𝑧max,

̇min ≤ 𝑧̇(𝑘) ≤ 𝑧̇max,

𝑢min ≤ 𝑢(𝑘) ≤ 𝑢max. (23)

Constraints written in Eq. (23) are first expressed in the form 𝐙min
𝒅 ≤

𝐙𝒅 ≤ 𝐙max
𝒅 , which is then recast as 𝐙min

𝒅 ≤ 𝐗𝒅(𝑘) +  𝒖 𝜟𝒖𝒅(𝑘) +
 𝒗 𝜟𝒗𝒅(𝑘) ≤ 𝐙max

𝒅 using Eq. (15). As both 𝐗𝒅(𝑘) and 𝜟𝒗𝒅(𝑘) are known
nputs to the quadratic program, the latter form of the inequality allows
xtraction of the constraint relationship for the variable of interest 𝜟𝒖𝒅 .

3 Although we have taken 𝜀 = 1 for all the cases in this work, our code
(available at https://github.com/IBAMR/cfd-mpc-wecs) can also simulate the
controlled dynamics of the WEC device with 𝜀 < 1. The non-ideal PTO problem
is handled separately because it requires a sequential quadratic programming
solver.

https://github.com/IBAMR/cfd-mpc-wecs
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2.2.2. Regularizing the MPC objective function
The cost function 𝐽1 of Eq. (22) is further modified by adding two

additional quadratic penalty terms:

𝐽2(𝑘) = 𝐽1(𝑘) + 𝜆1‖𝜟𝒖𝒅‖22, (24)

𝐽3(𝑘) = 𝐽2(𝑘) + 𝜆2‖𝒖‖22. (25)

Adding the 𝜆1‖𝜟𝒖𝒅‖22 term to 𝐽1 reduces the aggressiveness of the
controller, i.e., 𝐽2 results in smoother control force variation over time
than the original cost function 𝐽1 (Cretel et al., 2011). The non-negative
parameter 𝜆1 in Eq. (24) has the dimensions of time. It is important
to keep 𝜆1 positive in order to maintain or enhance 𝐽1’s convexity. A
smaller magnitude of 𝜆1 ensures that 𝐽1 and 𝐽2 are not too far apart.

𝐽2 is further modified to 𝐽3 by adding the quadratic penalty term
𝜆2‖𝒖‖22 (Eq. (25)). The objective is to reduce the flow of power from
the grid to the device, referred to as reactive power in wave energy
literature (Korde and Ringwood, 2016; Faedo et al., 2017). Even though
reactive power aligns the device velocity with wave excitation forces
to provide a higher overall energy output, it can lead to large in-
stantaneous positive and negative powers in the PTO unit (Korde and
Ringwood, 2016). The two-way power flow complicates the design of a
PTO system and increases its cost. The goal of 𝐽3 is to enforce the one-
way power flow condition in the PTO machinery (Cretel et al., 2011).
As with 𝜆1, 𝜆2 should also be positive, smaller in magnitude, and has
the dimensions of time.

2.3. Linear potential theory-based wave excitation/Froude–Krylov forces

The wave excitation forces acting on the body according to the
LPT are the sum of effects coming from undisturbed incident waves
(assuming that the body is removed from the path of the waves) and
diffracted waves (which assumes the body is held stationary at its mean
position). Wave excitation forces are also known as Froude–Krylov (FK)
forces. FK forces can be computed using the undisturbed flow and
diffracted wave potentials, 𝜙𝐼 and 𝜙𝐷, respectively, as

𝐅FK(𝑡) = 𝐅𝐼 (𝑡) + 𝐅𝐷(𝑡) = −∫𝑆𝑏
(𝑝𝐼 (𝑡) + 𝑝𝐷(𝑡)) 𝐧 d𝑆𝑏, (26)

in which 𝑆𝑏 is the wetted surface area of the body, 𝐧 is the unit outward
normal to the surface, 𝑝𝐼 = −𝜌𝑤

𝜕𝜙𝐼
𝜕𝑡 is the pressure due to incident

waves, and 𝑝𝐷 = −𝜌𝑤
𝜕𝜙𝐷
𝜕𝑡 is the pressure due to diffracted waves. It

should be noted that the hydrostatic pressure 𝑝𝐻 (𝑡) = −𝜌𝑤𝑔𝑧(𝑡) and the
radiation pressure 𝑝𝑅(𝑡) = 𝜌𝑤

𝜕𝜙𝑅
𝜕𝑡 are accounted for in the calculations

of Fℎ(𝑡) and F𝑟(𝑡), respectively in Eq. (1). Additionally, in Eq. (1), Fexc
is the 𝑧-component of 𝐅FK.

2.3.1. Linear Froude–Krylov (LFK) forces: Up-wave measurements and
future wave predictions

If the pressure integral of Eq. (26) is evaluated while the body is
stationary at its mean equilibrium position, the Froude–Krylov forces
are linear with respect to free surface elevation and are called linear
Froude–Krylov forces (LFK). The LFK forces can be computed more
efficiently as a convolution integral between the wave impulse response
function (WIRF) and water surface elevation at the device location
𝑥𝐵 : Fexc(𝑡) = ∫ ∞

−∞ K𝑒(𝜏)𝜂wave(𝑡 − 𝜏; 𝑥𝐵)d𝜏 (repeated from Eq. (4) for
convenience). Assuming that the sea surface is calm prior to the start
of the simulation at 𝑡 = 0, i.e., 𝜂wave(𝑡 < 0; ∀𝑥) = 0, the upper limit of the
convolution integral K𝑒 ∗ 𝜂wave can be terminated at the current time 𝑡.

In Fig. 2 we show the non-causal WIRF Ke(𝑡) as a black line. WIRF is
the inverse Fourier transform of the frequency-domain excitation force
F(𝜔) = F̂𝐼 (𝜔) + F̂𝐷(𝜔) that we obtain using ANSYS AQWA software:

K𝑒(𝑡) =
1
2𝜋 ∫

∞

−∞
F̂(𝜔)𝑒(𝑖𝜔𝑡) d𝜔. (27)

In practice, the incident wave forces F̂𝐼 and the diffracted wave forces
F can only be computed for discrete frequencies {𝜔 }, and a suitable
6

𝐷 𝑖
Fig. 2. Wave impulse response function (WIRF) for a vertical cylindrical in heave
motion. The original WIRF K𝑒(𝑡) is shown in black and the right shifted WIRF K𝑒𝑠(𝑡) is
shown in red. The dashed part of the curves represents the truncated region where the
WIRF is close to zero.

numerical interpolation is required to evaluate the inverse Fourier
transform. From Fig. 2, it can be seen that when 𝑡 > 𝑡𝑓1 or 𝑡 < −|𝑡𝑓2|,
K𝑒(𝑡) → 0. Truncated K𝑒(𝑡) is shown as a dashed line in Fig. 2. The
finite positive time interval where Ke(𝑡) ≠ 0 requires 𝜂wave data only
until 𝑡− 𝑡𝑓1 in the past to determine the convolution integral. Also, the
finite negative time interval where Ke(𝑡) ≠ 0 implies that 𝜂wave data is
only required up to 𝑡+ |𝑡𝑓2| into the future. The convolution integral of
Eq. (4) can therefore be performed efficiently as

Fexc(𝑡) = ∫

𝑡𝑓

−𝑡𝑓
K𝑒(𝜏)𝜂wave(𝑡 − 𝜏; 𝑥𝐵) d𝜏, (28)

in which 𝑡𝑓 = max
[

𝑡𝑓1, |𝑡𝑓2|
]

. It follows that (with reasonable accuracy)
Fexc at the current time 𝑡 can be computed if the wave surface elevation
data at the device location is available from 𝑡 − 𝑡𝑓 to 𝑡 + 𝑡𝑓 .

It is unrealistic to measure the undisturbed wave elevation at the
device location since the incident waves cannot pass through the de-
vice. Furthermore, the waves near the body are altered by FSI and do
not remain undisturbed in reality. Therefore, we need to find another
way to estimate 𝜂wave at the device location 𝑥𝐵 . We can take advantage
of the fact that wave propagation is a hyperbolic phenomenon, which
means that waves passing an up-wave location 𝑥𝐴 will arrive at the
device at a later time. In order to locate a convenient up-wave location,
we change the variable 𝜏 to 𝜏′ − 𝑡𝑓 in Eq. (28):

Fexc(𝑡) = ∫

𝑡𝑓

−𝑡𝑓
K𝑒(𝜏)𝜂wave(𝑡 − 𝜏; 𝑥𝐵) d𝜏

= ∫

2𝑡𝑓

0
K𝑒(𝜏′ − 𝑡𝑓 )𝜂wave(𝑡 + 𝑡𝑓 − 𝜏′; 𝑥𝐵) d𝜏′

= ∫

2𝑡𝑓

0
K𝑒𝑠(𝜏′)𝜂wave(𝑡 − 𝜏′; 𝑥𝐴) d𝜏′.

Here, K𝑒𝑠 is the shifted WIRF obtained by shifting the original WIRF
to the right side on the time-axis by an amount 𝑡𝑓 . Symbolically,
the time shift can be expressed by the relation K𝑒𝑠(𝑡) = K𝑒(𝑡 − 𝑡𝑓 ).
The shifted WIRF is shown as a red line in Fig. 2. For the integral
transformation above, we defined the up-wave location 𝑥𝐴 so that the
waves leaving this location reach the device after an additional time of
𝑡𝑓 . Therefore, the water surface elevation at the device location at the
present time 𝑡 is related to the up-wave elevation at the previous time
𝑡 − 𝑡𝑓 , i.e., 𝜂(𝑡 + 𝑡𝑓 ; 𝑥𝐵) = 𝜂(𝑡; 𝑥𝐴). The distance of the up-wave point
from the device is calculated by using the wave velocity (𝜔∕𝜅) as

𝑑𝑓 = 𝜔
𝜅

⋅ 𝑡𝑓 , (29)

in which 𝜔 is the wave frequency and 𝜅 is the wave number. In our
CFD model, 𝑥 is chosen to be a point in the wave generation zone. See
𝐴
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Fig. 3. NLFK force calculation using implicit signed distance functions 𝜎 and 𝜓 . (a) A 3D schematic showing the instantaneous wetted surface area 𝑆𝑏(𝑡) of a vertical heaving
cylinder interacting with the undulatory water surface. (b) A 2D schematic showing the stair-step representation of the immersed body on the Cartesian grid and the identification
of the grid faces for evaluating the pressure integral using the body SDF 𝜓 .
Fig. 7 for a visual representation. In summary, the convolution integral
of Eq. (28) is equivalent to

Fexc(𝑡) = ∫

2𝑡𝑓

0
K𝑒𝑠(𝜏)𝜂wave(𝑡 − 𝜏; 𝑥𝐴) d𝜏. (30)

It can be seen from Eq. (30) that the wave excitation forces acting
on the device at the present instant 𝑡 can be calculated from the 𝜂wave
data recorded at the up-wave location between the period [𝑡 − 2𝑡𝑓 , 𝑡]
for which no prediction or time-series estimation is needed. Wave
forecasting is still necessary for MPC even if all the surface elevation
data is obtained/measured at a nearby up-wave location. The reason is
that for a prediction horizon of ℎ, FK forces acting on the device are
necessary between the period [𝑡, 𝑡+ ℎ] (to fill the entries of the vector
𝜟𝒗𝒅 in Eq. (15) or Eq. (22)). Accordingly, at the up-wave location 𝑥𝐴,
𝜂wave data is required in the interval [𝑡 − 2𝑡𝑓 , 𝑡 + ℎ]. In this study,
we use the auto-regressive (AR) model for time series forecasting, one
of the many techniques available to predict the future behavior of a
time-series based on its past behavior. Detailed information about the
implementation of an AR model for wave forecasting can be found in
the thesis by Gieske (2007). A typical AR model is calibrated for a
particular sea state and requires (manual) re-tuning to make accurate
predictions in a different sea state. Section 9.4 describes the capability
of MPC to adapt to changing sea states in which different AR models are
used for different sea states. Considering the importance of wave exci-
tation force prediction, other methods of prediction are also described
in the literature, including the recursive least squares filter (Ling and
Batten, 2015), the Kalman and extended Kalman filters (Bonfanti et al.,
2020; Zou and Abdelkhalik, 2020; Garcia-Abril et al., 2017; Fusco and
Ringwood, 2010; Hals et al., 2010), and neural networks (Bonfanti
et al., 2020; Fusco and Ringwood, 2010; Li et al., 2019). In practice,
some of these techniques may be easier to implement than AR.

