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a b s t r a c t

This study examined the effects of buoy shape and Nonlinear Froude-Krylov force (NFK) on a heaving-
buoy-type Wave Energy Converter (WEC). Based on the Maclaurin expansion, the theoretical solutions
of the NFK were derived for three different buoy shapes; hemispheric buoy, circular vertical cylinder, and
truncated conical cylinder. A hydraulic power take-off system was adopted, and the latching control
strategy was applied to maximize the extracted power from the WEC. The nonlinear effects of the
Froude-Krylov force and restoring force on the heaving point absorber were investigated by comparing
the heave Response Amplitude Operator (RAO) and time-averaged power extraction. The results showed
that the conventional linear analyses were overestimated by up to 50% under the high amplitude wave
condition. The latching control strategy was the most effective when peak wave period of regular or
irregular wave was 0.4e0.45 times the heave natural period of the buoy.
© 2021 Society of Naval Architects of Korea. Production and hosting by Elsevier B.V. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The Wave Energy Converter (WEC) can be classified as
moveable-body type, oscillating-water-column type, and over-
topping/overflow type according to their energy-conversion
methodology. Among these, the movable-body-type WEC gener-
ates powers by converting wave energy to WEC’s kinetic energy.
WECs can also be classified according to buoy’s mode of motion,
such as heaving buoy type, pendulum type, oscillating surge-type
(Oyster type) and so on. The heaving-buoy-type WEC can be
extended easily to a renewable energy farm or a hybrid renewable
energy system. The heaving-buoy-type WEC has very large motion
around its natural frequency because of the resonance phenome-
non, but the resonance region is often narrow-banded. Therefore, a
control technique is required to increase energy extraction (Folley
et al., 2015). To apply the control technique, the interaction be-
tween the floating body and power take-off (PTO) as well as the
range of nonlinear factors due to the application of the control
method, should be considered (Nazari et al., 2013; Kalofotias, 2016).

Since 2000, numerous studies have been carried out to estimate
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the nonlinear hydrodynamic effects of heaving-buoy-type WECs.
Weakly nonlinear analysis or fully nonlinear analysis was per-
formed to consider the nonlinearity of floating body motion. The
weakly nonlinear analysis often considered the Nonlinear Froude-
Krylov force (NFK) in addition to the first-order (linear) hydrody-
namic analysis based on the radiation/diffraction problem. In some
cases, the second-order diffraction force was also adopted. The
nonlinear Froude-Krylov force, which is the force from undisturbed
incident waves, can be obtained by integrating the pressure over
the instantaneous wetted buoy surface. The method of calculating
the NFK may include a remeshing scheme or a theoretical solution.
The remeshing numerical scheme generates the instantaneous
wetted-surface meshes according to the buoy motion and wave
elevation around the body (Jang and Kim, 2020). Babarit et al.
(2009) and Merigaud et al. (2012) applied the remeshing scheme
to evaluate the nonlinear Froude-Krylov force and the double-
frequency diffraction force on a WEC buoy, respectively. Giorgi
and Ringwood (2017) derived a theoretical solution of the
Froude-Krylov force for an axisymmetric heaving buoy using the
Maclaurin expansion method under regular wave conditions. They
described the wetted body surface theoretically based on the cy-
lindrical coordinate system. They then simplified the instantaneous
water line around the body based on the long wave assumption and
adopted a simple PTO modeling as a linear damper. They
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considered nine types of different numerical approaches, including
Computational Fluid Dynamics (CFD). They reported that the
nonlinear Froude-Krylov forces, nonlinear restoring forces, and
nonlinear viscous forces are very important in applying the control
strategies. Giorgi and Ringwood (2018) derived a theoretical solu-
tion of the nonlinear Froude-Krylov force for a three-degree-of-
freedom point absorber under regular wave conditions. They
showed that the calculation time using the theoretical solutionwas
shorter than that using the remeshing technique. Kim et al. (2019b)
considered the nonlinear Froude-Krylov force and hydraulic PTO
system under regular wave conditions. Parametric studies on the
hydraulic PTO condition of a hemispherical heaving-buoy WEC
were carried out. The capture width of the WEC decreased in the
longwave region as the wave amplitude increased.

