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Abstract: Wave Energy Converters (WECs) rely on effective Power Take-Off (PTO) control

strategies to maximize energy absorption under dynamic sea conditions. Traditional

hydrodynamic modeling techniques may require computationally intensive convolution

calculations, making real-time control implementation challenging. This paper presents

an alternative approach by leveraging instantaneous frequency estimation to dynamically

adjust PTO damping in response to varying wave frequencies. Two real-time frequency

estimation methods are explored: the Hilbert Transform (HT) and Phase-Locked Loop

(PLL). The Hilbert Transform method provides accurate frequency tracking but introduces

a delayed response due to its dependence on causal data. Conversely, the PLL approach

demonstrates strong potential in frequency tracking but requires careful gain tuning,

particularly in complex sea states. Comparative evaluations across multiple test cases—

including sinusoidal variations, amplitude steps, frequency step changes, and real-world

JONSWAP spectrum waves—highlight the strengths and limitations of each method. The

two different PTO control techniques across the various frequency estimation methods were

tested under real-sea states using a state-space model of a point-absorbing Wave Energy

Converter. The Capture Width Ratio (CWR) is used as a performance metric, with results

showing that the HT achieves a 10.6% improvement, while the PLL estimation yields a 0.9%

improvement relative to the fixed parameter control baseline. These results highlight the

effectiveness of real-time frequency estimation in improving energy absorption compared

to static control parameters.

Keywords: WEC control; instantaneous frequency estimation; impedance matching; control

optimization; median filter Hilbert transform; phase-locked loop

1. Introduction

Modeling the hydrodynamics of Wave Energy Converters (WECs) is fundamental to

the development of effective control strategies. A widely adopted approach is based on the

Cummins equation [1,2], which utilizes convolution integrals to account for fluid memory

effects. Although accurate, this method is computationally intensive and complicates real-

time determination of hydrodynamic parameters essential for optimizing Power Take-Off

Unit (PTO) control.

Traditional WEC control techniques, such as passive impedance matching, typically

assume a monochromatic wave environment and fixed optimal damping parameters [3].
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However, real ocean conditions are broadband and irregular, making static control sub-

optimal. Real-time reactive control, which dynamically adjusts PTO damping based on

incoming wave characteristics, offers a computationally efficient alternative better suited

for such environments [4].

Recently, novel control architectures have explored the use of instantaneous frequency

estimation based on the WEC’s own velocity signal rather than external wave measure-

ments. Cantarellas et al. [5] proposed an adaptive vector control strategy that monitors

the WEC velocity in real time to infer the dominant wave frequency using a Second-Order

Generalized Integrator-based Frequency-Locked Loop (SOGI-FLL) structure. By tuning the

PTO damping and reactance according to the estimated instantaneous velocity frequency,

their method achieves maximum power absorption while mitigating large instantaneous

power fluctuations.

To support real-time adaptation, various instantaneous frequency estimation methods

have been explored, particularly for estimating the excitation force or surface elevation

signals. Notable approaches include the Hilbert–Huang Transform (HHT) via Empirical

Mode Decomposition (EMD), Frequency-Locked Loop (FLL), and Extended Kalman Filter

(EKF) techniques [6]. Beyond frequency estimation, advanced control strategies have been

proposed to enhance WEC performance under broadband and irregular sea conditions. For

example, Giorgi et al. [7] introduced a time-varying damping control strategy, originally

developed for vibration energy harvesters, which involves modulating the PTO damping

coefficient at twice the wave excitation frequency to broaden the energy absorption band-

width. They also demonstrated that the real-time adaptation of the PTO damping, even

without complex predictive models, can significantly improve energy capture in irregular

sea states.

Recognizing the importance of practical implementation, García-Violini et al. [8]

reviewed simplified WEC control architectures based on impedance matching principles,

highlighting the advantages of linear time-invariant (LTI) controllers and straightforward

feedback structures suitable for embedded hardware.

Experimental validation has substantiated these theoretical findings. Fusco et al. [9]

demonstrated, using the Pendulum Wave Energy Converter (PeWEC) device, that properly

adapting the PTO damping in response to sea states leads to significant improvements in

harvested energy. Similarly, Courtney et al. [10] confirmed that maximizing energy extrac-

tion under broadband spectra requires the real-time adjustment of the PTO force profile.

These results underline the practical importance of real-time adaptive damping control and

motivate the development of computationally efficient, sensor-based control approaches.

Building upon these foundations, the present work proposes a novel extension by

investigating real-time instantaneous frequency estimation techniques for practical WEC

control. Specifically, this study explores the application of the Hilbert Transform (HT)

with median filtering and the Phase-Locked Loop (PLL) methods for real-time frequency

tracking and dynamic PTO parameter adaptation.

