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o Turbine blades experience a complete cycle of reversed stress during each evolution
o Deflections (deformations) on the blade during its operation

o Conventional design studies on tidal current turbines
o Computational Fluid Dynamics (CFD) with a simple rigid blade assumption

o Finite Element Analysis (FEA) with simplified hydrodynamic loads from low-fidelity methods

*

FSI model will yield time-accurate solutions for loading and performance of a deforming rotor
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Q-criterion iso-surface colored by helicity and pressure contour on the turbine surface (left) and total deformation of blades (right) ‘

*Daniel L. Laird, Erick L. Johnson, Margaret E. Ochs, and Blake Boren, Technological Cost-Reduction Pathways for Axial-Flow Turbines in the Marine Hydrokinetic Environment, SANDIA REPORT, SAND2013-7203 (2013).



P Introduction

o Fluid Structure Interaction (FSI)
o Categorized by the degree of physical coupling between CFD and FEA solvers
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The degree of physical coupling and numerical coupling approaches

ANSYS Fluent and Mechanical are used for FSI modeling




P/ Reference Model 1 (RM1)

Geometric characteristics of RM1
o 1:40 scale model tested at St. Anthony Falls Laboratory (SAFL) (Hill et al., 2014 & 2020)

Parameter 1:40 Model
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/" CFD Setup

Computational domain and boundary conditions (w/o blockage)

O

O

O

One rotor only

Cut off 1.5% of chord length for mesh quality
Blockage effect is ignored

(0, O, 0,) at the nose of the rotor

Inlet: 1.04 m/s uniform flow

Outlet: zero gauge pressure

Symmetry: on top, bottom, and sides

No-slip wall: on rotor and nacelle

Computational domain for the simulation without blockage effect
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/" CFD Setup

Computational domain and boundary conditions (w/ blockage)

O

O

One rotor only

Cut off 1.5% of chord length for mesh quality
Blockage is applied to bottom and side wall
(0, O, 0,) at the nose of the rotor

Inlet: fully developed turbulent flow velocity profile

Outlet: zero gauge pressure
Symmetry: left side | . o
Computational domain for the simulation with blockage effect

No-slip wall: rotor, nacelle, bottom and right side

Free surface effect is ignored (Slip wall)
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Inlet boundary condition (w/ blockage)
o Water tunnel simulation
o To obtain velocity profile of fully developed turbulent flow
o 40m (80D) long - The RM1 model was located 40m downstream of the baffles
o No-slip wall BC on bottom and right side
o Volumetric flow rate, Q,, = 2.425 m3/s

Velocity contour of fully developed turbulent flow from the water tunnel simulation




CFD Setup

Computational Mesh (Medium grid)

o Tetrahedral mesh with overset multi-blocks (# of cells
o Rotor: 9.3M
o Nacelle: 1.1M
o Bkgw/ refinement: 19.1M (w/ blockage)
o Total: 29.4M

o Prism layers on the rotor and nacelle wall
o yt =14 (Ay = 3.44x107° m)
o Growth rate: 1.2
o Total number of layers: 20

0 Rpgrgr = 9.1X1073 M, Spyrpest. = 1.8X1073 m

Computational Mesh for rotor and nacelle overset blocks and background domain
(Donor cells for overset method are colored by red)
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Mathematical Model and Numerical Method

O

O

O

O

Viscous model:
o SST k-omega model

Pressure-velocity coupling:
o Pressure-based coupled solver

Spatial discretization:
o Pressure: second order

o Momentum: second order upwind
o Turbulence model: second order upwind

Temporal discretization:
o Transient formulation: first order implicit
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Timestep size dependency (w/o blockage)

s’

Time step size Cp (diff, %) Cr (diff, %)
Nt 1° rotation per At 0.3667 (-) 0.7850 (-)
N2 2° rotation per At 03660 (0.20)  0.7833(0.22)
N3 40 rotation per At 03343(8.86)  0.7681 (2.15)
Uy 0.008% 0.054%

Uy, is uncertainty of N; obtained from the method of Stern et al. (2006); and Xing and Stern (2010)
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Estimated Cp and Cr depends on the time step size




P Spatial Convergence

Mesh size dependency study (w/ blockage) o
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P Turbine Performance

Coefficient of power

o Discrepancy between CFD w/o blockage and Exp. (Hill et al, 2014 & 2020) results due to the
extensive blockage effect (14.3%)
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Measured and estimated Cp vs. 4 (coefficient of power vs. tip-speed ratio). Solid
and dashed lines are from Hill et al, 2014 and 2020, respectively)
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Velocity and turbulence intensity profiles
O Uhub,EXp ~ 1.04 m/S @ x = _3dT

s’

dr: Turbine diameter

O Uhub CFD ~ 0.965 m/S @x = _3dT T,: Turbulence intensity
’ ADV: Acoustic Doppler Velocimetry
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Measured (red and blue square) and estimated (black circle) profiles for velocity components and turbulence intensity
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Normalized streamwise velocity and turbulent kinetic energy
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Streamwise velocity deficit and turbulence intensity
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Turbine Wake Characteristics
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Measured and estimated velocity deficit (top) and turbulence intensity (bottom) at hub height along the streamwise direction
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Geometry and mesh
o Rotor only

s’

o Hexahedral mesh with quadratic element order
o Modelled as a solid made from aluminum alloy

Generated mesh for FEA simulation (# of elements = 1.1M)

Boundary conditions
o Assigned angular velocity corresponding to the turbine rotating speed

o Displacement support at the turbine hub center
o A fluid-solid interface on the rotor surface

Remote displacement point (left) and pressure on the fluid-solid interface (right)



P One-way FSI

Simulation results at 204 rpm (TSR =5.5)
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Variation of estimated maximum deformation (left), strain (middle), and stress (right) with mesh density

o Estimated total deformation and equivalent stress
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Instantaneous contour plots of total deformation (left) and equivalent stress (right) on rotor ‘
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/" Two-way FSI Model

Two-way iteratively implicit approach

o Iterate within each time step to obtain an implicit solution

o Three levels of iterations:

Force/displacement are updated between the

/ Each step moves forward in time

FEA and CFD solvers

Transient loop

/ % Inner loop used to converge the

| Coupling loop
— CFD loop
L Mass
- Momentum
Turbulence

Mesh displacement
Sk

Sk+1 = Sk

OR\ !
Sk+1 = Sk — (K) Ry

— v

Force — FEAloop
fi i1
System Structural -
Coupling

Incremental displacement
Sk
Ry = Sk — si

k: coupling iteration for the coupling loop

i: coupling step for the transient loop

field within a solver
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3 o Transient two-way coupled FSI is modeled based on CFD and one-way FSI models

o Require constrain method for freestream turbulence intensity in CFD

o Decision of suitable timestep for two-way FSI to avoid negative cell volume from mesh
smoothing

o Investigation of the influence of blade deformation on hydrodynamic parameters

o Evaluation of LCOE of full scale turbine made from composite materials