2.3.2. Non-linear Froude–Krylov (NLFK) forces: A novel static grid ap-
proach based on implicit surfaces

A significant amount of modeling accuracy can be achieved by
considering the FK forces to be non-linear. The NLFK force is calculated
by integrating the incident wave pressure 𝑝𝐼 (𝑡) over the instantaneous
wetted surface area 𝑆𝑏(𝑡) of the body; see Eq. (26) and Fig. 3(a). The
computation of NLFK forces for practical control of WECs is considered
prohibitively expensive in the wave energy literature. It is because
such forces are typically computed using dynamic meshes, in which
the computational domain is re-meshed to account for the relative mo-
tion between the body and the waves. Nevertheless, computationally-
efficient approaches have recently been developed for calculating NLFK
forces. In Giorgi and Ringwood (2017), Giorgi et al. presented an
analytical method for evaluating the pressure integral for axisymmetric
WECs. Though the method described in Giorgi and Ringwood (2017)
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is computationally attractive, it can only be applied to WEC devices
that are geometrically solids of revolution. An alternative approach
is presented in this section based upon the level set/signed distance
function (SDF) that can effectively model the instantaneous wave–
structure interaction of WECs on a static Cartesian grid. Moreover,
the proposed technique can be applied to arbitrarily complex-shaped
bodies because the SDF can be computed using efficient computational
geometry algorithms within a narrow band of grid cells (Bærentzen
and Aanaes, 2005). Further, the level-set methodology is an embar-
rassingly parallel algorithm that is amenable to both distributed- and
shared-memory parallelism.

First, we define a rectangular box region  = 𝑤(𝑡) ∪ 𝑎(𝑡)
around the WEC, which is discretized on a static Cartesian grid with
rectangular cells. The grid cells are enumerated using the integer tuple
(𝑖, 𝑗, 𝑘). The static region  should be a minimal one, covering only
the wave amplitude and maximum displacement of the body expected
in the simulation for computational efficiency. Next, define two level
set functions 𝜓(𝐱, 𝑡) and 𝜎(𝐱, 𝑡) over the entire box 𝐱 ∈  that describe
the signed distance to the WEC surface and the undulatory air–water
interface, respectively. We take 𝜓 to be negative (positive) inside (out-
side) the body and 𝜎 to be negative (positive) inside the water region
𝑤(𝑡) (air region 𝑎(𝑡)). Zero-contours of 𝜓 and 𝜎 implicitly define
the WEC-fluid and the air–water interface, respectively. Section 4.2
provides more details on level set methodology, where we describe our
multiphase CFD solver that is also based on the level set technique. The
motion of the waves and the device is captured by redefining SDFs on
the static grid,4 which completely eliminates the need to re-mesh the
computational domain . The wave incident pressure 𝑝𝐼 is defined on
the cell centers 𝐱𝑖,𝑗,𝑘 of the static Cartesian grid in order to compute the
NLFK force as

𝑝𝐼 (𝐱𝑖,𝑗,𝑘, 𝑡) = 0, 𝜎(𝐱, 𝑡) > 0,

𝑝𝐼 (𝐱𝑖,𝑗,𝑘, 𝑡) = 𝜌𝑤𝑔

2
cosh(𝜅(𝑑 + 𝜎)) ⋅ cos(𝜅𝑥 − 𝜔𝑡)

cosh(𝜅𝑑)
, 𝜎(𝐱, 𝑡) ≤ 0, (31)

in which  is the wave height, 𝜅 is the wavenumber, 𝑑 is the depth of
water above the sea floor, and 𝜔 is the wave frequency. The integral of
𝑝𝐼 over the wetted surface can be performed numerically as

𝐅𝐼 (𝑡) =
∑

𝑓
−𝑝𝐼 (𝐱𝑓 , 𝑡)𝐧𝑓 𝛥𝐴𝑓 . (32)

The discrete summation in Eq. (32) is carried over the Cartesian grid
faces that provide a stair-step representation of the body on the Carte-
sian grid. This is shown in Fig. 3(b). The set of the Cartesian grid faces

4 SDF of a vertical cylinder can be prescribed analytically using constructive
solid geometry operators, such as min/max acting on SDFs of primitive shapes.
SDF of the air–water interface can also be prescribed analytically from the
known surface elevation function 𝜂 (𝐱, 𝑡).
wave
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𝑓 can be easily identified by examining the sign change of 𝜎. The 𝐧𝑓
and 𝛥𝐴𝑓 variables in the equation above represent the unit normal
vector and the area of the cell face, respectively. The incident wave
pressure 𝑝𝐼 (𝐱𝑓 , 𝑡) on the cell face (where 𝜎 is taken to be zero) is the
weighted average of the neighboring cell center pressures, where the
distance to the WEC surface |𝜎(𝐱𝑖,𝑗,𝑘, 𝑡)| is used as the weights. In the
heave direction, calculating F𝐼 (𝑡) requires summing only over 𝑧-faces.

The diffraction component of NLFK forces remains linear. This is
due to the assumption that the body is stationary when computing the
diffraction forces. Similarly to LFK forces, the 𝑧-component of 𝐅𝐷(𝑡) can
be computed as a convolution integral between the diffraction impulse
response function (DIRF) K𝑑 (𝑡) in the heave direction and the water
surface elevation as

F𝐷(𝑡) = 𝐾𝑑 ∗ 𝜂wave = ∫

∞

−∞
K𝑑 (𝜏)𝜂wave(𝑡 − 𝜏) d𝜏

= ∫

𝑡𝑓

−𝑡𝑓
K𝑑 (𝜏)𝜂wave(𝑡 − 𝜏; 𝑥𝐵) d𝜏. (33)

DIRF is the inverse Fourier transform of frequency-domain diffraction
force data 𝐹𝐷(𝜔) that we obtain using ANSYS AQWA.

We remark that the technique described in this section can be
easily modified to model nonlinear buoyancy forces for varying cross-
sectional WEC devices. This is achieved by replacing 𝑝𝐼 by 𝑝𝐻 =
−𝜌𝑤𝑔𝑧(𝑡) in Eq. (32).

3. Wave dynamics

This section describes the Stokes theory of regular and irregular
water waves.

3.1. Regular waves

First-order Stokes waves, or regular waves, are simple harmonic
waves of height , time period  , and wavelength 𝜆 (Journée and
Massie, 2001; Holthuijsen, 2007). Assuming that the waves travel in
the positive 𝑥-direction, the wave elevation 𝜂(𝑥, 𝑡) from the still water
surface at a depth of 𝑑 above the sea floor is

𝜂(𝑥, 𝑡) = 
2

cos(𝜅𝑥 − 𝜔𝑡), (34)

n which 𝜅 = 2𝜋∕𝜆 is the wavenumber and 𝜔 = 2𝜋∕ is the angular
ave frequency. The first-order Stokes wave satisfies the dispersion

elation given by
2 = 𝑔𝜅 tanh (𝜅𝑑), (35)

hich relates the wave frequency 𝜔 to wavenumber 𝜅 and water depth
. Eq. (35) is a transcendental equation that requires an iterative
rocedure to calculate 𝜅 for given 𝜔, or vice versa. Instead, we use an
xplicit relationship between these quantities that is accurate enough
or practical purposes at all water depths (Fenton, 1988):

𝑑 ≈
𝛤 + 𝛽2 (cosh 𝛽)−2

tanh 𝛽 + 𝛽 (cosh 𝛽)−2
, (36)

in which 𝛽 = 𝛤 (tanh𝛤 )−
1
2 and 𝛤 = 𝜔2𝑑∕𝑔.

As the waves travel along the ocean or sea surface, they carry kinetic
and potential energy — this energy is partially absorbed by the WEC
device. The time-averaged wave power per unit crest width carried by
the regular waves in the direction of propagation is given by Journée
and Massie (2001)

𝑃wave =
1
8
𝜌w𝑔2𝑐𝑔 , (37)

in which 𝑐𝑔 is the group velocity of the waves, i.e., the velocity with
hich wave energy is transported and it is given by the relation

𝑔 =
1 𝜆

(

1 + 2𝜅𝑑
)

. (38)
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2  sinh(2𝜅𝑑)
n the deep water limit, where 𝑑 > 𝜆∕2 and 𝜅𝑑 → ∞, Eqs. (35) and (38)
ecome

2 = 𝑔𝜅 or 𝜆 =
𝑔 2

2𝜋
and 𝑐𝑔 =

𝜆
2

. (deep water limit)

(39)

Substituting Eq. (39) into Eq. (37), the wave power per unit crest width
in the deep water limit is expressed as

𝑃wave =
𝜌𝑤𝑔22

32𝜋
≈ 2 kW/m, (deep water limit) (40)

in which the constant numerical factor 𝜌𝑤𝑔2∕32𝜋 ≈ 103 when all
quantities are evaluated in SI units.

3.2. Irregular waves

A realistic sea state consists of irregular waves. Mathematically,
an irregular wave can be described as a linear superposition of a
large number of (first-order) regular wave components. Using the su-
perposition principle, the sea surface elevation can be expressed as

𝜂(𝑥, 𝑡) =
𝑁𝑤
∑

𝑖=1
𝑎𝑖 cos(𝜅𝑖𝑥 − 𝜔𝑖𝑡 + 𝜃𝑖), (41)

n which 𝑁𝑤 is the number of (regular) wave components. Each wave
omponent has its own amplitude 𝑎𝑖 = 𝑖∕2, angular frequency 𝜔𝑖,
avenumber 𝜅𝑖, and a random phase 𝜃𝑖. Each component also satisfies

he dispersion relation between 𝜅𝑖 and 𝜔𝑖 given by Eq. (35). The random
hase 𝜃𝑖 follows the uniform distribution in the interval [0, 2𝜋].

The linear superposition of first-order waves implies that the total
nergy carried by the irregular wave is the sum of wave energy carried
y the individual wave components. To describe the energy content
f irregular waves, a continuous wave spectral density function 𝑆(𝜔)
s used, wherein the number of wave components 𝑁𝑤 tend to infinity
nd an infinitesimal small frequency bandwidth d𝜔 separates the wave
omponents. The area under the 𝑆(𝜔) versus 𝜔 curve gives the total
nergy of the irregular wave, modulo the factor 𝜌𝑤𝑔. Discretely, the
ave frequencies are chosen at an equal interval of 𝛥𝜔 and the wave

pectral density function 𝑆(𝜔) approaches zero for frequencies outside
he narrow bandwidth. In this work, we consider only singly-peaked
ave spectra with 𝑆(𝜔) peaking at a particular frequency 𝜔𝑝. Each wave

omponent of an irregular wave has a wave amplitude that is related
o the spectral density function by

𝑖 =
√

2 ⋅ 𝑆(𝜔𝑖) ⋅ 𝛥𝜔. (42)

We consider the two-parameter Bretschneider spectrum (Journée
and Massie, 2001), which is suited for open seas where our WEC device
is considered to be located. Specifically, the Bretschneider spectrum
𝑆(𝜔) is based on the significant wave height 𝑠 and the peak wave
time period 𝑝 and it reads as

𝑆(𝜔) =
173 ⋅2

𝑠

 4
𝑝

⋅ 𝜔−5 ⋅ exp

(

−692
 4
𝑝

⋅ 𝜔−4

)

. (43)

The peak wave time period 𝑝 is the time period with the highest
spectral density; see Fig. 4.

For irregular waves the mean wave power per unit crest width is
calculated as

𝑃wave = 𝜌𝑤𝑔
(

∫

∞

0
𝑆(𝜔) d𝜔

)

𝑐𝑔 ≈ 𝜌𝑤𝑔

(𝑁𝑤
∑

𝑖=1

1
2
𝑎2𝑖

)

𝑐𝑔 (44)

in which the group velocity 𝑐𝑔 is calculated from Eq. (38) using the
significant wavelength and peak time period of the spectrum. In the
deep water limit, Eq. (44) becomes

𝑃 ≈ 0.492 kW/m. (deep water limit) (45)
wave s 𝑝
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Fig. 4. The Bretschneider wave spectrum obtained using 𝑠 = 0.15 m and 𝑝 = 1.7475
s (𝜔𝑝 = 2𝜋∕𝑝 = 3.5955 rad/s).

4. Numerical model based on the incompressible Navier–Stokes
equations

This section begins with a description of continuous equations of
motion solved by the fictitious domain Brinkman penalization (FD/BP)
method (Bhalla et al., 2020; Khedkar et al., 2021). Following this, we
discuss the multiphase interface tracking technique. Afterwards, the
spatiotemporal discretization, the overall solution methodology, and
the time-stepping scheme are briefly discussed. Next, the numerical
wave tank setup for performing fully-resolved and control-informed
multiphase WSI simulations is discussed. A time-averaged kinetic en-
ergy equation is also derived to describe how power transfers from
waves to the PTO system.