This study derived the theoretical solutions of nonlinear Froude-
Krylov forces on three different geometries of WEC buoys (a
hemispherical buoy, a vertical circular cylindrical buoy, and a
truncated conical buoy) based on Giorgi and Ringwood (2017). The
theoretical solution of the nonlinear Froude-Krylov force was
verified by comparisonwith the results of the remeshing technique.
Based on them, the hydraulic PTO system and latching control
strategy were applied to estimate WEC’s hydrodynamic and power
take-off performances. The effects of the nonlinear Froude-Krylov
force were identified, and the relationship between the incident
wave period (or amplitude) and latching control strategy under
regular wave conditions was investigated. Finally, based on the
results of regular wave analysis, the effects of the nonlinear Froude-
Krylov force on WEC buoys with latching control under irregular
wave conditions were estimated, which can be regarded as an
extension of the previously developed latching control strategy for
regular waves.
2. Mathematical formulation

2.1. Equation of motion for a rigid body

All forces acting on a heaving body type WEC can be expressed
as

m€x ¼ FD þ FR þ FFK þ Fstatic þ Fvis þ FPTO �W (1)

where m and €x are the mass of a buoy and acceleration of vertical
motion, respectively. FD, FR, FFK , Fstatic, Fvis, FPTO, and W denote the
diffraction force, radiation force, Froude-Krylov force, hydrostatic
force, viscous damping force, PTO force, and gravity force, respec-
tively. Among these force components, the radiation force and
diffraction force can be obtained by solving the radiation problem
and diffraction problem, respectively. The radiation force can be
decomposed into two terms: one that is proportional to the ac-
celeration and the other that is proportional to the velocity of a
buoy. This force also satisfies the linearity of functions and the
Bound Input and Bound Output stability (BIBO), so it can be
expressed using the convolution terms.

FRðuÞ ¼ �MaðuÞ€xðuÞ � bðuÞ _xðuÞ (2)

FRðtÞ ¼ �Mað∞Þ€xðtÞ �
ðt
0

Kðt � tÞ _xðtÞdt (3)

where Ma and b are the added mass and radiation damping coef-
ficient. KðtÞ is the memory function or impulse response function
expressed as Eq. (4).
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KðtÞ ¼ �2
p

ð∞
0

bðuÞcosðutÞdu

¼ �2
p

ð∞
0

ðMaðuÞ �Mað∞ÞÞu sinðutÞdu
(4)

The frequency-dependent diffraction force can be expressed as
Eq. (5).

FDðuÞ ¼ �r

ð
SB

vfD

vt
nzdS (5)

FDðtÞ¼
Xnw

i¼1

Ai
��FD iðuÞ

��cosðuitþ qi þ qr iÞ (6)

where r, fD, and nzis the water density, diffraction velocity po-
tential, and z-directional component of the normal vector, respec-
tively. Ai, FD i, ui, qi, and qr i are the incident wave amplitude,
diffraction force in the frequency domain, wave frequency, phase
angle of the diffraction force, and random phase angle of the ith
wave, respectively. nw is the number of incident wave components.
Under regular single wave conditions, only one frequency compo-
nent was applied, and the random phase angle was set to zero.
Under irregular wave conditions, the amplitude of the i-th wave
can be obtained (Eq. (7)) using the PM spectrum (Eq. (8)).

Ai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SwðuiÞdu

q
(7)

SwðuÞ¼173H2
s

T41u
5

exp

 
�692
T41u

4

!
(8)

where Sw, Hs, and T1 are PM wave spectrum, significant wave
height, and mean centroid wave period, respectively. The com-
mercial hydrodynamic analysis software WAMIT (WAMIT, 2019)
was used to calculate the hydrodynamic coefficients (added mass,
radiation damping coefficient, and diffraction force). The program
is based on the wave green function and boundary element
method.

2.2. Froude-Krylov force

The Froude-Krylov force is the force acting on the body from an
undisturbed incident wave. This force can be obtained using the
incident wave velocity potential, as shown in Eq. (9) and Eq. (10).

p
�
x!; t
� ¼ �r

vfI

vt
¼ �rgAekz cosðkx cos bþ ky sin b� utÞ (9)

FFK ¼
ð
SB

p
�
x!; t
�
nzdS¼

ð
SB

�
� rgAekz cosðkx cos bþ ky sin b

�utÞ
�
nzdS

(10)

where x! is the position of a collocation point ðx; y; zÞ on the
boundary element. fI , g, k, b, and SB are the incident wave velocity
potential, gravitational acceleration, wave number, angle of the
incident wave, and body surface, respectively. To express the
theoretical solution of nonlinear Froude-Krylov force on an
axisymmetric body, the coordinate system should be transferred
from the Cartesian coordinate to the cylindrical coordinate (Giorgi
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and Ringwood, 2017). In this scheme, the equation of the body
radius along the z-axis was derived according to the shape of the
heaving buoy. The nonlinear Froude-Krylov force is obtained by
integrating the incident-wave pressure over the instantaneous
wetted body surface that changes according to the body motions
and incident wave elevations at every time step. In addition, the
water particle velocity and hydrodynamic pressure above the mean
water level are expressed by vertical stretching.

