

Exceptional service in the national interest

Coupled Fluid Structure Interaction Simulation on a Horizontal Tidal Current Turbine

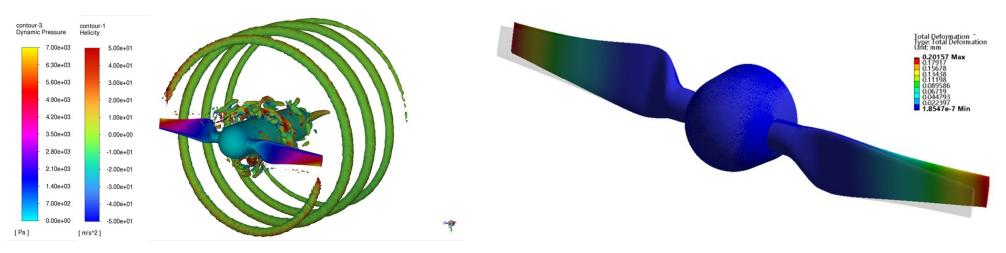
Verification & Validation of CFD Model and Demonstration of Coupled Fluid Structure Interaction Model

Dongyoung Kim, Budi Gunawan

UMERC+METS 2022 Conference

September 13-14, 2022

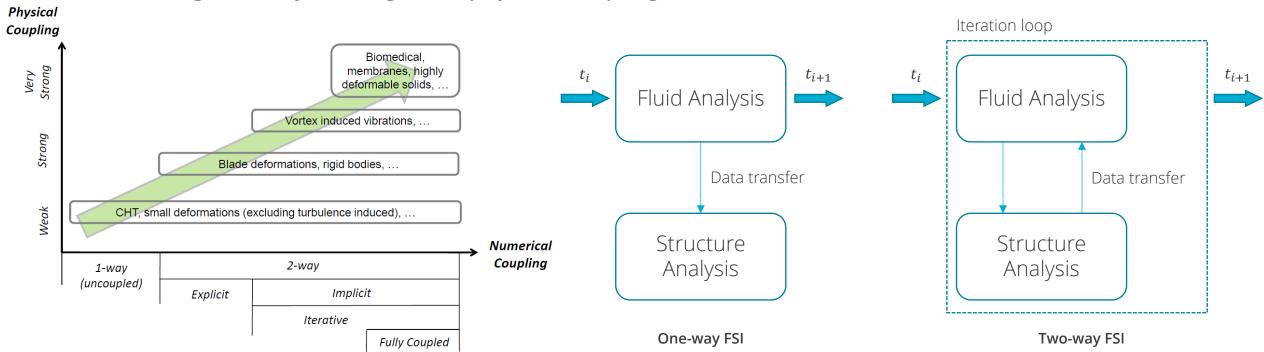
Portland, OR


SAND2022-11972 C

Introduction

- Turbine blades experience a complete cycle of reversed stress during each evolution
 - Deflections (deformations) on the blade during its operation
- Conventional design studies on tidal current turbines
 - Computational Fluid Dynamics (CFD) with a simple rigid blade assumption
 - o Finite Element Analysis (FEA) with simplified hydrodynamic loads from low-fidelity methods

FSI model will yield time-accurate solutions for loading and performance of a deforming rotor*



Q-criterion iso-surface colored by helicity and pressure contour on the turbine surface (left) and total deformation of blades (right)

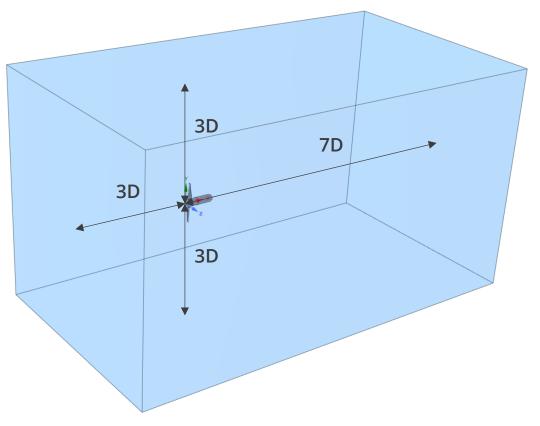
Introduction

- Fluid Structure Interaction (FSI)
 - Categorized by the degree of physical coupling between CFD and FEA solvers