4.1. Continuous equations of motion

Let 𝛺 ⊂ R𝑑 with 𝑑 = 3 represent a fixed three-dimensional region
in space. The incompressible Navier–Stokes (INS) equations govern the
dynamics of the coupled multiphase fluid–structure system occupying
this domain:
𝜕𝜌𝐮(𝐱, 𝑡)

𝜕𝑡
+ ∇ ⋅ (𝜌𝐮(𝐱, 𝑡)⊗ 𝐮(𝐱, 𝑡)) = −∇𝑝(𝐱, 𝑡)

+ ∇ ⋅
[

𝜇
(

∇𝐮(𝐱, 𝑡) + ∇𝐮(𝐱, 𝑡)𝑇
)]

+ 𝜌𝐠 + 𝐟𝑐 (𝐱, 𝑡), (46)

∇ ⋅ 𝐮(𝐱, 𝑡) = 0, (47)

which describe the momentum and incompressibility of a fluid with
velocity 𝐮(𝐱, 𝑡) and pressure 𝑝(𝐱, 𝑡) in an Eulerian coordinate system
𝐱 = (𝑥, 𝑦, 𝑧) ∈ 𝛺. Eqs. (46) and (47) are written for the entire
computational domain 𝛺. The domain 𝛺 is further decomposed into
two non-overlapping regions, one occupied by the fluid 𝛺𝑓 (𝑡) ⊂ 𝛺 and
the other by an immersed body 𝛺𝑏(𝑡) ⊂ 𝛺, so that 𝛺 = 𝛺𝑓 (𝑡)∪𝛺𝑏(𝑡). The
term 𝐟𝑐 (𝐱, 𝑡) is the constraint force (density) that vanishes outside 𝛺𝑏(𝑡)
and ensures a rigid body velocity 𝐮𝑏(𝐱, 𝑡) within the solid. The density
and viscosity fields vary spatiotemporally and are denoted 𝜌(𝐱, 𝑡) and
𝜇(𝐱, 𝑡), respectively. The location of the solid body is tracked using
an indicator function 𝜒(𝐱, 𝑡), which is non-zero only within 𝛺𝑏(𝑡). The
acceleration due to gravity is directed towards the negative 𝑧-direction:
𝐠 = (0, 0,−𝑔). Fig. 6 shows the schematic representation of the domain
occupied by the three (air, water, and solid) phases.

The immersed body is treated as a porous region with vanishing
permeability 𝜅𝑝 ≪ 1. The Brinkman penalization constraint force is
given by

𝐟𝑐 (𝐱, 𝑡) =
𝜒(𝐱, 𝑡) (𝐮𝑏(𝐱, 𝑡) − 𝐮(𝐱, 𝑡)

)

. (48)
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𝜅𝑝
The rigid body velocity 𝐮𝑏(𝐱, 𝑡) in the solid region 𝛺𝑏(𝑡) is determined
by the combined actions of the hydrodynamic force (estimated by the
multiphase flow solver) and the control force FPTO (estimated by the
MPC). Section 4.5.5 explains this.

4.2. Interface tracking

Here, we briefly describe the interface tracking method for captur-
ing the air–water and fluid–solid interfaces; details on the implemen-
tation of the technique can be found in our prior works (Nangia et al.,
2019b,a). A scalar level set/signed distance function (SDF) 𝜎(𝐱, 𝑡) is
used to demarcate the liquid (water) and the gas (air) regions, 𝛺𝑙 ⊂ 𝛺
and 𝛺𝑔 ⊂ 𝛺, respectively, in the computational domain. The zero-
contour of 𝜎 defines the air–water interface 𝛤 (𝑡) = 𝛺𝑙 ∩ 𝛺g. Similarly,
the surface of the immersed body 𝑆b(𝑡) = 𝜕𝑉𝑏(𝑡) is tracked using the
zero-contour of the level set function 𝜓(𝐱, 𝑡); see Fig. 5(b). The indicator
function 𝜒(𝐱, 𝑡) for the solid domain is computed based on the level set
function 𝜓 . The two SDFs are advected using the local fluid velocity:
𝜕𝜎
𝜕𝑡

+ 𝐮 ⋅ ∇𝜎 = 0, (49)
𝜕𝜓
𝜕𝑡

+ 𝐮 ⋅ ∇𝜓 = 0. (50)

The density and viscosity in the entire computational domain is ex-
pressed as a function of 𝜎(𝐱, 𝑡) and 𝜓(𝐱, 𝑡) using the signed distance
property:

𝜌(𝐱, 𝑡) = 𝜌(𝜎(𝐱, 𝑡), 𝜓(𝐱, 𝑡)), (51)

𝜇(𝐱, 𝑡) = 𝜇(𝜎(𝐱, 𝑡), 𝜓(𝐱, 𝑡)). (52)

To maintain their signed distance property, both level set functions
need to be reinitialized after each time step. To reinitialize 𝜎, we use
the relaxation approach of Sussman et al. (1994) to compute the steady-
state solution to the Hamilton–Jacobi equation. 𝜓 , on the other hand,
is reinitialized directly because the SDF of a vertical cylinder can be
constructed analytically by using constructive solid geometry operators
(i.e., the min/max operators) on primitive shapes (Zhang et al., 2019).

4.3. Spatial discretization

The continuous equations of motion given by Eqs. (46)–(47) are dis-
cretized on a locally-refined staggered Cartesian grid. The grid covers
the domain 𝛺 with 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 rectangular cells. The grid spacing
in the three spatial directions are 𝛥𝑥, 𝛥𝑦, and 𝛥𝑧 respectively. Without
any loss of generality, the lower left corner of the domain is considered
the origin (0, 0, 0) of the coordinate system such that each cell center
of the grid has a position 𝐱𝑖,𝑗,𝑘 =

(

(𝑖 + 1
2 )𝛥𝑥, (𝑗 +

1
2 )𝛥𝑦, (𝑘 +

1
2 )𝛥𝑧

)

for
𝑖 = 0,… , 𝑁𝑥 − 1, 𝑗 = 0,… , 𝑁𝑦 − 1, and 𝑘 = 0,… , 𝑁𝑧 − 1. The
location of a cell face which is half a grid cell away from 𝐱𝑖,𝑗,𝑘 in
the 𝑥-direction is at 𝐱𝑖− 1

2 ,𝑗,𝑘
=

(

𝑖𝛥𝑥, (𝑗 + 1
2 )𝛥𝑦, (𝑘 +

1
2 )𝛥𝑧

)

. Similarly,
the location of a cell face that is half a grid cell away from 𝐱𝑖,𝑗,𝑘 in
the 𝑦-directions is 𝐱𝑖,𝑗− 1

2 ,𝑘
=

(

(𝑖 + 1
2 )𝛥𝑥, 𝑗𝛥𝑦, (𝑘 +

1
2 )𝛥𝑧

)

and in the 𝑧-

direction it is 𝐱𝑖,𝑗,𝑘− 1
2
=

(

(𝑖 + 1
2 )𝛥𝑥, (𝑗 +

1
2 )𝛥𝑦, 𝑘𝛥𝑧

)

. See Fig. 6(a). The
time at time step 𝑛 is denoted by 𝑡𝑛. The scalar quantities: level set
functions, pressure, and the material properties (density and viscosity)
are all approximated at cell centers and are denoted 𝜎𝑛𝑖,𝑗,𝑘 ≈ 𝜎

(

𝐱𝑖,𝑗,𝑘, 𝑡𝑛
)

,
𝜓𝑛𝑖,𝑗,𝑘 ≈ 𝜓

(

𝐱𝑖,𝑗,𝑘, 𝑡𝑛
)

, 𝑝𝑛𝑖,𝑗,𝑘 ≈ 𝑝
(

𝐱𝑖,𝑗,𝑘, 𝑡𝑛
)

, 𝜌𝑛𝑖,𝑗,𝑘 ≈ 𝜌
(

𝐱𝑖,𝑗,𝑘, 𝑡𝑛
)

and 𝜇𝑛𝑖,𝑗,𝑘 ≈
𝜇
(

𝐱𝑖,𝑗,𝑘, 𝑡𝑛
)

, respectively. See Fig. 6(b). Some of these scalar quantities
need to be interpolated onto the required degrees of freedom; see Nan-
gia et al. (2019a) for further details. The velocity degrees of freedom
are approximated on the cell faces as 𝑢𝑛

𝑖− 1
2 ,𝑗,𝑘

≈ 𝑢
(

𝐱𝑖− 1
2 ,𝑗,𝑘

, 𝑡𝑛
)

, 𝑣𝑛
𝑖,𝑗− 1

2 ,𝑘
≈

𝑣
(

𝐱𝑖,𝑗− 1
2 ,𝑘
, 𝑡𝑛

)

, and 𝑤𝑛
𝑖,𝑗,𝑘− 1

2

≈ 𝑤
(

𝐱𝑖,𝑗,𝑘− 1
2
, 𝑡𝑛

)

. The constraint force
density and the gravitational body force in the momentum Eq. (46) are
also approximated on cell faces. For all spatial derivatives, second-order
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Fig. 5. (a) Schematic of a two-dimensional slice through the computational domain 𝛺 showing an immersed body interacting with an air–water interface. (b) Discretization of
the domain 𝛺 on a Cartesian mesh and values of the indicator function 𝜒(𝐱, 𝑡) used to differentiate the fluid and solid regions in the FD/BP method. Here, 𝜒(𝐱, 𝑡) = 1 inside the
solid domain and 𝜒(𝐱, 𝑡) = 0 in air and water domains. The air–water interface 𝛤 (𝑡) is tracked by the zero-contour of 𝜎(𝐱, 𝑡), while the zero-contour of 𝜓(𝐱, 𝑡) tracks the solid–fluid
interface 𝑆b(𝑡).
Fig. 6. Schematic representation of a 2D staggered Cartesian grid. (a) shows the coordinate system for the staggered grid. (b) shows a single grid cell with velocity components
𝑢 and 𝑣 approximated at the cell faces (→) and scalar variable pressure 𝑝 approximated at the cell center (∙) at 𝑛th time step.
finite differences are used. A uniform grid spacing 𝛥𝑥 = 𝛥𝑦 = 𝛥𝑧 = ℎ
is used for all simulations in this work, unless stated otherwise. For
readability, the discretized version of the differential operators are
denoted with a ℎ subscript, e.g., ∇ ≈ ∇ℎ. For further details on the
spatial discretization on a hierarchy of adaptively refined meshes, see
our prior works Nangia et al. (2019a), Cai et al. (2014), Griffith (2009),
Bhalla et al. (2013).

4.4. Numerical wave tank (NWT)

The fully-resolved and control-informed WSI of the device is sim-
ulated using a NWT, depicted in Fig. 7. In the tank, the converter
is located at position 𝑥𝐵 . Dirichlet boundary condition for the ve-
locity components is used to generate regular and irregular water
waves at the left boundary of the domain. The waves travel in the
positive 𝑥-direction and are reflected back from the right boundary
of the domain and the device surface. A reflected wave can cause
wave distortion and interference phenomena and reduce the quality of
waves reaching the device if it is not handled properly. A variety of
numerical techniques have been proposed in the literature to mitigate
these effects (Miquel et al., 2018; Windt et al., 2018, 2019), such as
the relaxation zone method (Jacobsen et al., 2012), the active wave
absorption method (Higuera et al., 2013; Frigaard and Brorsen, 1995;
Schäffer and Klopman, 2000), the momentum damping method (Choi
10
and Yoon, 2009; Ha et al., 2013), the viscous beach method (Ghasemi
et al., 2014), the porous media method (Dong and Zhan, 2009; Ja-
cobsen et al., 2015), and the mass-balance PDE method (Hu et al.,
2016). The relaxation zone method is used in this paper because of its
simplicity and effectiveness. To smoothly extend the Dirichlet velocity
boundary conditions into the wave tank, a relaxation zone called the
wave generation zone is added near the inlet boundary. The wave
generation zone reduces the interaction of the reflected waves (from
the device) with the inlet boundary. The wave generation zone being
relatively free of reflected waves, the up-wave point 𝑥𝐴 is also placed
inside this zone, which accurately records the wave elevation data
𝜂wave(𝑡; 𝑥𝐴) and sends it to the MPC. Also sent to the controller are
the device’s displacement and velocity, 𝑧 and 𝑧̇, computed from the
fully-resolved WSI. Near the outlet boundary, a second relaxation zone,
known as the wave damping zone, is located to smoothly dampen out
waves that reach the right end of the NWT. The length of the wave
damping zone is set to 1.5𝜆 in all simulations.