2.2.1. Theoretical solution of the Froude-Krylov force for a
hemispherical buoy

Giorgi and Ringwood (2017) transformed the Cartesian co-
FFK ¼ rgA cos ut
ð2p
0

ðs1

s2

ekzCsphereðs; qÞðs� xÞdsdq

Csphereðs; qÞ ¼ 1�
�
k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � ðs� xÞ2

q
cos q

�2
2!

þ
�
k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � ðs� xÞ2

q
cos q

�4
4!

�
�
k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � ðs� xÞ2

q
cos q

�6
6!

þ/

(14)
ordinates, ðx;y;zÞ, into the cylindrical coordinates system ðr; q; sÞ to
derive the theoretical solution of Froude-Krylov force acting on a
hemispherical buoy as Fig. 1(a). The equation of a radius along the
z-axis on a hemisphere can be described using Eq. (11).

r¼ f ðsÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � ðs� xÞ2

q
(11)

where R and x are the radius and vertical displacement of the
hemispherical buoy, respectively. The vertical Froude-Krylov force
can be obtained as Eq. (12).

FFK ¼
ð2p
0

ðs1

s2

rgAekz cosðkf ðsÞcos q�utÞf 0ðsÞf ðsÞdsdq (12)

In this study, the lower shape of the WEC floating buoy was
Fig. 1. Schematic coordinate system of various fl
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different, but the upper shape of all floating buoys was fixed in the
form of vertical circular cylinders. Therefore, the effective range of
the z-axis is expressed as Eq. (13).

�
s1 ¼ minðhðtÞ; xÞ
s2 ¼ x� d

(13)

where h and d are wave elevation at the center point of a buoy and
draft of a buoy, respectively. Eq. (12) can be converted to Eq. (14),
which can be integrated directly using the Maclaurin expansion
method to obtain the Froude-Krylov force.2
2.2.2. Theoretical solution of the Froude-Krylov force for a vertical
cylindrical buoy

For a circular cylinder, the bottom surface of the buoy is only
affected by the incident wave for the vertical Froude-Krylov force.
Therefore, the coordinate system of the bottom can be expressed as
Eq. (15)(see Fig. 1(b)). The product of dS and nz can be presented as
Eq. (16) according to the coordinate transformation.8<
:

xðqÞ ¼ r cos q
yðqÞ ¼ r sin q
z ¼ s2

(15)

nzdS¼ rdrdq (16)

Substituting Eqs. (15) and (16) into Eq. (10) and applying the
oating bodies for the Froude-Krylov force.
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cosine law and Maclaurin expansion, the theoretical solution of the
Froude-Krylov force for a circular vertical cylindrical buoy is final-
ized as Eq. (17).
FFK ¼ rrgAekðx�dÞ cosðutÞ
 
R2p� k2

2!
R4

4
pþ k4

4!
R6

6
3
4
p� k6

6!
R8

8
5
8
pþ/

!
(17)
2.2.3. Theoretical solution of the Froude-Krylov force for a
truncated conical buoy

To calculate the Froude-Krylov force for a truncated conical
buoy, it should be divided into the lateral and bottom parts of a
truncated cone as Fig. 1(c). For the side part, the equation for the
radius along the z-axis can be expressed as Eq. (18).

f ðsÞ¼ aðs� xÞ þ R (18)

where a is the slope of the side part of a truncated cone.
Substituting Eq. (18) into Eq. (12) and applying the cosine law and
Maclaurin expansion, the Froude-Krylov force of the side part can
be obtained as Eq. (19).
FFK slope ¼ argA cosðutÞ
ð2p
0

ðs1

s2

eksCconeðs; qÞdsdq

Cconeðs; qÞ ¼ f ðsÞ � k2f ðsÞ3cos 2 q

2!
þ k4f ðsÞ5cos 4 q

4!
� k6f ðsÞ7cos 6 q

6!
þ/

(19)
At the same time, using Eq. (17), the Froude-Krylov force of the
bottom part of a truncated cone can be expressed as Eq. (20).
FFK bottom ¼ rgAekðx�dÞ cos ut

 
R02p� k2

2
R04
4

pþ k4

4!
R06
6

3
4
p� k6

6!
R08
8

5
8
pþ/

!
(20)
where R0 is the radius of the bottom of the truncated conical buoy.
Finally, the total Froude-Krylov force can be obtained.