The degree of physical coupling and numerical coupling approaches

Reference Model 1 (RM1)

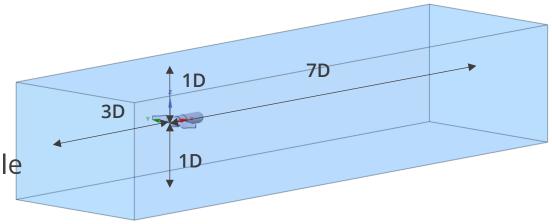
Geometric characteristics of RM1


o 1:40 scale model tested at St. Anthony Falls Laboratory (SAFL) (Hill et al., 2014 & 2020)

	Parameter	1:40 Model		
	Q_w	$2.425 \text{ m}^3 \text{s}^{-1}$		
	h	1.0 m		
	T_{H2O}	18.0–20.5 °C		
	u_{hub}	1.04 ms^{-1}		
	Fr	0.28	^	← G →
	Re_c at C_{p-Opt}	3.1×10^5	_	
	Re_D	4.4×10^{5}		
	NACA	4415	$\mathcal{O} = 0.089 \mathrm{m}$	
	d_T	0.5 m	Ø= 0.02	Q = 0.090 m $Q = 0.095 m$ $Q = 0.094 m$
	h_{hub}	0.5 m	→ 0.02	$\emptyset = 0.090 \text{ m}$ $\emptyset = 0.095 \text{ m}$ $\emptyset = 0.094 \text{ m}$
	σ	13.7%		
	η	14.3%	05	
	λ	1 to 9	0.5 m $_{\odot}$ $_{\beta I}$ = 5.21	92 - 0.729
		A DAY	1.05	β2=0.72°
4 4 1		ADV array	$d_{\tau} = 0.5 \mathrm{m}$ $\phi = 0.08$	
	-	-111		/ m
				(B) (C) (D) (A)
	_			(A)
			0.5 m	A = 0.080 m
			Ø = 0.076 m	B = 0.073 m C = 0.100 m
m.1.0	dr.			(F) C = 0.100 m D = 0.080 m
<u>-</u>	. 1	dz = 0.025m		E = 0.047 m
- N			0.35 m → 0.35 m →	$L_N = 0.38 \text{ m}$ F = 0.047 m
1	= 0.5m	$\hat{x}/d_T = 1, 2, 3, \dots, 10$		G = 0.203 m
FLOW	0.5111	,, 10		

Computational domain and boundary conditions (w/o blockage)

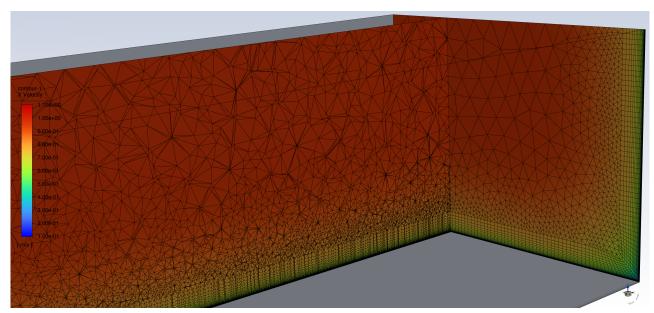
- One rotor only
- Cut off 1.5% of chord length for mesh quality
- Blockage effect is ignored
- \circ (0, 0, 0,) at the nose of the rotor
- Inlet: 1.04 m/s uniform flow
- Outlet: zero gauge pressure
- Symmetry: on top, bottom, and sides
- No-slip wall: on rotor and nacelle



Computational domain for the simulation without blockage effect

Computational domain and boundary conditions (w/ blockage)

- One rotor only
- Cut off 1.5% of chord length for mesh quality
- Blockage is applied to bottom and side wall
- \circ (0, 0, 0,) at the nose of the rotor
- Inlet: fully developed turbulent flow velocity profile
- Outlet: zero gauge pressure
- Symmetry: left side
- No-slip wall: rotor, nacelle, bottom and right side
- Free surface effect is ignored (Slip wall)