The top boundary of the NWT is a zero pressure boundary. To
dissipate the vortical structures reaching the top boundary, a vorticity
damping zone is implemented (see Fig. 7). The vortical structures
shed by the device (as a result of FSI) move freely in the air region
(which is taken to be small in order to reduce the computational cost
of the simulations) and interfere with the top boundary. In order to
implement the vorticity damping zone, a damping force 𝐟 is added to
𝑑
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Fig. 7. Numerical wave tank (NWT) schematic showing wave generation, wave damping, and vorticity damping zones. The WEC device is placed in the working zone of length
3.145𝜆.
the momentum equation, which reads as

𝐟𝑑 = −𝑔(𝑧̃)𝐮. (53)

Here, 𝑔(𝑧̃) = 𝜌𝑎(cos(𝜋𝑧̃) + 1)∕(4𝛥𝑡) is the smoothed damping coefficient,
𝜌𝑎 is the density of the air phase, 𝛥𝑡 is the time step size of the
multiphase flow solver, 𝑧̃ = (𝑧−𝑧max)∕𝛥𝑑 is the normalized 𝑧 coordinate,
𝑧max = 2.2𝑑, and 𝛥𝑑 is the vorticity damping zone width. In all our
simulations, 𝛥𝑑 is taken to be four (coarsest grid) cell size wide. More
details on the implementation of the relaxation zone method and the
level set-based NWT can be found in our prior work Nangia et al.
(2019b).

4.5. Solution methodology

The methodology to solve the discretized equations of motion in-
volves three major steps:

1. Specify the material properties, density 𝜌(𝐱, 𝑡) and viscosity 𝜇(𝐱, 𝑡)
in the entire computational domain.

2. Calculate the Brinkman penalization rigidity constraint force
density 𝐟𝑐 (𝐱, 𝑡) based on the vertical cylinder WEC dynamics.

3. Update the solutions for 𝜎, 𝜓 , 𝐮, and 𝑝.

We briefly review the computations described above for a vertical
cylinder device with a single degree of freedom (in the 𝑧-direction). We
refer readers to Bhalla et al. (2020) and references therein for a general
FSI treatment.

4.5.1. Density and viscosity specification
To transition between the air–water interface 𝛤 (𝑡) and the fluid–

solid interface 𝑆𝑏(𝑡), a smoothed Heaviside function is used. 𝑛cells
grid cells are used on either side of the interface to smoothly vary
the material properties in the transition region. For example, a given
material property ℑ, say density or viscosity, is prescribed throughout
the computational domain by first calculating the flowing phase (i.e., air
and water) property as

ℑflow
𝑖,𝑗,𝑘 = ℑ𝑙 + (ℑ𝑔 −ℑ𝑙)𝐻̃ flow

𝑖,𝑗,𝑘 , (54)

and later correcting ℑflow to account for the solid body by

ℑfull
𝑖,𝑗,𝑘 = ℑ𝑠 + (ℑflow

𝑖,𝑗,𝑘 −ℑ𝑠)𝐻̃
body
𝑖,𝑗,𝑘 . (55)

Here, ℑfull is the final scalar material property field throughout 𝛺.
To specify the transition specified by Eqs. (54) and (55), the standard
numerical Heaviside functions are used:

𝐻̃ flow
𝑖,𝑗,𝑘 =

⎧

⎪

⎨

⎪

⎩

0, 𝜎𝑖,𝑗,𝑘 < −𝑛cells ℎ,
1
2

(

1 + 1
𝑛cells ℎ

𝜎𝑖,𝑗,𝑘 +
1
𝜋 sin

(

𝜋
𝑛cells ℎ

𝜎𝑖,𝑗,𝑘
))

, |𝜎𝑖,𝑗,𝑘| ≤ 𝑛cells ℎ,

1, otherwise.
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(56)
𝐻̃body
𝑖,𝑗,𝑘 =

⎧

⎪

⎨

⎪

⎩

0, 𝜓𝑖,𝑗,𝑘 < −𝑛cells ℎ,
1
2

(

1 + 1
𝑛cells ℎ

𝜓𝑖,𝑗,𝑘 +
1
𝜋 sin

(

𝜋
𝑛cells ℎ

𝜓𝑖,𝑗,𝑘
))

, |𝜓𝑖,𝑗,𝑘| ≤ 𝑛cells ℎ,

1, otherwise.
(57)

In all simulations performed in this study, the number of transition
cells 𝑛cells = 1 for both air–water and fluid–solid interfaces.

4.5.2. Time stepping scheme
The time stepping scheme employs a fixed-point iteration with

𝑛cycles cycles per time step to evolve quantities from time level 𝑡𝑛 to
time level 𝑡𝑛+1 = 𝑡𝑛 + 𝛥𝑡. To denote the cycle number of a fixed-point
iteration, a 𝑘 superscript is used. At the beginning of every time step,
the solutions from the previous time step are used to initialize cycle
𝑘 = 0: 𝐮𝑛+1,0 = 𝐮𝑛, 𝑝𝑛+

1
2 ,0 = 𝑝𝑛−

1
2 , 𝜎𝑛+1,0 = 𝜎𝑛, and 𝜓𝑛+1,0 = 𝜓𝑛. The

physical quantities at the initial time 𝑛 = 0 are prescribed via initial
conditions. A larger number of cycles in the simulation allows a larger,
more stable time step size. In this work, we limit 𝑛cycles to 1 so that the
number of linear solves per time step is reduced for the computationally
expensive 3D simulations.

4.5.3. Level set advection
To evolve the two level set/signed distance functions 𝜎 and 𝜓 , we

use a standard explicit advection scheme as follows

𝜎𝑛+1,𝑘+1 − 𝜎𝑛
𝛥𝑡

+𝑄
(

𝐮𝑛+
1
2 ,𝑘, 𝜎𝑛+

1
2 ,𝑘

)

= 0, (58)

𝜓𝑛+1,𝑘+1 − 𝜓𝑛

𝛥𝑡
+𝑄

(

𝐮𝑛+
1
2 ,𝑘, 𝜓𝑛+

1
2 ,𝑘

)

= 0, (59)

in which 𝑄(⋅, ⋅) represents an explicit piecewise parabolic method
(xsPPM7-limited) approximation to the linear advection terms on cell
centers (Griffith, 2009; Rider et al., 2007).

4.5.4. Multiphase incompressible Navier–Stokes solution
The discretized form of the multiphase incompressible Navier–

Stokes Eqs. (46)–(47) in conservative form reads as

𝝆̆𝑛+1,𝑘+1𝐮𝑛+1,𝑘+1 − 𝝆𝑛𝐮𝑛

𝛥𝑡
+ 𝐂𝑛+1,𝑘 = −∇ℎ 𝑝

𝑛+ 1
2 ,𝑘+1 +

(

𝐋𝜇𝐮
)𝑛+ 1

2 ,𝑘+1

+℘𝑛+1,𝑘+1𝐠 + 𝐟𝑛+1,𝑘+1𝑐 , (60)

∇ ⋅ 𝐮𝑛+1,𝑘+1 = 𝟎, (61)

in which 𝐂𝑛+1,𝑘 is the discretized version of the convective term
∇ ⋅ (𝜌𝐮 ⊗ 𝐮) and the density approximation 𝝆̆𝑛+1,𝑘+1 is computed
using a consistent mass/momentum transport scheme. The consistent
mass/momentum transport scheme ensures the numerical stability of
cases involving high density contrast between various phases, such
as air, water, and the solid device. See previous works by Nangia
et al. (2019a) and Bhalla et al. (2020) for a detailed exposition of the
consistent mass/momentum transport scheme employed in this study.
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The viscous strain rate in Eq. (60) is handled using the Crank–
Nicolson approximation:

(

𝐋𝜇𝐮
)𝑛+ 1

2 ,𝑘+1 = 1
2

[

(

𝐋𝜇𝐮
)𝑛+1,𝑘+1 +

(

𝐋𝜇𝐮
)𝑛
]

, in

which
(

𝐋𝜇
)𝑛+1 = ∇ℎ ⋅

[

𝜇𝑛+1
(

∇𝐮 + ∇𝐮𝑇
)𝑛+1

]

. The newest approxima-
tion to the viscosity 𝜇𝑛+1,𝑘+1 is obtained using the two-stage process
described by Eqs. (54) and (55). The gravitational body force term
℘𝐠 = 𝝆flow𝐠 is calculated using the flow density field to avoid spurious
currents generated due to large density variations near the fluid–solid
interface (Nangia et al., 2019b).

4.5.5. Fluid–structure coupling
The Brinkman penalization term 𝐟𝑐 given by Eq. (48) is treated

implicitly in the discretized version of the momentum Eq. (60) and
computed as

𝐟𝑛+1,𝑘+1𝑐 =
𝜒
𝜅𝑝

(

𝐮𝑛+1,𝑘+1𝑏 − 𝐮𝑛+1,𝑘+1
)

, (62)

n which the discretized indicator function is defined using the body
eaviside function (see Eq. ) as 𝜒 = 1 − 𝐻̃body; 𝜒 = 1 inside

he solid region. A sufficiently small value of the permeability coef-
icient 𝜅𝑝 ∼ (10−8) is shown to be effective in enforcing the rigidity
onstraint (Bhalla et al., 2020; Gazzola et al., 2011).

The rigid body velocity 𝐮𝑏 in Eq. (62) can be expressed as the sum
f translational 𝐔𝑟 and rotational 𝐖𝑟 velocities:

𝑏 = 𝐔𝑟 +𝐖𝑟 ×
(

𝐱 − 𝐗com
)

, (63)

n which 𝐗com is the position of the center of mass of the body. In this
tudy, the WEC device is allowed to move only in the heave direction.
ence, 𝐔𝑟 = (0, 0, 𝑧̇(𝑡)) and 𝐖𝑟 = 𝟎. The rigid body velocity is simplified

o
𝑛+1,𝑘+1
𝑏 = 𝑧̇𝑛+1,𝑘+1 𝐳̂. (64)

he heave velocity 𝑧̇ resulting from the WSI can be computed using
ewton’s second law of motion as
d𝑧̇
d𝑡

= 𝑚 𝑧̇
𝑛+1,𝑘+1 − 𝑧̇𝑛

𝛥𝑡
= 𝑛+1,𝑘

hydro − 𝑚𝑔 + F𝑛+1,𝑘+1PTO , (65)

n which Fhydro is the net hydrodynamic force (pressure and viscous)
n the heave direction and 𝑚 is the mass of the cylinder (same as the
ne used in Eq. (1)). The method that was previously described in
ection 2.3.2 to compute NLFK forces using the SDF 𝜓 (see Eq. (32)
an be easily extended to include both pressure and viscous force
ontributions. Following the SDF approach, the net hydrodynamic force
cting on the body is computed as
𝑛+1,𝑘
hydro =

∑

𝑓

(

−𝑝𝑛+1,𝑘𝐧𝑓 + 𝜇𝑓
(

∇ℎ 𝐮𝑛+1,𝑘 +
(

∇ℎ 𝐮𝑛+1,𝑘
)𝑇 )

⋅ 𝐧𝑓
)

𝛥𝐴𝑓 . (66)

e remark that whereas Eq. (32) is evaluated using a simple and a
inimal box region  surrounding the device and the waves near it,
q. (66) is evaluated using the actual CFD grid that is distributed across
ultiple processors. Lastly, the FPTO term of Eq. (65) is computed by

he MPC algorithm as discussed in Section 2.

.6. Power transfer from waves to the PTO

Here, we mathematically describe the pathway of power transfer
rom the sea waves to the PTO system. The relationships derived in
his section can also be used to quickly verify the accuracy of the CFD
imulations.

To begin, multiply the dynamical Eq. (65) by the heave velocity 𝑧̇
nd rearrange the terms to obtain:

d
d𝑡

(

𝑧̇(𝑡)2

2

)

= hydro(𝑡)𝑧̇(𝑡) − 𝑚𝑔𝑧̇(𝑡) + FPTO(𝑡)𝑧̇(𝑡). (67)

Taking the time average of the above equation over one wave period
 and rearranging terms, we get

⟨ (𝑡)𝑧̇(𝑡)⟩ = ⟨𝑚
𝑧̇(𝑡)2

⟩ + ⟨𝑚𝑔𝑧̇(𝑡)⟩ − ⟨F (𝑡)𝑧̇(𝑡)⟩, (68)
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hydro 2 PTO
Table 2
Various WSI/MPC solver combinations considered in this work.