FFK ¼ FFK slope þ FFK bottom (21)

2.3. Hydrostatic force

The static force can be obtained using the hydrostatic pressure
acting on the floating body.
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Fstatic ¼
ð
SB

ð�rgzÞnzdS (22)
This can be revised by transforming the coordinate system from
the Cartesian coordinate to the cylindrical coordinate system. First,
the static force for the hemispherical buoy can be expressed as Eq.
(23)

Fstatic ¼ �2prg
ðs1

x�d

�
s2 � s

�
ds¼ � 2prg

�
1
6
x3 �1

2

�
s21 þd2

�
x

þ1
3

�
s31 þd3

�	
(23)

The static force for the cylindrical buoy can be described using
Eq. (24)

Fstatic ¼ � rgAwðx�dÞ (24)

The static force for the truncated conical buoy should be
calculated separately for the lateral and bottom parts. For each part,
the formula can be expressed using Eqs. (25) and (26). Each static
force can be combined and expressed as Eq. (27).

Fstatic slope ¼ � 2parg


1
6
ax3 �R

2
x2 þ

n
Rd� a

2

�
s21 þ a2

�

�
o
þ
�
a
3

�
s31 þd3

�
þR
2

�
s21 �d2

�	�
(25)

Fstatic bottom ¼ � rgðx�dÞR02p (26)



Table 1
Geometric specifications of the three different buoys.

Item [unit] Hemisphere (Model 1) Circular cylinder (Model 2) Truncated cone (Model 3)

Radius [m] 2.5 2.5 2.5
Draft [m] 2.5 1.667 2.5
Weight [kg] 16,362 16,362 16,362
Water plane area [m2] 19.634 19.634 19.634
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Fstatic ¼ � prg


1
3
a2x3 � aRx2 þ

n
2adR� a2
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s21 þd2

�
þR02

o
x

þ
�
2a2

3

�
s31 þd3

�
þ aR

�
s21 �d2

�
�dR02

	�
(27)
Fig. 2. Numerical models fo
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2.4. Viscous damping force

To consider the viscous effect, the drag force of the Morrison
equation was adopted. The drag force on the body can be described
as Eq. (28).

Fvis ¼ �1
2
rCdApð _xðtÞ � vðtÞ Þj _xðtÞ � vðtÞj (28)
r three different buoys.



Fig. 3. Comparison of the heave RAOs on various shapes of a buoy.
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where Cd, Ap, _x, and v are the drag coefficient, projected area, buoy
velocity, and water particle velocity, respectively. To represent the
viscous damping force accurately, it is very important to estimate
the appropriate drag coefficient according to the properties of the
floating body. For this, the drag coefficients were estimated pri-
marily from free decay tests or forced oscillation tests. Recently,
some studies were conducted to estimate the drag coefficients
through CFD analysis. In this study, the drag coefficient of the
previous studies was investigated. Based on this, the drag coeffi-
cient suitable for this analysis model was selected. Compared to the
wave tank experiment, Zurkinden et al. (2014) calculated the drag
coefficient of a hemisphere, 0.254 m in diameter, to be 0.2, and Lok
et al. (2014) estimated the drag coefficient of a hemisphere, 0.17 m
in diameter to 0.175. Giorgi and Ringwood (2017) estimated the
drag coefficient of a hemispherical body with a radius of 2.5 m by
0.6 compared to CFD analysis and minimizing the errors. For the
drag coefficient of a cylindrical buoy, many studies have been
conducted since the 1990s. Gudmestad and Meo (1996) estimated
Fig. 4. Comparison of the heave RAOs on the calculation methods of the Froude-Krylov
force for a hemispherical buoy (Lin: frequency-domain linear analysis, ME: Maclaurin
expansion for NFK force).
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the drag coefficient of cylindrical buoys from 0.65 to 1.05, and
Sarpkaya (1986) estimated experimentally that the drag coefficient
was between 0.8 and 1.0 for a small Keulegan-Carpenter number.
Guo et al. (2018) reported a drag coefficient of 0.93 through ex-
periments. Based on these studies, the drag coefficients of the
hemispherical floating body and a cylindrical body were set to 0.6
and 0.95±0.05, respectively, in this study. The drag coefficient of a
conical buoy in a few studies was set to 0.8±1.0 (Giorgi et al., 2016).
2.5. PTO force

As a PTO system of a heaving buoy typeWEC, a hydraulic system
or a linear generator is generally applied. The hydraulic PTO system
consists of a hydraulic cylinder that converts vertical buoy motion
to fluid flow in a hydraulic circuit, a hydraulic accumulator that
protects the hydraulic system or maintains residual pressure, a
hydraulic motor and a power generator that produces energy from
fluid flow. The hydraulic PTO system can be represented in the form
of an approximate coulomb damping force according to its char-
acteristics (Falcao, 2008; Babarit et al., 2012; Kim et al., 2019c).

FPTO ¼ �minðGj _xj;DpScÞsignð _xÞ (29)

whereDp and Sc are the pressure difference between High Pressure
(HP) and Low Pressure (LP) and the sectional area of a hydraulic
cylinder, respectively. G is the slope to reduce the numerical error
due to abrupt changes in the PTO force, and as applied by Babarit
et al. (2012), applied 100 times the added mass value. The instan-
taneous extraction power can be obtained by multiplying the PTO
force by the velocity of a buoy. Time-averaged extraction power can
be expressed as Eq. (30).