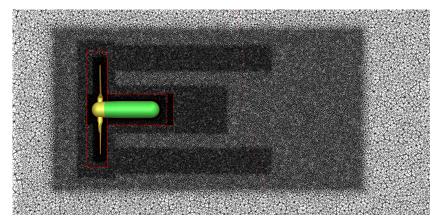


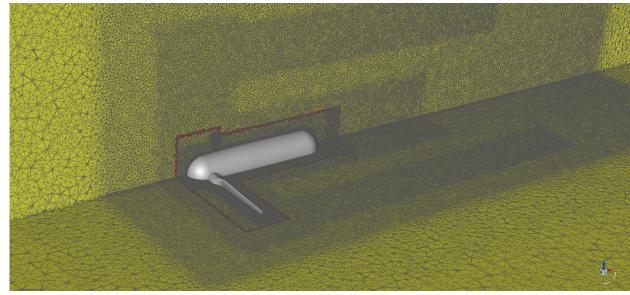
Computational domain for the simulation with blockage effect

Inlet boundary condition (w/ blockage)

- Water tunnel simulation
 - To obtain velocity profile of fully developed turbulent flow
 - 40m (80D) long The RM1 model was located 40m downstream of the baffles
 - No-slip wall BC on bottom and right side
 - Volumetric flow rate, $Q_w = 2.425 \, m^3/s$

Velocity contour of fully developed turbulent flow from the water tunnel simulation




Computational Mesh (Medium grid)

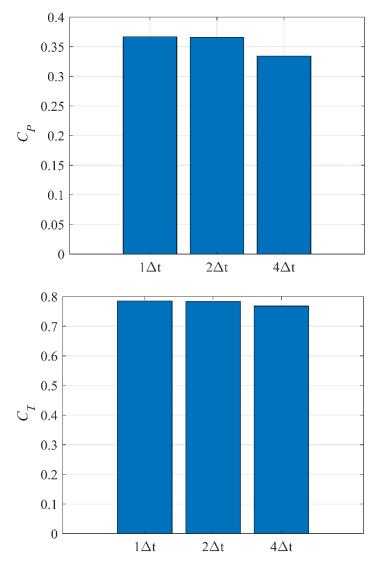
- Tetrahedral mesh with overset multi-blocks (# of cells)
 - o Rotor: 9.3M
 - Nacelle: 1.1M
 - Bkg w/ refinement: 19.1M (w/ blockage)
 - o Total: 29.4M

- $y^+ = 1.4 \ (\Delta y = 3.44 \times 10^{-5} \ m)$
- o Growth rate: 1.2
- Total number of layers: 20
 - o $h_{total} = 9.1 \times 10^{-3} m$, $\delta_{turb.est.} = 1.8 \times 10^{-3} m$

Computational Mesh for rotor and nacelle overset blocks and background domain (Donor cells for overset method are colored by red)

Mathematical Model and Numerical Method

- Viscous model:
 - SST k-omega model
- Pressure-velocity coupling:
 - Pressure-based coupled solver
- Spatial discretization:
 - Pressure: second order
 - Momentum: second order upwind
 - Turbulence model: second order upwind
- Temporal discretization:
 - Transient formulation: first order implicit



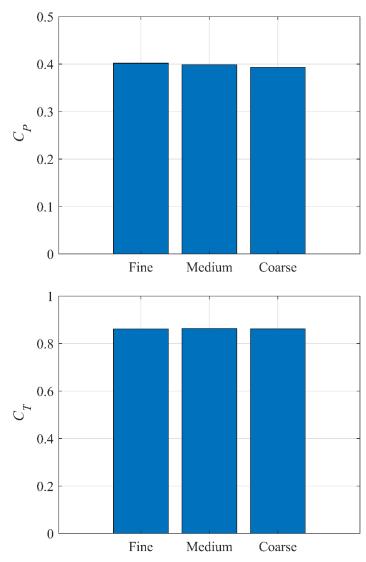
Temporal Convergence

Timestep size dependency (w/o blockage)