Solver MPC

1 BEM-LFK LFK
2 BEM-LFK NLFK
3 BEM-NLFK LFK
4 BEM-NLFK NLFK
5 CFD LFK
6 CFD NLFK

in which ⟨(⋅)⟩ = ∫ 𝑡+𝑡 (⋅) d𝜏 represents the time-averaging operator. For
regular waves, contributions from the inertial and the gravity terms are
zero due to the time periodicity of the heave velocity. Hence, we have:

⟨hydro(𝑡)𝑧̇(𝑡)⟩ = −⟨FPTO(𝑡)𝑧̇(𝑡)⟩. (69)

The term ⟨hydro(𝑡)𝑧̇(𝑡)⟩ describes the mechanical work done by the
aves to oscillate the converter and the term -⟨FPTO(𝑡)𝑧̇(𝑡)⟩ describes

he power absorbed by the device. For irregular waves, the inertial
nd gravity terms may not equal zero when averaged over an exact
ave period. Nevertheless, Eq. (68) remains valid. The power transfer

elationships are verified in Section 9.3.

. WSI and MPC solvers

Sections 2 and 4 describe methods naturally suited to different types
f WSI and MPC solvers. There are two types of WSI solvers that can
e derived from Section 2: (1) BEM-LFK and (2) BEM-NLFK. Here, BEM
mplies a WSI solver that solves Eq. (6), LFK implies the excitation
orce is calculated using Eq. (28) (or Eq. (30)), and NLFK implies the
xcitation force is calculated using Eqs. (32) and (33). MPC solvers can
lso be divided into two types: (1) MPC-LFK and (2) MPC-NLFK, where
he excitation force vector 𝜟𝒗𝒅 is computed linearly and non-linearly,

respectively. Lastly, based upon Section 4, we have a multiphase
IB/CFD solver that solves Eqs. (46)–(47). Table 2 shows six possible
WSI/MPC combinations. Note that it is computationally unfeasible (if
not impossible) to implement MPC using a CFD-based solver. Moreover,
results of Section 9.1 suggest that a higher fidelity hydrodynamical
model within MPC does not necessarily improve accuracy.

6. Software implementation

6.1. CFD solver

The FD/BP and the numerical wave tank methods presented here
are implemented within the IBAMR library (IBA), which is an open-
source C++ simulation software focused on immersed boundary meth-
ods with adaptive mesh refinement; the code is publicly hosted at
https://github.com/IBAMR/IBAMR. The C++ application/driver code
(main.cpp) and the MATLAB MPC routines link directly against the
compiled IBAMR library and are publicly hosted in a separate GitHub
repository at https://github.com/IBAMR/cfd-mpc-wecs. IBAMR relies
on SAMRAI (Hornung and Kohn, 2002; SAMRAI) for Cartesian grid
management and the AMR framework. Linear and nonlinear solver
support in IBAMR is provided by the PETSc library (Balay et al., 1997,
2015, 2021). All of the CFD cases in the present work made use of
distributed-memory parallelism using the Message Passing Interface
(MPI) library. Simulations were carried out on both the XSEDE Comet
cluster at the San Diego Supercomputer Center (SDSC) and the Fermi
cluster at San Diego State University (SDSU).

6.2. Communication layer between the CFD and MPC solvers

In this section, we present the custom communication layer be-

tween the CFD and MPC solvers. The ‘‘glue code’’ is written using

https://github.com/IBAMR/IBAMR
https://github.com/IBAMR/cfd-mpc-wecs
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Fig. 8. Schematic representation of the dynamic interaction between the MPC algorithm and multiphase IB solver.
PETSc (Balay et al., 2021), which provides a high-level communica-
tion channel between IBAMR (IBA) and MATLAB (MATLAB, 2019).
As discussed in Section 2, MPC requires quadratic programming (QP)
and autoregressive models (AR). Although there are several compiled
language implementations of QP (e.g., QuadProg++ (Qua)) and AR
(e.g., Cronos (Cro)) techniques, we implement the MPC algorithm
in MATLAB, which has built-in support for QP and AR techniques.
MATLAB is probably the most widely used programming environment
for dynamical systems modeling and control in academia and industry,
so our current implementation can easily be adapted to integrate other
optimal control strategies for WECs into a different CFD code of choice,
e.g., OpenFOAM.

In the following, we describe the interaction between the CFD and
MPC solver codes as a three-part algorithm. Fig. 8 shows this inter-
action pictorially. Communication between the CFD and MPC codes
is handled by the PETScMatlabEngine object provided by the PETSc
library. Details on the PETSc functions and objects can be found in its
user manual (Balay et al., 2015).

1. Accessing the MATLAB workspace: Algorithm 1 is called to-
wards the beginning of the driver code to create the PETScMat-
labEngine object ‘mengine’ on MPI (Message Passing Interface)
rank 0. This is achieved by calling the PETSc function Petsc-
MatlabEngineCreate() on line 2 of the algorithm, in which
‘PETSC_COMM_SELF’ is the MPI communicator containing the
single MPI rank 0. Next, the MATLAB workspace is cleared for
any data already present and the path to the ‘MPC_matlab_code’
directory is added to MATLAB’s standard search path. The di-
rectory ‘MPC_matlab_code’ contains all the MPC code scripts and
related functions. The PETSc function to achieve this is called on
line 3 of Algorithm 1. Then, various wave (, 𝑝, 𝜔, 𝜅, 𝑑) and
device parameters (𝑚, 𝑅cyl, Lcyl) are loaded into the workspace
by calling the PETSc function PetscMatlabEngineEvalu-
ate() on line 4, wherein a MATLAB variable ‘var’ is created
with the numerical value of var_value. Next, the BEM data is
read and loaded into the workspace by executing the MATLAB
script ‘load_mpc_parameters.m’. This includes the added mass
of the cylinder 𝑚∞ and the impulse response functions K𝑒(𝑡)
and K𝑑 (𝑡). The script also sets various MPC parameters (𝛥𝑡𝑝,
ℎ, 𝑁𝑝, 𝑛𝑟, 𝑡𝑓 ), device constraints (𝑧min/max, 𝑧̇min/max, 𝑢min/max),
wave type (regular or irregular), and the method of wave ex-
citation force calculation (LFK or NLFK). The coefficients of
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the quadratic penalty terms 𝜆1 and 𝜆2 and the MPC solver
options (maximum iterations, solver tolerance, etc.) are also
set by the same script ‘load_mpc_parameters.m’. Since the CFD
solver sends the device and wave elevation data to the MPC
code, it needs to know the MPC time step size 𝛥𝑡𝑝 and the
next time to synchronize data with the controller 𝑡next-sync. The
values from the MATLAB workspace are obtained by calling
the function PetscMatlabEngineGetArray(). Finally, the
remaining CFD parameters and variable values (𝛥𝑡,𝑋com, 𝑥B, and
𝑥A) that could not be added to the workspace earlier (on line 4)
are loaded to the workspace on line 8.

Algorithm 1: Creating and initializing the MATLAB workspace.
1 if (MPI_rank == 0) then
2 PetscMatlabEngineCreate(PETSC_COMM_SELF, NULL,

&(mengine)); // Create a MATLAB engine on MPI rank
0.

3 PetscMatlabEngineEvaluate(mengine, ‘‘clc; clear all;
close all; addpath(‘./MPC_matlab_code’)"); // Execute
MATLAB commands and add the MPC code directory
path to the standard search path.

4 PetscMatlabEngineEvaluate(mengine,‘‘var = %f",
var_value); // Load the wave and device parameters
into the MATLAB workspace.

5 PetscMatlabEngineEvaluate(mengine,
‘‘load_mpc_parameters"); // Execute the script to
read and load the BEM data and MPC parameters
into the MATLAB workspace.

6 PetscMatlabEngineGetArray(mengine, ...); // Load
the values of the MATLAB variables into the CFD
code.

7 ……… // Code to do CFD related setup and
calculations.

8 PetscMatlabEngineEvaluate(mengine, ...); // Load
the remaining CFD variables into the workspace
that were not available/calculated earlier.

9 end

2. The main time loop: Algorithm 2 describes the time-loop inter-
action between the CFD and MPC solvers. First, the MPI rank
0 updates the MATLAB workspace with the CFD solver time
𝑡 = 𝑡𝑛+1 and the device displacement and velocity data, as
CFD
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shown on line 4 of the algorithm. Next, the algorithm checks
if the CFD solver time is greater than or equal to the con-
troller synchronization time 𝑡next-sync. If the statement evaluates
to true, then a new set of MPC matrices  ,  𝒖, and  𝒗 are
calculated and the radiation damping vector 𝒙𝒓 is advanced in
time using the MATLAB scripts ‘calculate_mpc_matrices.m’ and
‘calculate_radiation_damping_xr.m’, respectively. To enable the
calculation of wave excitation forces over a prediction horizon of
ℎ, the CFD solver sends the past up-wave surface elevation data
(from the NWT) to the MATLAB workspace. Using the updated
matrices, vectors, and FK forces, the MPC solver predicts the
optimal control sequence for the entire prediction horizon on
line 9. The first signal of the optimal control sequence is sent
to the CFD solver, which is then interpolated to time 𝑡CFD using
Eq. (14). Note that since the CFD solver time step size 𝛥𝑡 is
typically smaller than the MPC solver time step size 𝛥𝑝, line 13
of Algorithm 2 ensures that FPTO is computed at the correct time
level in the case the if block is not executed. Lastly, both 𝑡next-sync
and 𝑡CFD are updated and the time level is moved to 𝑛 + 2.

Algorithm 2: Time-loop interaction between the CFD and MPC
solvers.
1 Initialize the MATLAB workspace and load the BEM data and

MPC parameters. // See Algorithm 1.
2 while (𝑡CFD ≤ 𝑡end) do
3 if (MPI_rank == 0) then
4 PetscMatlabEngineEvaluate (mengine,

‘‘𝑡CFD = %𝑓 ; 𝛥𝑡 = %𝑓 ; 𝑧 = %𝑓 ; 𝑧̇ = %𝑓 ;" , 𝑡CFD, 𝛥𝑡, 𝑧,
𝑧̇); // Send the latest CFD and device data to
MATLAB workspace.

5 if (𝑡CFD ≥ 𝑡next-sync) then
6 PetscMatlabEngineEvaluate(mengine,

‘‘calculate_mpc_matrices;
calculate_radiation_damping_xr;"); // Execute
the MATLAB scripts to update the
discrete-time dynamical matrices.

// Send the past up-wave surface elevation
data to the MATLAB workspace.

7 PetscMatlabEnginePutArray(mengine,
𝑡past.size(), 1, &(𝑡past[0]),‘‘𝑡past");

8 PetscMatlabEnginePutArray(mengine,
𝜂A.size(), 1, &(𝜂A[0]),‘‘𝜂Apast ");

9 PetscMatlabEngineEvaluate(mengine,
‘‘calculate_control_force;"); // Compute the
optimal control sequence using
Algorithm 3.

0 PetscMatlabEngineGetArray(mengine, 1, 1,
&(𝑢),‘‘𝑢"); // Get the first signal of the
optimal control sequence from MPC for the
CFD solver.

1 𝑡next-sync ← 𝑡next-sync + 𝛥𝑡𝑝 // Update the
synchronization time.

2 end
3 Interpolate FPTO ← (𝑚 + 𝑚∞)𝑢 to 𝑡CFD using Eq. (14).
4 end
5 MPI_Bcast(FPTO); // Broadcast the value of the PTO

force to all processors.
6 Solve the FSI problem using the multiphase IB solver.
7 𝑡CFD ← 𝑡CFD + 𝛥𝑡
8 end

3. The MPC routine: Algorithm 3 describes the AR predictions and
the LFK and NLFK force calculations required by the MPC to
compute an optimal control force sequence. This algorithm is
executed by the MATLAB script ‘calculate_control_force.m’. First,
14
line 1 calculates the discrete time instants over the prediction
horizon at a uniform interval 𝛥𝑡𝑝. Next, the algorithm checks if
AR predictions are to be used or not. If the value of the variable
𝐴𝑅_𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒 is set to a large number (larger than the simulation
end time), then the if condition on line 2 always evaluates to
true. In this case, the algorithm computes the LFK or the NLFK
force based on the analytical expression of the wave elevation.
In the case 𝐴𝑅_𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒 is set to the controller/MPC start time,
the if condition on line 2 evaluates to false when 𝑡CFD becomes
equal or larger than the MPC start time. In that case, the wave
elevation data over the prediction horizon is calculated using AR
predictions; see line 16. The wave excitation force is computed
using the convolution integral given by Eq. (30) based on the
AR predictions of wave elevation. Next, other necessary terms
like the viscous force, the state vector 𝐗𝒅 , etc., are calculated on
lines 19–21. Finally, the QP functionality of MATLAB is used to
compute the optimal control force sequence 𝜟𝒖𝒅 considering the
necessary device constraints and penalty terms.