Pex ¼ 1
te � ts

ðte
ts

FPTO _xdt (30)

where ts and te are the starting and end times to estimate the time-
averaged extraction power, respectively. Under regular wave con-
dition, te � ts was set to be the same as the wave period. A total of
3 h of data was analyzed for irregular wave analysis.
Fig. 5. Comparison of the heave RAOs for various methods of the Froude-Krylov force
Model 2 (Cylindrical buoy) and Model 3 (Truncated conical buoy).



Fig. 6. Comparison of the Froude-Krylov forces on various analysis approaches according to the buoy displacement (a: Hemispherical buoy, b: Circular cylindrical buoy, c: Truncated
conical buoy, u ¼ 1 rad/s).
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2.6. Latching control strategy

The latching control is a type of discontinuous phase control
technique. This technique controls the phase of buoy displacement
by locking and releasing the movement of the buoy for a certain
time when the displacement of the buoy reaches its peak due to
waves. Because the latching duration is the only variable, the
latching control technology is very simple, and its effectiveness has
been proven through various researches on control technologies
(Hal et al., 2011). The latching duration can be determined using the
relationship with the heave natural period of the body (Sheng et al.,
2015; Kim et al., 2019a).

TL ¼
Tc � T0

2
(31)

where TL, Tc, and T0 are the latching duration, characteristic wave
period, and the natural period of a buoy, respectively. Under the
regular wave condition, the characteristic period is the wave
period, and in the irregular wave condition, the characteristic
period is the same as the energy period, Te (Sheng et al., 2015; Cho,
2015). In addition, the motion constraint of the floating body was
92
applied to allow latching control in this study, as expressed in Eq.
(32).�
xðtÞ ¼ xðtlsÞ; tls < t < tle
_xðtÞ ¼ 0; otherwise

(32)

where tls and tle denote the starting time and end time of the
latching control, respectively. The effect of the Froude-Krylov force
was estimated by applying latching control with the optimal
latching duration. The latching control can be applied easily by
locking and releasing the valve in the hydraulic circuit for a certain
time when the sign of the hydraulic cylinder stroke speed changes.
3. Numerical model and results

In this study, numerical modeling with the same radius, weight,
and waterplane area of a hemispherical buoy, cylindrical buoy, and
truncated conical buoy was performed. Table 1 lists the specifica-
tions of three different floating bodies. The draft of the truncated
cone was set to be the same as the draft of the hemispherical buoy
and cylindrical cylinder. The weights of all buoys were the same.
Fig. 2 shows the numerical model based on Table 1; the number of



Fig. 7. Comparison of the heave RAOs including the drag forces (a: Hemispherical buoy, b: Circular cylindrical buoy, c: Truncated conical buoy).
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nodes was 1200,1770, and 1576, respectively. The Runge-Kutta 4th-
order time integrationmethod was adopted for timemarching, and
its time integration step was set to T/200.

Fig. 3 presents the heave RAOs of three different types of buoys
for WEC. In the figure, Z means the amplitude of the heave motion
displacement. All bodies had the same mass and restoring co-
efficients. On the other hand, owing to differences in the hydro-
dynamic coefficients, the cylindrical buoy with a relatively small
draft has a heave natural frequency of approximately 1.8 rad/s, and
the hemispherical and the conical bodies have a heave natural
frequency of 2.0 rad/s. For the cylindrical buoy, themaximumheave
response was approximately 2.8 times the incident wave
amplitude.

Fig. 4 shows the heave RAOs of a hemispherical buoy from
different methods of the Froude-Krylov force. Two different
methods were adopted to evaluate the Froude-Krylov force: con-
ventional frequency-domain linear analysis and a method based on
the Maclaurin expansion, as shown in chapter 2.2. Convergence
tests were performed to investigate how many terms of the theo-
retical solutions in the Maclaurin expansion are needed to calculate
the accurate Froude-Krylov force. The effects of buoy displacement
and wave elevation around the buoy were not considered in this
test. In Fig. 4, the heave RAO applying the Froude-Krylov force from
93
the Maclaurin expansion to the 4th-term was similar to the linear
analysis results. In Fig. 5, convergence tests were also performed for
the number of applied terms in the Maclaurin expansion for Model
2 (cylindrical buoy) and Model 3 (truncated cone buoy). To obtain
accurate heave RAOs, models 2 and 3 were applied up to the 4th-
and 6th-terms of the theoretical solution in the Maclaurin
expansion.