	Time step size	C_P (diff, %)	<i>C</i> _T (diff, %)
N_1	1° rotation per Δt	0.3667 (-)	0.7850 (-)
N_2	2° rotation per Δt	0.3660 (0.20)	0.7833 (0.22)
N_3	4° rotation per Δt	0.3343 (8.86)	0.7681 (2.15)
U_{k_1}		0.008%	0.054%

 U_{k_1} is uncertainty of N_1 obtained from the method of Stern et al. (2006); and Xing and Stern (2010)

Estimated C_P and C_T depends on the time step size

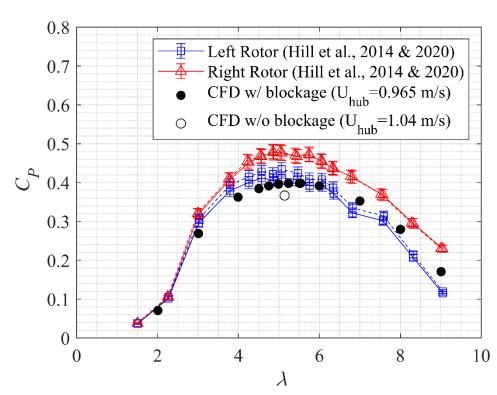


Spatial Convergence

Mesh size dependency study (w/ blockage)

# of cells		C_P (diff, %)	C_T (diff, %)
G_1	$66.2 M (y^+ = 1)$	0.4018 (-)	0.8617 (-)
G_2	$29.4 M (y^+ = 1.4)$	0.3984 (0.83)	0.8632 (0.18)
G_3	$14.5 M (y^+ = 2)$	0.3928 (2.24)	0.8622 (0.06)
U_{k_1}		1.007%	_

 U_{k_1} is uncertainty of G_1 obtained from the method of Stern et al. (2006); and Xing and Stern (2010)

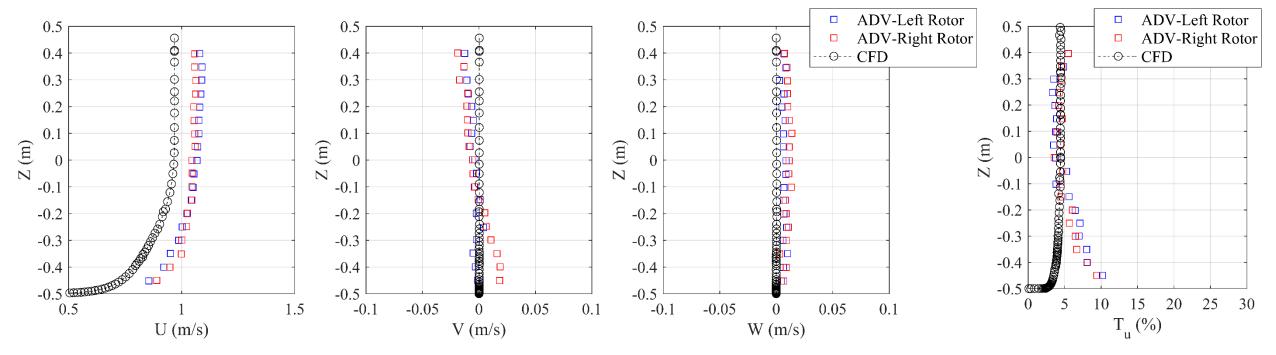

Estimated C_P and C_T depends on the mesh size

Turbine Performance

Coefficient of power

 Discrepancy between CFD w/o blockage and Exp. (Hill et al, 2014 & 2020) results due to the extensive blockage effect (14.3%)

@ 204 rpm	C_P	Uncertainty	
Exp. Left Rotor (TSR = 5.07)	0.412, 0.434	3.9 %	
Exp. Right Rotor (TSR = 5.03)	0.476, 0.479	3.9 %	
CFD w/o blockage (TSR = 5.14)	0.367		
CFD w/ blockage (TSR = 5.54)	0.402		