7. Validation of BEM and MPC solvers and motivation behind this
work

While MPC has been used in the process industries (chemical plants
and oil refineries) since the 1980s, its formulation for the wave en-
ergy conversion application was first suggested by Gieske (2007) in
2007. The study involved optimizing the control of the Archimedes
wave swing (AWS) device modeled as a second-order linear system. In
2010, Cretel et al. (2010) implemented a zero-order hold (ZOH) method
based MPC for a half-submerged heaving vertical cylinder A later study
published by Cretel et al. (2011) suggested using the first-order hold
(FOH) method, which yielded better results than ZOH-based MPC. The
BEM-LFK solver was used in all the aforementioned studies.

In order to validate our (FOH-based) BEM-LFK solver and MPC im-
plementations, we consider the same half-submerged vertical cylinder
case as Cretel et al. (2011). The cylinder has a radius of 𝑅cyl = 5 m
and an upright length of 𝐿cyl = 16 m. Regular waves of height  = 2
m and time period  = 7 s are used. This corresponds to a small have
height case and the BEM solvers are expected to be accurate in this
wave regime. The BEM parameters 𝑚∞ and K𝑒(𝑡) are obtained using
ANSYS AQWA by performing frequency domain WSI simulations. The
MPC parameters are taken to be 𝛥𝑡𝑝 = 0.1 s, 𝑁𝑝 = 60 (and consequently
a prediction horizon of ℎ = 6 s), 𝜆1 = 2 s, and 𝜆2 = 0 s. There
are no device constraints included, and 𝐽2 cost function is used in
the MPC to match Cretel et al.’s setup. Fig. 9 shows the temporal
evolution of the heave velocity and excitation forces and compares it
against the steady-state results of Cretel et al. (2011). Both studies agree
very well. The steady-state time-averaged power 𝑃 PTO absorbed by the
device is 353.5301 kW, which is also close to the value of 395.08 kW
reported in Cretel et al. (2011). We conclude from these results that
our BEM-LFK solver and MPC implementations are correct.

Next, we compare the predictions of the BEM and CFD solvers for a
1:20 scaled-down version of the device (using Froude scaling). We do
this to reduce the computational cost of CFD simulations, as the full-
scale WEC device requires a larger computational domain and a higher
mesh resolution to resolve the high Reynolds number flow. For further
details on the Froude scaling of the device and wave characteristics (
nd  ), the readers are referred to Khedkar et al. (2021). The size of
he domain, grid resolution, and time step size of the CFD simulation
re determined by the spatial–temporal simulation performed in the
ext Section 8. Both solvers use regular waves of height  = 0.1 m

and time period  = 1.5652 s and the MPC parameters are 𝑁𝑝 = 60,
𝛥𝑡𝑝 = 0.0223 s, ℎ = 1.3415 s, 𝜆1 = 2 s, and 𝜆2 = 0 s. Fig. 10 compares
the predictions of the two solvers. Fig. 10(a) clearly shows that the
wave excitation force of the CFD simulation is much larger than that
of the BEM-LFK simulation. A similar discrepancy is observed using

the BEM-NLFK solver whose results are closer to the BEM-LFK solver
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Fig. 9. Temporal evolution of (a) the heave velocity and (b) wave excitation forces acting on the heaving vertical cylinder. Results are compared against Cretel et al. (2011) for
first-order regular waves of height  = 2 m and time period  = 7 s. The MPC parameters are 𝛥𝑡𝑝 = 0.1 s, ℎ = 6 s, 𝜆1 = 2 s, and 𝜆2 = 0 s.
Fig. 10. Temporal evolution of (a) wave excitation force, (b) control force, and (c) instantaneous power absorbed for vertical cylinder WEC device heaving on the sea surface for
first order regular wave of  = 0.1 m and  = 1.5652 s. The MPC parameters are 𝑁𝑝 = 60, 𝛥𝑡𝑝 = 0.0223 s, ℎ = 1.3415 s, 𝜆1 = 2 s, and 𝜆2 = 0 s. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
(data not shown for brevity). Since this is a low wave amplitude case,
we attribute the discrepancy between the CFD and BEM solvers to the
non-linear WSI caused by the controller. To confirm this hypothesis an
additional CFD simulation is conducted, in which hydrodynamic loads
are calculated on a vertical cylinder that has the same dimensions, but
is fixed at equilibrium. The case is represented by the green curve in
Fig. 10(a). It is clear that both solvers (CFD and BEM-LFK) estimate
the same hydrodynamic force on the stationary cylinder. Furthermore,
an uncontrolled dynamics case is simulated in the next Section 8,
where the BEM and CFD solvers’ predictions match for the same wave
conditions of this section. These additional tests confirm our hypothesis
15
that even in calm sea conditions, the controller can cause a mismatch
between the solvers’ predictions.

Figs. 10(b) and 10(c) compare the MPC control force and the in-
stantaneous power absorbed by the heaving device (respectively) using
the BEM-LFK and CFD solvers. The comparison shows that, while the
BEM-LFK solver estimates the power produced by the device at 10.6
W.5 during its steady-state operation, the CFD solver predicts a large

5 Using Froude scaling, this value corresponds to 10.6×(20)
7
2 = 379.2 kW for

the full-scale device, which is close what is predicted earlier in this section.



Ocean Engineering 260 (2022) 111908K. Khedkar and A.P.S. Bhalla

1

1

1

1

1

1

1

1

1

1

2

2

2

c

g

8

W
w
a
r
b

A
b
a
o
t
𝛥
c


w
d
F
t
g
p
b
v
i

Algorithm 3: MATLAB-based MPC routine.
1 time_horizon = 𝑡CFD + (0:𝑁𝑝) ×𝛥𝑡𝑝; // Calculate the

discrete time horizon.
2 if (𝑡CFD ≤ 𝐴𝑅_𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒) then
3 if (strcmp(Fexc-type, ‘LINEAR_FK’)) then
4 Fexc ←

calculate_excitation_force(time_horizon);
// Calculate Fexc using Eq. (28). 𝜂wave is
calculated using Eq. (34) for regular and
Eq. (41) for irregular waves.

5 else
6 𝑧predicted ← AR_prediction(𝑧past, 𝑡past, 𝑁𝑝, AR_order,

𝛥𝑡𝑝); // Predict the device displacement using
the AR model based on past data.

7 F𝐷 ←
calculate_diffraction_force(time_horizon);
// Calculate the wave diffraction force using
Eq. (33). 𝜂wave is calculated using Eq. (34)
for regular and Eq. (41) for irregular waves.

8 for (𝑚 = 1 to (𝑁𝑝 + 1)) do
9 𝜓 ← calcu-

late_level_set_for_cylinder(𝑧predicted(𝑚),
𝑅cyl, 𝐿cyl); // Compute the level set for the
cylinder on a static grid region .

0 𝜎 ← calcu-
late_level_set_for_wave(time_horizon(𝑚));
// Compute the level set for the
undulatory air--wave interface.

1 F𝐼 (m) ← calculate_NLFK_force(𝜓 , 𝜎,
time_horizon(𝑚)); // Calculate the incident
wave force using Eq. (32).

2 end
3 Fexc ← F𝐷 + F𝐼 // Compute Fexc for

∀𝑡 ∈ time_horizon.
4 end
5 else
6 𝜂Apredicted ← AR_prediction(𝜂Apast , 𝑡past, 𝑁𝑝, AR_order,

𝛥𝑡𝑝);
7 Calculate the future 𝑁𝑝 values of Fexc for ∀𝑡 ∈ time_horizon

using Eq. (30).
8 end
9 Calculate the first term in the linearized form of the viscous

force F𝑣 given in Eq. (8).
0 Calculate the vectors X𝐝 and 𝜟𝒗𝒅 .
1 Calculate  𝑇

𝒖𝑄 𝒖 and  𝑇
𝒖𝑄(𝐗𝒅 +  𝒗𝜟𝒗𝒅) terms of Eq. (21).

2 Minimize the cost function 𝐽3 (with constraints) using the QP
functionality of MATLAB to obtain the optimal control
sequence 𝜟𝒖𝒅 .

withdrawal of power from the grid (−43.8 W). The power results of
the BEM-NLFK solver are close to those of the BEM-LFK solver (data not
presented). There was only a small effect of changing the penalty term
𝜆1 on the power results of the two solvers. The results presented in this
section, therefore, suggest that the BEM solvers may not always provide
a reliable estimate of the power production capability of the WEC
device under certain operating/controlled conditions. Furthermore, it
can also be appreciated that it is necessary to include the 𝜆2 term in the
objective function to eliminate or mitigate the large negative powers.
This section summarizes the motivation for the work conducted here,
which is to investigate why the performance of various types of solvers
differs and to compare them under different operating conditions. Due
to the reasons noted above, we compare the performance of various
16
solvers using 𝐽3 instead of 𝐽2 in the results and discussion Section 9
The case of this section is also repeated (Case 2 of Table 4) using the
𝐽3 cost function because it is more suitable for the model predictive
ontrol of WECs.

Before proceeding to the main results Section 9, we first perform a
rid convergence study for the CFD solver in the next section.

. Spatial and temporal resolution tests

In this section, we perform a grid convergence study on the heaving
EC device using the CFD solver. Convergence tests are performed
ithout the MPC. In WSI simulations, both regular and irregular waves
re considered. The spatial resolution study is based on three spatial
esolutions listed in Table 3, while the temporal resolution study is
ased on three values of the time step size 𝛥𝑡 for irregular waves. In

all tests, the maximum Courant–Friedrichs–Levy (CFL) number is less
than or equal to 0.5. Simulations are performed on locally refined grids
in order to reduce computational costs.

The computational domain for regular waves is 𝛺 = [0, 3.145𝜆]
× [0, 12𝑅cyl] × [0, 2.2𝑑], whereas for irregular waves it is 𝛺 = [0,
3.176𝜆] × [0, 12𝑅cyl] × [0, 2.2𝑑]. The domain size is large enough to
eliminate boundary effects. This is based on our previous experience
modeling WSI of WEC devices (Dafnakis et al., 2020; Khedkar et al.,
2021). The origin of the domain is located at the bottom left corner; see
Fig. 7. The initial center of mass of the device is located at 𝐗com = (𝜆+
5𝑅cyl, 6𝑅cyl, 𝑑). 𝑅cyl = 0.25 m and 𝐿cyl = 0.8 m, which is a 1:20 scaled-
down version of the one presented in Cretel et al. (2011). The cylinder
is half-submerged in its equilibrium position. The quiescent water depth
is 𝑑 = 2 m, acceleration due to gravity is 𝑔 = 9.81 m/s2 (directed in
the negative 𝑧-direction), density of water is 𝜌𝑤 = 1025 kg/m3, density
of air is 𝜌𝑎 = 1.225 kg∕m3, viscosity of water is 𝜇𝑤 = 10−3 Pa⋅s, and
viscosity of air is 𝜇𝑎 = 1.8 × 10−5 Pa⋅s. At this scale, surface tension at
the air–water interface has no effect on WEC dynamics and is therefore
ignored. All of the CFD simulations in this work, including those of the
previous Section 7 use the same material properties and computational
domain setup. Fig. 11 shows the grid layout and typical wave–structure
interactions of the device in the NWT.

8.1. Grid convergence study

Here, a grid convergence study is performed to determine the
optimal mesh spacing for the CFD simulations. Three grid sizes are
used to conduct the grid convergence test: coarse, medium, and fine
(see also Table 3). The coarse mesh size corresponds to 5 cells per
radius of the cylinder (CPR), the medium mesh size is 10 CPR, and
the fine mesh size is 15 CPR. The computational mesh consists of a
hierarchy of 𝓁 grid levels. The coarsest grid level is discretized into
𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧 grid cells and covers the entire computational domain 𝛺.

sub-region of the coarsest level is then locally refined (𝓁 − 1) times
y an integer refinement ratio of 𝑛ref. The local refining is done in such
way that the device and the air–water interface remains embedded

n the finest grid level throughout the simulation. The grid spacing on
he finest grid level is calculated as: 𝛥𝑥 = 𝛥𝑥0∕𝑛𝓁−1ref , 𝛥𝑦 = 𝛥𝑦0∕𝑛𝓁−1ref , and
𝑧 = 𝛥𝑧0∕𝑛𝓁−1ref , in which 𝛥𝑥0, 𝛥𝑦0, and 𝛥𝑧0 are the grid spacings on the
oarsest grid level.