Fig. 6 compares the nonlinear Froude-Krylov forces calculated
by the theoretical solutions based on a Maclaurin expansion and
the remeshing scheme according to the buoy displacement. The
change in the incident wave potential in the z-direction above the
mean water level was expressed by vertical stretching. For
simplicity, it was assumed that the incident wavelength was long
enough to ignore the diffraction effect, and the variation of wave
elevation was the same as the heave response of the buoy. To apply
the remeshing technique, the numerical model used in Fig. 2 for
frequency-domain analysis was used. The linear Froude-Krylov
force means the force calculated at the mean body posion
without taking into account the instantaneous wetted body sur-
face. The results of the theoretical solution agreed well with those
of the remeshing scheme. On the other hand, the linear Froude-
Krylov force had a constant value regardless of the buoy displace-
ment. Through Fig. 6, as the buoy displacement increases, the



Fig. 8. Time-averaged extraction power on various PTO conditions (u ¼ 0.8 rad/s, H/l ¼ 1/50, Model 1(Hemispheric buoy)).
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magnitude of the Froude-Krylov force increased approximately
seven times more than the linear FK force.

Fig. 7 presents the heave RAOs of the buoy under two different
wave steepness conditions with various drag coefficients. The re-
sults were calculated through the theoretical solutions with a given
optimal series of a Maclaurin expansion. Even when the drag co-
efficients were applied, the sensitivity to the drag coefficient was
quite small because the vertical motion of the body did not change
significantly. In this study, the drag coefficient was 0.6, 0.95, and 0.8
for the hemispherical buoy, cylindrical buoy, and truncated conical
buoy, respectively. The vertical motion decreased in the resonance
period when the wave steepness was large (H=l¼1/20), but the
motion increased slightly in the other wave periods. To estimate the
energy extraction of WEC, the hydraulic PTO system was modeled
numerically and applied. The optimal hydraulic PTO condition was
determined from the case of a small amplitude wave (H= l¼1/50)
for each numerical model. The hydraulic PTO condition can be
expressed by the difference between the High Pressure (HP) and
Low Pressure (LP) from the hydraulic cylinder and the flow rate.
Fig. 8 presents the time-averaged extraction power under various
PTO forces applied to three types of buoys for WEC. Various PTO
damping values were applied to obtain the optimal PTO force
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condition in the wave wave region of 0.25≪u=un≪0.75. The time-
averaged generated power (Pex) was divided by the square of
incident wave amplitude (A) and the buoy diameter (B) as Pex=A2B
to estimate and compare the value according to the change in the
incident wave period. The maximum time-averaged extraction
energy occurred when the PTO force was 70% of the vertical exci-
tation force of the buoy (Fz ¼ FFK þ FD). In this way, the PTO con-
ditions for maximum energy extraction under various wave
conditions were calculated for each numerical model of the buoy.

Based on the previously estimated conditions of the hydraulic
PTO system as Fig. 8, the results of the weakly nonlinear time-
domain analysis of a hemispherical buoy for a WEC were
compared with the results of linear time-domain analysis (Fig. 9) at
specific wave and PTO condition (u=un¼0.4, FPTO=Fz¼0.7). A
latching duration of 2.356 s, which is the optimal latching time at
the corresponding frequency, was applied. The results of linear
analysis and nonlinear analysis agreedwell when the incident wave
height was low at 0.25 m (H=l¼ 1/240). This is because the incident
wave belongs to the linear wave region. Therefore, the nonlinearity
is small. When the wave amplitude increased, however, the relative
heave response (Fig. 9 (a)) and the time-averaged extraction power
compared to wave amplitude (Fig. 9 (b)) decreased. The static force