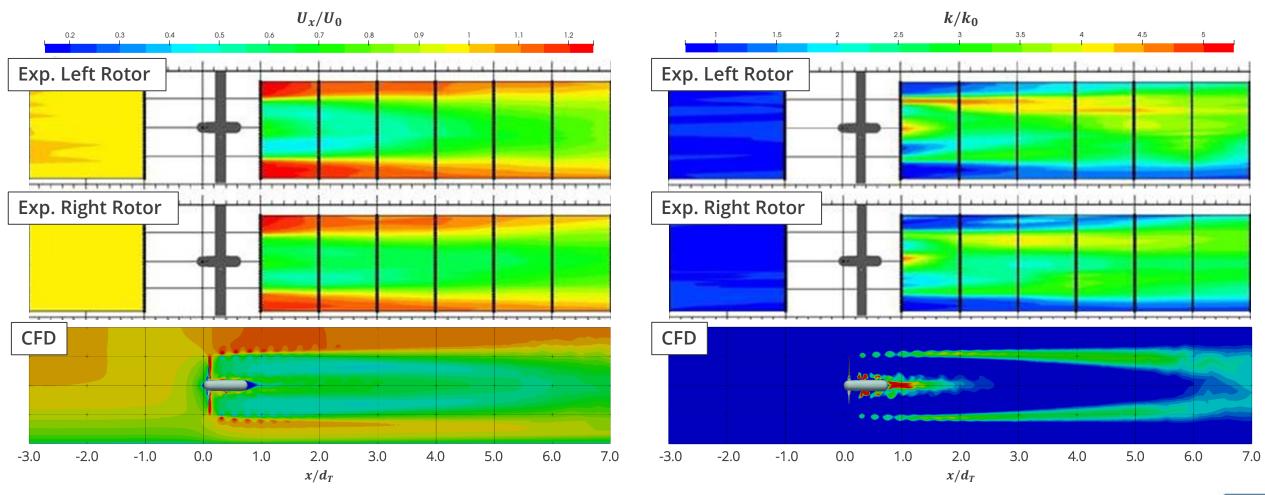


Inflow Characteristics

Velocity and turbulence intensity profiles

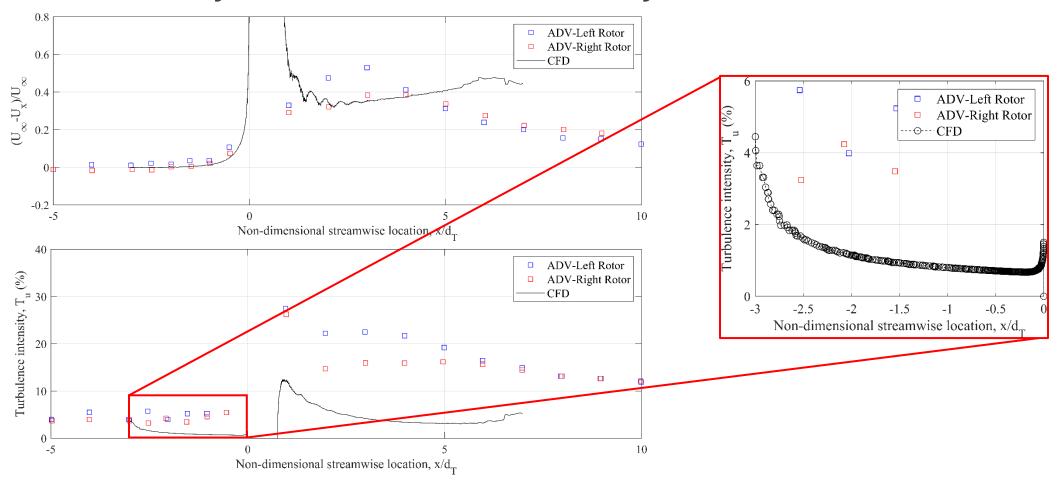
- $U_{\text{hub,Exp}} \approx 1.04 \, m/s @ x = -3d_T$
- $U_{\text{hub,CFD}} \approx 0.965 \, m/s @ x = -3d_T$

 d_T : Turbine diameter T_u : Turbulence intensity ADV: Acoustic Doppler Velocimetry



Measured (red and blue square) and estimated (black circle) profiles for velocity components and turbulence intensity