First-order regular waves of height  = 0.1 m and time period
= 1.5652 s enter from the left side of the domain and interact

ith the 3D vertical cylinder. The temporal evolution of the device
isplacement and velocity using three mesh resolutions are shown in
igs. 12(a) and 12(b), respectively. The average percentage change in
he peak values of the heave displacement between two consecutive
rid resolutions is calculated from 𝑡 = 20 s to 30 s. The average
ercentage change between the coarse and medium grids is 6%, and
etween the medium and fine grids is 2.7%. For heave velocity these
alues are 3.6% and 2.5%, respectively. Fig. 13 shows the air–water
nterface and the vortical structures arising from the WSI using the
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Fig. 11. (a) Locally refined Cartesian mesh with two levels of mesh refinement for the 3D NWT. Representative WSI of the 3D WEC model at 𝑡 = 37.5 s: (b) for regular waves
and (c) for irregular waves.
medium grid (CPR10) resolution. It can be observed that both these
fluid dynamical quantities are adequately resolved by the CPR10 grid.
From Figs. 12 and 13, it can be concluded that the medium grid
resolution is able to capture the WSI dynamics with good accuracy and
hence is used for the rest of the CFD simulations.

The device dynamics are also simulated using the BEM-LFK solver,
which solves Eqs. (9)–(10) of Sec. 2. Since the present test simulates
the WSI without MPC, the device undergoes a small motion from its
mean equilibrium position under the action of first-order Stokes waves.
Therefore, the CFD results are expected to match the BEM results in this
situation. Indeed, this can be confirmed from the results of Figs. 12(a)
and 12(b).

8.2. Temporal resolution study

In this section, we conduct a time step size study to find the
step size 𝛥𝑡 that adequately resolves the energy content of irregular
waves. Specifically, 𝛥𝑡 should be such that the high-frequency wave
components that carry a considerable amount of energy are adequately
17
Table 3
Grid refinement parameters used for the grid convergence study.

Parameters Coarse Medium Fine

𝑛ref 4 4 4
𝓁 2 2 2
𝑁𝑥 60 120 180
𝑁𝑦 15 30 45
𝑁𝑧 22 44 66
𝛥𝑥0 = 𝛥𝑦0 = 𝛥𝑧0 (m) 0.2 0.1 0.0667
𝛥𝑥 = 𝛥𝑦 = 𝛥𝑧 (m) 0.05 0.025 0.0166
𝛥𝑡 (s) 5 × 10−3 2.5 × 10−3 1.5 × 10−3

represented in the simulation. Irregular waves of height  = 0.15 m,
peak time period 𝑝 = 1.7475 s, and 𝑁 = 50 wave components are
generated at the left end of the NWT. We use three different time step
sizes for the temporal convergence study: 𝛥𝑡 = 2.5 × 10−3 s, 1.25 × 10−3

s, and 7 × 10−4 s. The medium grid resolution (CPR10) of the previous
section is used here. The temporal evolution of the heave displacement
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Fig. 12. Temporal evolution of the heave (a) displacement and (b) velocity of the uncontrolled WEC device using BEM-LFK (—–, black) and CFD solvers. Three grid resolutions
of CPR5 (—–, red), CPR10 (—–, green), and CPR15 (—–, yellow) are used for the CFD solver. The first-order regular wave characteristics are:  = 0.1 m,  = 1.5652 s, and 𝜆 =
3.8144 m. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 13. Wave–structure interaction of the 3D vertical cylinder WEC device (here shown in the 𝑥 − −𝑧 plane) at 𝑡 = 22 s using the medium grid resolution (CPR10). A locally
refined mesh with 𝓁 = 2 and 𝑛ref = 4 is used. The air–water interface and the vortical structures resulting from the WSI are plotted.
and velocity of the device are compared in Fig. 14. With smaller 𝛥𝑡
values, we are able to resolve the amplitudes of the heave displacement
and velocity more accurately, as seen in Fig. 14(a) and Fig. 14(b),
respectively. The average percentage change in the peak values of the
heave displacement and velocity between two consecutive time step
sizes is calculated from 𝑡 = 20 s to 40 s. The average percentage change
for the heave displacement between 𝛥𝑡 = 2.5×10−3 s and 𝛥𝑡 = 1.25×10−3

s is 15.06% and between 𝛥𝑡 = 1.25 × 10−3 s and 𝛥𝑡 = 7 × 10−4 s is
9.89%. For velocity, the percentage changes are 14.68% and 5.45%,
respectively. According to these results, 𝛥𝑡 = 1.25 × 10−3 s is sufficient
to model WSI with irregular waves.

Based on the tests of this section, we hereafter use the medium
grid spatial resolution with 𝛥𝑡 = 2.5 × 10−3 s for regular waves and
𝛥𝑡 = 1.25 × 10−3 s for irregular waves.

9. Results and discussion

Section 7 motivates us to investigate the following questions:

1. At various sea states, how do the predictions of different WSI
and MPC solvers compare?

2. In the case of the predictions of the solvers differing widely, what
is the main reason for this?

3. How do AR predictions affect MPC performance?
4. By using CFD simulations, can the wave-to-PTO power transfer

relationships be adequately captured?
5. How well does the MPC adapt to changing sea states?
18
We perform MPC-integrated WSI simulations of the cylindrical WEC
device operating in different sea states to answer these questions. CFD
simulations are conducted in a computational domain described in
Section 8. The following MPC parameters are used in all simulations,
unless stated otherwise: 𝛥𝑡𝑝 = 0.05 s, ℎ =  (or 𝑝), 𝑁𝑝 = ⌈

ℎ
𝛥𝑡𝑝

⌉, 𝜆1 = 2
s, and 𝜆2 = 0.2 s. Here, ⌈⋅⌉ is the nearest-integer/ceil function. The
controller is activated at 𝑡 = 10  (or 10 𝑝), i.e., when the device starts
oscillating steadily. We do this to avoid the possibility of creating a
large PTO force at the start of the simulation, which could destabilize
it.

9.1. Comparing the predictions of different solvers

This section compares the predictions of various WSI and MPC
solvers listed in Table 2. The results presented here are not based on the
AR model, but on analytical expressions to predict the wave elevation
data. We discuss the effect of AR predictions on MPC performance
separately in Section 9.2. Table 4 lists the sea states and the PTO force
limits. In order to simplify the discussion, constraints on the device
displacement and velocity are not included in the MPC. Furthermore,
preliminary testing showed that adding the displacement and velocity
constraints (along with the PTO force constraint) did not significantly
alter the results of this section (data not shown for brevity).

9.1.1. Comparing the predictions with regular waves
Here, the controlled heave dynamics of the WEC device operating

in regular sea conditions are compared. As listed in Table 4, Cases 1
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Fig. 14. Temporal evolution of (a) the heave displacement and (b) heave velocity for three different time step sizes: 𝛥𝑡 = 2.5 × 10−3 s (—–, black), 𝛥𝑡 = 1.25 × 10−3 s (—–, red),
and 𝛥𝑡 = 7 × 10−4 s (—–, green). Irregular water waves are generated with s = 0.15 m, 𝑝 = 1.7475 s, and 𝑁 = 50 wave components, with wave component frequencies in the
range 1.6 rad/s to 20 rad/s distributed uniformly. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 4
Cases considered for comparing results for various solvers and MPC methodologies.

Case Wave type Wave height (m) Control force (FPTO) constraint (N)

1 First-order regular 0.1 ± 25
2 First-order regular 0.1 ± 100
3 First-order regular 0.5 ± 25
4 First-order regular 0.5 ± 100
5 First-order regular 0.5 ± 300
6 Irregular 0.15 ± 25
7 Irregular 0.15 ± 100
8 Irregular 0.3 ± 25
9 Irregular 0.3 ± 100

Table 5
Time-averaged power output using different WSI and MPC solvers for Cases 2, 5, 7,
and 9 of Table 4.

Solver MPC Time-averaged power (W)

Case 2 Case 5 Case 7 Case 9

1 BEM-LFK LFK 5.4458 138.9282 3.9463 12.6718
2 BEM-LFK NLFK 5.674 142.7581 3.8786 12.1793
3 BEM-NLFK LFK 5.4766 40.9436 3.726 13.0561
4 BEM-NLFK NLFK 5.5401 36.9532 3.7235 12.8456
5 CFD LFK 3.7216 34.2936 2.4871 7.9284
6 CFD NLFK 3.7407 34.4263 2.7513 9.0553

and 2 consider regular waves of small height  = 0.1 m and time
period  = 1.5652 s, with control force limits of ±25 𝑁 and ±100 N,
respectively. Cases 3, 4, and 5 consider regular waves of large height
 = 0.5 m and (the same) time period  = 1.5652 s, with control
force limits of ±25 N, ±100 N, and ±300 N, respectively. Allowing a
larger control force in MPC leads to a higher heave amplitude of the
device. However, this puts more strain on the actuator system, which
can damage the hardware or negatively impact the actuator efficiency
(actuator efficiency is not considered in this work).

Figs. 15(a) and 15(b) compare the heave displacement, 15(c) and
15(d) compare the optimal control force, and 15(e) and 15(f) compare
the instantaneous power absorbed by the device using different WSI
and MPC solvers for Case 2 and 5, respectively. The time-averaged
power of the device for Cases 2 and 5 is listed in Table 5. The time-
averaged power is calculated between 𝑡 = 30 s to 40 s when the device
dynamics become steady. Other simulations produce similar trends,
which for brevity are not shown. Instead, the time-averaged powers
are shown in Fig. 17(a).

From the results presented in Fig. 15 and Table 5, it is observed that
for the small wave height Case 2, the BEM-LFK solver results are close
to those of BEM-NLFK and CFD solvers. In contrast, for the large wave
height Case 5, the dynamics and the power absorbed by the WEC device
are largely over-predicted. Another important observation from Table 5
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and Fig. 17(a) is that the MPC-LFK and MPC-NLFK solvers produce
almost the same time-averaged powers, when used either with the BEM
or the CFD solver. It can also be observed that the BEM-NLFK and CFD
solver results are in good agreement.

The results of this section provide two meaningful insights: (1)
the main cause of discrepancy between the BEM-LFK and the CFD
(or the BEM-NLFK) solver is the manner in which wave excitation
forces are computed; and (2) there is a little advantage to increasing
the complexity of the hydrodynamical model within MPC. The latter
also implies that the simpler and computationally faster LFK model is
sufficiently accurate for the model predictive control of WECs.

One can also note that by using 𝜆2 = 0.2 s, the negative part of
the power cycle is largely eliminated for all WSI solvers. This can be
verified from the instantaneous power curves of Figs. 15(e) and 15(f).
Similar observation can be made for the irregular wave cases that are
presented in the next section.

9.1.2. Comparing the predictions with irregular waves
Next, the controlled heave dynamics of the WEC device operating

in irregular sea conditions are compared. Cases 6 and 7 in Table 4 are
of irregular waves of small significant wave height 𝑠 = 0.15 m and
peak time period 𝑝 = 1.7475 s, with control force limits of ±25 N,
and ±100 N, respectively. Cases 8 and 9 concern irregular waves of
moderate significant wave height 𝑠 = 0.3 m and (the same) peak time
period 𝑝 = 1.7475 s, with control force limits of ±25 𝑁 and ±100 N,
respectively.

Fig. 16 presents the WEC dynamics for Cases 7 and 9. Results for
Cases 6 and 8 are not presented for brevity, as they show similar trends.
Figs. 16(a) and 16(b) compare the heave dynamics, 16(c) and 16(d)
compare the optimal control force, and 16(e) and 16(f) compare the
instantaneous power absorbed by the device using different WSI and
MPC solvers for Case 7 and 9, respectively. The time-averaged power
of the device is listed in Table 5 and is calculated between 𝑡 = 30 s to
40 s when the device dynamics become steady. Simulations of the other
cases produce similar trends and are not shown for brevity. Instead, the
time-averaged powers are plotted in Fig. 17(b).