Fig. 9. Time-series of hemispherical buoy displacements, extraction powers, excitation forces and static forces ( u=un ¼ 0.4, FPTO=Fz ¼ 0.7, Lin: Linear analysis, WN: Weakly
nonlinear analysis).
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(Fig. 9 (d)) also decreased with increasing wave amplitude. Fig. 9 (c)
shows the time series of the wave excitation forces, the sum of the
Froude-Krylov force, and diffraction force under various wave
amplitude conditions. Because the diffraction force does not differ
between linear analysis and weakly nonlinear analysis, the differ-
ence in excitation force was due to the nonlinear Froude-Krylov
force. As the wave amplitude increased, the nonlinear effect of
the excitation force increased, as shown in Fig. 9(c). The latching
control strategy enables the extraction of large amounts of energy
with the effect of rapidly moving the body upward or downward.
This technique can constrain the body motion during the latching
duration, making a 90� difference in phase angle between excita-
tion force and buoy motion. This can be confirmed by comparing
the time when the buoy displacement is zero, and when the
external force is zero. In Fig. 9 (c), indication (1) is when the buoy
moves downward, and (2) is when the buoy moves upward. When
the difference was 90�, the excitation force acting on the body was
maximized along the direction of movement of the buoy after
releasing the buoy motion according to the latching control strat-
egy. As the incident wave amplitudes increased to 0.25 m, 0.5 m,
and 1.0 m, the magnitude of the buoy motion decreased by 1%,
18.6%, and 32.3%, respectively, compared to the linear analysis re-
sults. The external force was also reduced at a similar rate.
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Fig. 10 compares the heave RAOs and time-averaged extraction
powers of three different WEC buoy models under a range of
incident wave amplitudes. The analysis was performed only in the
longwave condition, where the latching control strategy was
known to be effective. For a clear comparison, the heave RAOs and
time average extraction powers were compared when no latching
control strategy was applied. The time-averaged extraction power
was nondimensionalized by the incident wave flux, which is the
same as the capture width. As shown in Fig. 9, as the amplitude of
the incident wave increased, the displacement of the buoy
decreased due to the influence of the nonlinear Froude-Krylov
force, and the dimensionless time-averaged extraction power
decreased. As the incident wave amplitude was increased from
0.25 m to 1.0 m, the extraction power (P=A2B) decreased from 50%
to 20%. Based on these results, linear analysis using latching control
techniques provides overestimated results. In addition, when the
incident wave frequency was 0.4e0.5 times the natural frequency
of the buoy, the heave RAO and time-averaged extraction power
were maximized due to the latching control technique. Therefore,
latching control is very effectivewhen the wave height is small, and
the incident wave frequency is 0.4e0.5 times the heave natural
frequency of the buoy. Table 2 lists the maximum time-averaged
extraction power for the three models under each calculation



Fig. 10. Comparison of the heave RAOs and the time-averaged extraction powers for three different buoy models.
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condition. When the wave amplitude was small (A ¼ 0.25 m), the
effect of latching control was amplified more than twice the
maximum extraction power compared to the case without latching
control. When the wave amplitude was large (A ¼ 1.0 m), however,
it was amplified by approximately 40%. When applying latching
control, the cylindrical buoy and the spherical buoy have a slightly
96
better power take-off performance than the truncated conical buoy.
Further analysis of a hemispherical buoy under irregular wave

conditions was performed. In the case of irregular wave analysis,
the same drag coefficient as the previous regular wave analysis was
applied. The time interval was fixed to 0.01 s, and the analysis
durationwas fixed to the sea state duration of 3 h. Fig. 11 shows the



Table 2
Maximum time-averaged extraction power.

Model1 [W/m3] Model2 [W/m3] Model3 [W/m3]

WN(A ¼ 0.25 m)
(No latching control)

8469 (2626 W) 8236 (2573 W) 7945 (2483 W)

Lin(A ¼ 0.25 m) 19,866 (6208 W) 19,192 (5997 W) 17,823 (5570 W)
WN(A ¼ 0.25 m) 19,398 (6062 W) 19,296 (6030 W) 16,473 (5148 W)
WN(A ¼ 0.50 m) 15,749 (19,686 W) 15,437 (19,296 W) 13,045 (16,306 W)
WN(A ¼ 1.00 m) 11,900 (59,500 W) 11,487 (57,435 W) 10,123 (50,615 W)

Fig. 11. Comparison of the significant buoy displacement on various significant wave heights.
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significant displacements of each numerical model for various
significant wave heights in the absence of a PTO force and the
latching control strategy. The zero-crossing method was applied to
calculate the significant buoy displacement. In the case of irregular
wave analysis, since a random phase angle should be applied to
each frequency component, the numerical analysis of a single wave
condition (Hs and Tp) was repeated 10 times, and the average value
was used. When the latching control strategy and PTO force were
not applied, the change in the significant buoy displacement was
not large. The overall amplitude tended to decrease with increasing
wavelength (frequency decreases) and had a value similar to the
significant wave height. This is because as the wavelength in-
creases, the heave amplitude of the buoy becomes equal to the
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incident wave amplitude. In the comparison in Fig. 11, the signifi-
cant displacements of the buoys in all numerical models are slightly
larger than those of the linear analysis in the WN analysis because
the amplitudes of the Froude-Krylov forces by larger displacements
are increased as shown in Fig. 6. However, the differences are small.