Turbine Wake Characteristics


Normalized streamwise velocity and turbulent kinetic energy

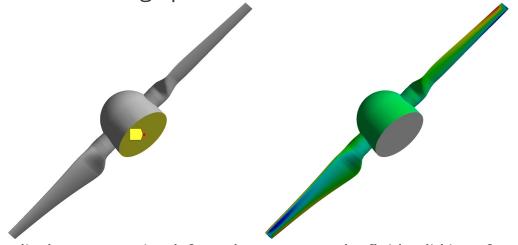
Turbine Wake Characteristics

Streamwise velocity deficit and turbulence intensity

FEA Setup

Geometry and mesh

- Rotor only
- Hexahedral mesh with quadratic element order
- Modelled as a solid made from aluminum alloy

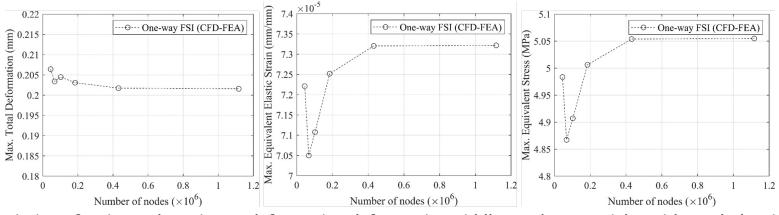


Generated mesh for FEA simulation (# of elements = 1.1M)

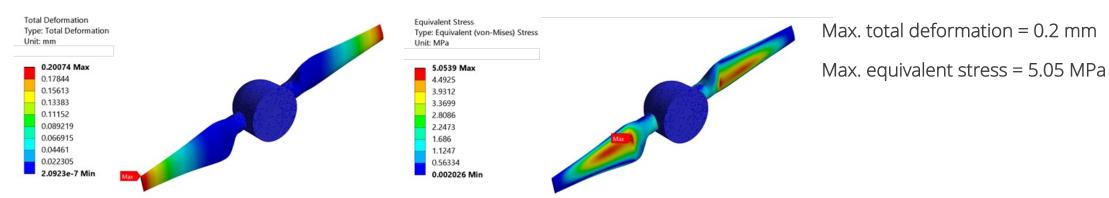
Boundary conditions

Assigned angular velocity corresponding to the turbine rotating speed

- Displacement support at the turbine hub center
- A fluid-solid interface on the rotor surface


Remote displacement point (left) and pressure on the fluid-solid interface (right)

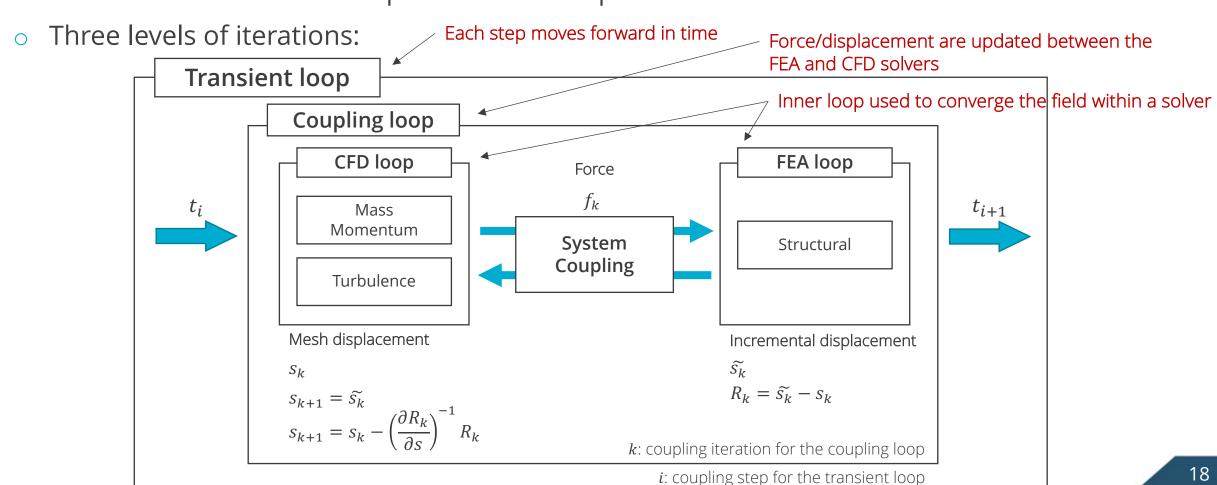
One-way FSI


Simulation results at 204 rpm (TSR = 5.5)