As shown in Fig. 16 and Table 5, all WSI and MPC solvers perform
almost the same, though the CFD solver predicts slightly lower power
for Case 9 than the BEM-LFK and BEM-NLFK solvers. This is not surpris-
ing since the wave heights considered in this section are relatively low.
At larger (significant) wave heights, we expect the differences between
BEM-LFK and CFD (or BEM-NLFK) solvers to increase; this is confirmed
in the next section. Waves with large significant wave heights are not
considered here, since the CFD solver requires very small time steps to
maintain the numerical stability. As a result, the 3D simulation will take
very long to run, which is something we cannot afford at the moment.
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Fig. 15. Comparison of the controlled heave dynamics of the 3D vertical cylinder WEC device with regular waves. Case 2 and Case 5 of Table 4 are considered here. The WSI
and MPC solver combinations are: BEM-LFK and MPC-LFK (—–, black); BEM-LFK and MPC-NLFK (—–, red), BEM-NLFK and MPC-LFK (—–, green), BEM-NLFK and MPC-NLFK (—–,
mustard), CFD and MPC-LFK (—–, blue), and CFD and MPC-NLFK (—–, orange). (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
The results of Sections 9.1.1 and 9.1.2 suggest that the BEM-LFK
solver may give too optimistic results, especially when the hydro-
dynamic nonlinearities increase. Conversely, the CFD solver can re-
solve hydrodynamical non-linearities with high-fidelity, albeit at an
increased computational cost, and provides more realistic results. Be-
tween these two extremes is the BEM-NLFK solver, which yields some-
what optimistic power values, but not quite as large as the BEM-LFK
solver. In addition, either MPC-LFK or MPC-NLFK is equally effective
for a specific WSI solver since they give very close results. Since the
MPC-LFK technique is computationally faster than MPC-NLFK, it is
better suited for practical control of WEC devices.

9.1.3. Comparing the predictions with varying wave periods
This section compares the predictions of the BEM-LFK and BEM-

NLFK solvers for varying wave periods. Regular and irregular sea
conditions are considered. For the two WSI solvers, MPC-LFK is used.
Due to the high computational cost associated with simulating waves of
longer durations and wavelengths, CFD simulations are not performed
here.
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Results compare the time-averaged power absorbed by the WEC
device for regular waves in Fig. 18(a) and for irregular waves in
Fig. 18(b). The regular waves have wave heights of  = 0.1 m, 0.3 m,
and 0.5 m, with time periods varying from 1.2 s to 4.6 s. The irregular
waves considered here have significant wave heights of 𝑠 = 0.1 m,
0.3 m, 0.5 m, and 1 m, with peak time periods varying from 1.2 s to
3.4 s.

The results show that the BEM-LFK solver over-predicts the time-
averaged power absorbed by the device for large waves; for regular
waves,  = 0.5 m and for irregular waves, 𝑠 = 1 m. Further,
for both regular and irregular waves, the difference between the two
solvers’ predictions is greater at smaller time periods than at larger time
periods. This is because the natural period of oscillation of the device
is 1.54 s, which falls in the small time period region, where the device
oscillates with large amplitude due to the waves and actuator induced
resonance. The BEM-LFK solver inherently violates the small motion
assumption used in its formulation near or at resonance, and therefore
provides inaccurate power estimates. A separate CFD simulation was
used to determine the natural period of oscillation of the device; those
simulation results are not discussed here for brevity.
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Fig. 16. Comparison of the controlled heave dynamics of the 3D vertical cylinder WEC device with irregular waves. Case 7 and Case 9 of Table 4 are considered here. The WSI
and MPC solver combinations are: BEM-LFK and MPC-LFK (—–, black), BEM-LFK and MPC-NLFK (—–, red), BEM-NLFK and MPC-LFK (—–, green), BEM-NLFK and MPC-NLFK (—–,
mustard), CFD and MPC-LFK (—–, blue), and CFD and MPC-NLFK (—–, orange). (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 17. Comparison of time-averaged powers for cases given in Table 4.
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Fig. 18. Comparison of time-averaged power absorbed by the WEC device operating in (a) regular and (b) irregular sea conditions with varying wave periods and heights. The
BEM-LFK (BEM-NLFK) solver results are shown with solid (dashed) lines.
Fig. 19. AR model predictions (—–, green) of (a) regular and (b) irregular waves for one wave period into the future using the past two wave period elevation data (—–, red).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
9.2. CFD simulations with AR-enabled wave predictions

In this section, we examine the effect of AR predictions on MPC
performance. In this test, we use the MPC-LFK and CFD solvers with
regular waves of height  = 0.5 m and time period  = 1.5652 s,
and with irregular waves of significant wave height 𝑠 = 0.3 and
peak time period 𝑝 = 1.7475 s. We set 𝐴𝑅_𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒 equal to MPC
start time: 𝑡 = 10  (or 10 𝑝). Therefore, the controller and the AR
predictions will begin once the device exhibits steady-state oscillations
under the influence of incoming waves. MPC and NWT interaction
is schematically represented in Fig. 8. In particular, wave elevation
data at an up-wave probe point 𝐴 (𝜂𝐴) for the past two wave periods
is collected and sent to the AR model to allow for wave elevation
prediction over one wave period into the future (at the same location
𝐴). For predicting regular and irregular waves, we use AR models of
order 3 and 5, respectively. Figs. 19(a) and 19(b) illustrate that the
chosen AR models are sufficiently accurate for predicting regular and
irregular waves, respectively. Based on the past and predicted wave
data, the wave excitation force Fexc acting on the device is calculated
using Eq. (30).

As a test of the accuracy of the AR-integrated MPC solver, the results
are compared with those obtained using analytical forcing, which was
also used in Section 9.1. As for regular waves, Figs. 20(a), 20(c),
and 20(e) compare the heave displacement, control force, and the
instantaneous power absorbed by the device, respectively. Figs. 20(b),
20(d), and 20(f) compare these quantities for irregular waves. The
results show that the device dynamics are very close with or without the
AR predictions. The time-averaged power absorbed by the WEC device
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subject to regular waves is 40.5546 W when the AR model is enabled.
The value of 41.0097 W obtained by analytical forcing agrees well with
this result. In the case of irregular waves, these values are 9.9799 W
and 7.9284 W, which also match fairly well. Further improvements can
be obtained for the irregular wave case by using a better method of
time-series forecasting or by fine-tuning the AR model.

We conclude from the results of this section that our technique of
collecting wave elevation data from an up-wave location in the NWT
and predicting future waves based on it (through an AR model) works
well with the CFD/MPC-LFK solver combination.

9.3. Power transfer from waves to the PTO system: Verifying the relation-
ships with CFD simulations

We re-analyze the AR-enabled CFD simulations of the previous
section to verify the power transfer relations in Section 4.6. In the
case of regular waves of height  = 0.5 m and time period  =
1.5652 s, the power transferred by the waves to the device (or the
work done by the hydrodynamic forces) is 𝑃waves→cyl = 38 W and
that absorbed by the PTO unit is 𝑃 PTO = 39 W. A time average is
taken from 𝑡 = 30 s to 31.5652 s, i.e., for one wave period. Based on
these power values, we conclude that the power transfer Eq. (69) is
verified in the case of regular waves. In the case of irregular waves,
we calculate the left and right sides of Eq. (68) separately. 𝑡 = 30 s
to 40 s is chosen as the time interval for time-averaging the terms of
the equation. Accordingly, the two sides of the equation evaluate to
72.06 W and 71.47 W, respectively, which also match reasonably well.

Based on the results of this section, we conclude that our CFD
simulations satisfy the power transfer relationships of Section 4.6.
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Fig. 20. Comparison of the controlled heave dynamics of the 3D vertical cylinder with and without AR predictions. The WEC dynamics are simulated using the CFD and MPC-LFK
solver. For regular water waves of height  = 0.5 m and time period  = 1.5652 s results are compared for (a) heave displacement, (c) control force, and (e) instantaneous
power. For irregular water waves of significant wave height 𝑠 = 0.3 m and peak time period 𝑝 = 1.7475 s results are compared for (b) heave displacement, (d) control force,
and (f) instantaneous power. In all cases the control force limits are set to ± 100 N.
9.4. MPC adaptivity

To test the adaptive capability of MPC for WEC devices, we simulate
the dynamics of the 3D vertical cylinder subject to changing sea states.
Specifically, three consecutive sea states are considered within a single
CFD simulation: sea state 1 consisting of first-order regular waves of
height  = 0.1 m and time period  = 1.5652 s between 𝑡1 = 0 s to
𝑡2 = 40 s, sea state 2 consisting of first-order regular waves of height
 = 0.2 m and time period  = 2 s between 𝑡2 = 40 s to 𝑡3 = 60 s, and
sea state 3 consisting of first-order regular waves of height  = 0.15 m
and time period  = 1.7475 s between 𝑡3 = 60 s to 𝑡4 = 120 s. The wave
elevation is smoothly varied from one sea state to the other using the
following expression:

𝜂 (𝑡) = 𝜂 (𝑡) + (𝜂 (𝑡) − 𝜂 (𝑡)) ⋅ (1 + tanh(𝑡− (𝑡 − 𝑡 )))∕2, (70)
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𝑖,𝑖+1 𝑖 𝑖+1 𝑖 𝑖+1 half-interval
in which 𝜂𝑖(𝑡) = (𝑖∕2) cos(𝜅𝑖𝑥−𝜔𝑖𝑡) and 𝑡half-interval = 5 s is the transition
time between sea state 𝑖 to 𝑖 + 1. AR predictions are also enabled for
the CFD simulation. For MPC, each sea state uses a pre-configured
AR model that is optimized offline. While this is inconvenient, it is
necessary to allow accurate predictions of wave excitation forces.

Fig. 21 shows the temporal evolution of the heave displacement and
velocity. We compare the CFD results with three separate BEM-LFK
simulations for different sea states. Because all three sea states have
small amplitude waves, the BEM-LFK solver is expected to be accurate.
Indeed, it is observed that the adaptive CFD simulation agrees well with
the BEM-LFK solver results, which indicates that the MPC algorithm is
able to adapt according to the current sea state and produces an optimal
solution in each case.
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Fig. 21. Comparison of the (a) heave displacement and (b) velocity of the device subject to changing sea states using CFD and BEM-LFK solvers. The BEM-LFK solver solves the
three sea states separately, whereas the CFD solver considers them consecutively.
10. Conclusions

In this study, we simulated the controlled dynamics of a heaving 3D
vertical cylinder WEC device using BEM and multiphase IB solvers. A
MPC strategy was used to maximize the energy absorption capacity of
the WEC device under regular and irregular sea conditions.

We validated our BEM-LFK and MPC-LFK implementations by sim-
ulating a benchmarking case from Cretel et al. (2011) in Section 7. The
scaled-down version of the same device was then simulated using the
multiphase IB solver, and its wave excitation forces were significantly
greater than those predicted by the BEM solvers. A more surpris-
ing result was that the WEC device drew a large amount of power
from the grid instead of producing energy, as predicted by the BEM
solvers. Moreover, it was observed that 𝐽3 is a better choice for the
model predictive control of WECs compared to 𝐽2, as the latter can
provide misleading power output. To understand the main cause of
the discrepancy, we examined six different combinations of the WSI
and MPC solvers using 𝐽3 as the cost function. It is found that when
the sea state is calm and the wave height is small, the BEM solvers’
predictions match well with the CFD solver’s. However, in agitated
sea conditions, the BEM solvers over-predict the device performance,
which can be misleading to the device designer. On the other hand,
the CFD solver provides realistic results both in calm and agitated sea
conditions. It is evident that resolving the hydrodynamic non-linearities
associated with the WSI is essential to obtaining realistic estimates of
the device’s power. It is further confirmed by the results of the BEM-
NLFK solver, which are closer to those of the multiphase IB solver.
Therefore, we recommend using the BEM-NLFK solver to study the
controlled dynamics of WECs when computational resources are limited
to employing a CFD solver. In addition, it is straightforward to switch
to the BEM-NLFK solver by using the static grid technique described
in Section 2.3.2. Additionally, we found that the choice between MPC-
LFK or MPC-NLFK is irrelevant, as both algorithms give very similar
results. Nevertheless, MPC-LFK solver is computationally-efficient and
is proposed as a practical model-based control for WECs.

We also compared MPC-LFK performance with and without AR
predictions in Section 9.1. We found that the AR prediction strategy
worked well in both regular and irregular waves. The AR model can
be tuned further or a different time-series forecasting algorithm can be
used for further improvements. The pathway of energy transfer from
waves to the PTO unit for the heaving WEC device was also derived and
confirmed. By simulating three different sea states consecutively within
a single CFD simulation, we tested the adaptive capabilities of MPC of
WECs. The MPC is shown to adapt to different sea states and find the
optimal solution for each situation, thus living up to its reputation as
the ‘‘Tesla’’ of control approaches.
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