Fig. 12 shows the time histories of the heave displacement,
instantaneous extraction power, static force, and excitation force of
a hemispherical buoy type WEC under various significant wave
heights with optimal latching control. The PTO force for the
maximum time-averaged power was estimated by trial and error
(FPTO=Fz ¼ 0.3). The latching duration, the only variable in the
latching control strategy, was set as Eq. (31). For this analysis, the
same random phase angle was applied for each incident wave



Fig. 12. Time histories of the buoy displacement, instantaneous extraction power, static force, and excitation force on various significant wave heights ( FPTO= Fz ¼ 0.3, uP= u0 ¼ 0.45,
TL ¼ 1.43 s, Model 1).
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frequency component. When the amplitude of the buoy displace-
ment was small (the time range of 30 ≪Time=Tp ≪31.5), all the
calculated values similar regardless of the amplitude of the incident
wave. On the other hand, the results of nonlinear analysis varied as
the displacement of the buoy increased. When the significant wave
height was high, the displacement of the buoy changed rapidly by
latching control, and the nonlinear static force and excitation force
also changed nonlinearly.

Fig. 13 shows the time-averaged generated power for each nu-
merical model as function of various PTO forces and wave peak
frequencies of irregular waves. For this, weakly nonlinear analysis
was carried out in irregular waves (Hs ¼ 0.5 m) to obtain the
optimal PTO force ratio (the ratio of PTO force to excitation force at
each peak frequency, FPTO=Fz). The optimal ratio (FPTO= Fz) was
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0.3e0.5 for all numerical models unlike the optimal ratio in regular
waves (FPTO=Fz ¼ 0.5e0.7). Based on the results of Figs. 13 and 14
shows the significant displacement and the time-averaged extrac-
tion power under various peak frequencies and significant wave
heights in irregular waves using a latching control strategy. The
zero-crossing method was used to calculate the significant
displacement and time-averaged extraction power. The optimal
PTO conditions and the latching control for the maximum energy
extraction were applied. This numerical analysis was performed in
the longwave region, where the latching control technique was
effective. The buoy displacement increased with increasing wave-
length, but the displacement decreased with increasing significant
wave height. When the ratio of the peak frequency to body reso-
nant frequency (up=un) was increased from 0.4 to 0.45, the



Fig. 13. Comparison of the time-averaged generated power on various PTO forces and wave peak frequencies (Weakly nonlinear analysis, Hs ¼ 0.5 m).
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maximum time-averaged extraction power occurred. Therefore,
when designing the heaving hemispherical buoy type WEC to
which the latching control was applied, it was effective to design
the incident wave frequency at approximately 0.4e0.45 times the
heave natural frequency of buoy. In addition, when the significant
wave height was small (Hs¼ 0.5 m), the extraction power increased
by 25e50% due to latching control. In contrast, when the significant
wave height was large (Hs¼ 2.0 m), the latching control effect was
increased by only 10e15%. As a result of estimating the influence of
the buoy shape through Fig. 14(b)~(d), the trend of the time-
averaged generated power was similar regardless of the shape of
the buoy. However, the maximum generated power from the
truncated conical buoy type WEC was smaller than the others. The
cylindrical buoy WEC with high wave amplitude (Hs ¼ 2.0 m) and
latching control strategy produced less power than the case
without latching control. Through this, nonlinear analysis is
required to estimate the power take-off performance of the wave
energy converter accurately under high wave conditions.
4. Conclusion

In this study, the nonlinear Froude-Krylov forces for three buoy
99
forms (hemispherical, cylindrical, and truncated conical) for a
heaving buoy type WEC were derived theoretically using the
Maclaurin expansion method. The theoretical solutions of the
nonlinear Froude-Krylov forces were applied to the WEC system
using a latching control strategy. The coupled analysis between the
buoy and the PTO system was carried out using a latching control
strategy. To confirm the accuracy of the theoretical solutions, the
heave RAOs of the buoy were compared with the results of linear
analysis and the remeshing numerical scheme. The drag co-
efficients were also applied to each buoy to consider the viscous
effect. Based on this, the hydrodynamic performance and extrac-
tion power under various wave conditions were evaluated for three
types of heaving buoy WECs to which the latching control strategy
had been applied, and the following conclusions were drawn.

1. An incident wave period of 0.4e0.45 times the natural period of
the buoy was the optimal condition to amplify the extraction
power of the WEC buoy through latching control. Under irreg-
ular wave conditions, the peak period of the incident wave was
optimal between 0.4 and 0.45 of the natural period of the buoy.



Fig. 14. Comparison of significant displacement of buoy and time-averaged extraction power on various irregular wave conditions (a, b: hemispherical buoy (Model 1), c: cylindrical
buoy (Model 2), d: truncated conical buoy (Model 3)).
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2. Among the three types of WEC heaving buoys under latching
control, the hemispherical buoy showed the maximum energy
extraction performance.

3. When the significant wave height was small (Hs¼ 0.5 m), the
extraction power increased by 25e50% due to latching control,
but the latching control effect was increased by only 10e15%
when the significant wave height was large (Hs¼ 2.0 m).
Through this, nonlinear analysis is required to estimate the
power take-off performance of the wave energy converter
accurately under high wave conditions.
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