Mesh size dependency

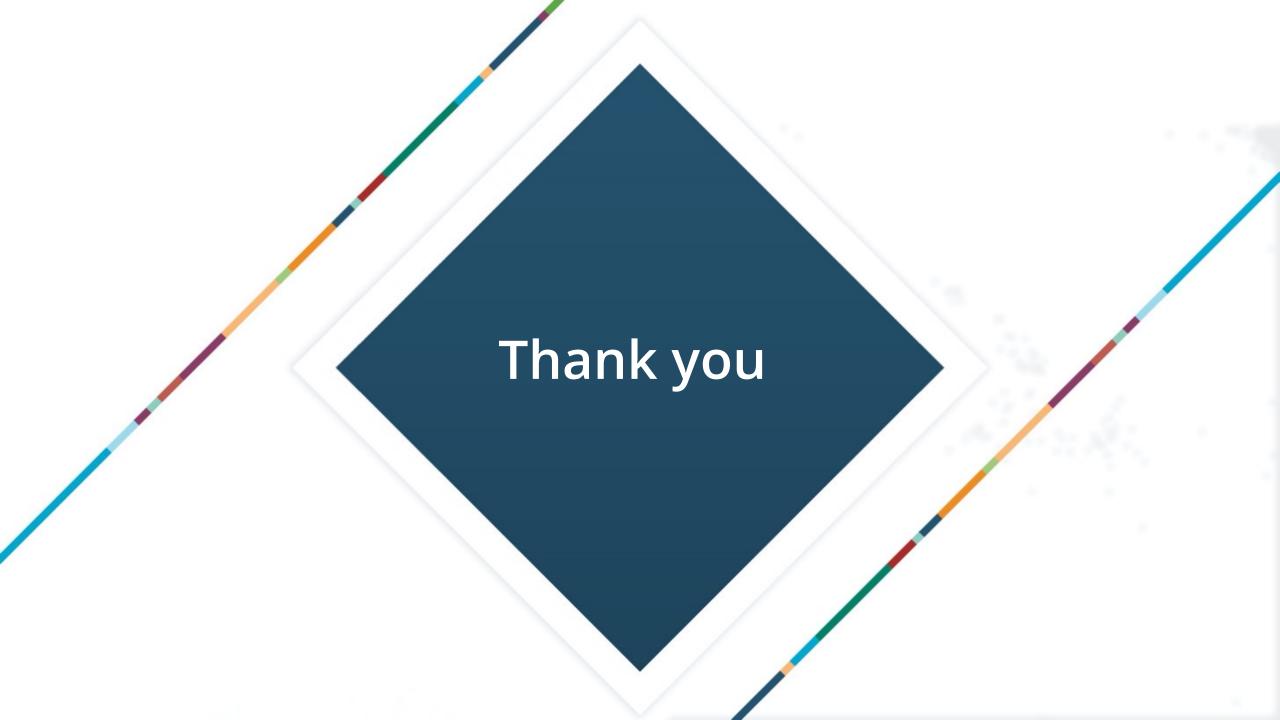
Variation of estimated maximum deformation (left), strain (middle), and stress (right) with mesh density

Estimated total deformation and equivalent stress



Two-way FSI Model

Two-way iteratively implicit approach


Iterate within each time step to obtain an implicit solution

Conclusion and Further Works

- Transient two-way coupled FSI is modeled based on CFD and one-way FSI models
- Require constrain method for freestream turbulence intensity in CFD
- Decision of suitable timestep for two-way FSI to avoid negative cell volume from mesh smoothing
- Investigation of the influence of blade deformation on hydrodynamic parameters
- Evaluation of LCOE of full scale turbine made from composite materials