A previous approach [11] leveraged linear wave theory and hydrodynamic datasets

generated from Boundary Element Method (BEM) solvers like WAMIT [12] to express

hydrodynamic coefficients as functions of instantaneous wave frequency, significantly

reducing computational overhead. However, prior methods required complete future

water elevation data, limiting practical real-time applicability.

This study focuses on the real-time estimation of wave surface elevation’s instanta-

neous frequency without requiring future data. By leveraging linear wave theory assump-

tions, where hydrodynamic coefficients mainly depend on wave frequency, this method

enables the practical adaptation of impedance-matching control strategies for WEC systems

in irregular sea conditions.
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The research aims to develop implementable real-time WEC control strategies that are

computationally efficient, robust under realistic conditions, and compatible with standard

onboard measurements. The central hypothesis is that dynamically adapting PTO damp-

ing based on real-time frequency estimates enhances energy absorption efficiency, with

precomputed frequency-dependent hydrodynamic coefficients being accurately adjusted

using these estimates. Validation is achieved by demonstrating improved Capture Width

Ratio compared to fixed parameter strategies.

2. Instantaneous Frequency Estimation

2.1. Signal Model

Ocean waves in real sea conditions can be modeled as a superposition of linear

wave components derived from wave energy spectra such as JONSWAP and Pierson–

Moskowitz [13]. These spectra describe how wave energy is distributed across different

frequencies. Alternatively, the water surface elevation can be expressed as a single sinu-

soidal component with a time-dependent amplitude and phase.

x(t) = A(t) cos (ωt + ϵ(t)), (1)

where A(t) is the slowly varying envelope amplitude of the wave; ω is the energy-

weighted mean angular frequency of the wave spectrum; and ϵ(t) represents the slowly

varying phase.

The instantaneous frequency of the wave signal is given by the following:

ωinst(t) = ω +
dϵ(t)

dt
. (2)

2.2. Hilbert Transform Approach

The first method employed for real-time instantaneous frequency estimation is the

Causal Hilbert Transform (CHT). In the discrete-time domain, the analytic representation

of a real signal x[n] can be constructed using the Fast Fourier Transform (FFT):

xa[n] = x[n] + jx̂[n] (3)

where x̂[n] is the Hilbert transform of x[n]. The instantaneous phase θ[n] is then obtained

by computing the phase angle of the analytic signal:

θ[n] = ∠xa[n] = arctan
x̂[n]

x[n]
. (4)

The instantaneous frequency θ̇[n] is determined by differentiating the instantaneous

phase with respect to time:

θ̇[n] =
θ[n]− θ[n − 1]

∆t
. (5)

To ensure practical implementation in real-time simulation, the method restricts access

to only past and current water elevation data. A short-time Hilbert transform via FFT

is performed within a predefined window, whose size is determined by multiplying the

dominant wave peak period by a factor of 10 [14]. For example, if the dominant wave

period is 9 s, then a window size of 90 s is used to compute the instantaneous frequency at

each time step. The procedure is illustrated in Figure 1.
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Figure 1. Illustration of real-time instantaneous frequency estimation using a short-time window

Hilbert transform.

A notable challenge arises when applying FFT at the end of a data sequence, where

abrupt frequency spikes may occur due to an end effect of FFT. To mitigate this issue, a

median filter is introduced. The median filter processes a window of past signal values and

computes the median, rather than directly using noisy endpoint data.

θ̇[n] := median(θ̇[n − δ], θ̇[n − δ + 1], ..., θ̇[n − 1], θ̇[n]) (6)

where the δ is the integer of the median window size. This effectively smooths instantaneous

frequency estimation, reducing fluctuations caused by outliers. However, it introduces a

slight delay in response, as the estimated value relies on past data. Despite this trade-off,

the filter significantly enhances the stability and reliability of the estimated frequency.

2.3. Phase Locked Loop (PLL) Approach

PLLs are widely used in control systems to synchronize the phase and frequency of an

output signal with a reference input. Their applications range from low-frequency energy

systems to high-frequency communications and semiconductor devices. PLLs are generally

classified into different types based on their control structures and intended applications,

with Type-1 and Type-2 PLLs being the most widely studied configurations.

A Type-1 PLL consists of three key components: a phase detector (PD), a loop filter

(LF), and a Voltage-Controlled Oscillator (VCO) [15]. The phase detector measures the

phase difference between the input signal and the VCO output, generating an error signal.

This error, processed through the loop filter, adjusts the VCO frequency to minimize the

phase mismatch. Due to its simple proportional control mechanism, a Type-1 PLL is

particularly well-suited for slowly varying signals, such as ocean wave propagation.
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A conventional PLL consists of three key components:

• PD, which measures the phase difference between the input signal and the PLL’s

output.

• LF, which filters out high-frequency noise and smooths the control signal.

• VCO, which generates an adjustable frequency to track the input signal.

For the cases analyzed in this paper, the instantaneous frequency is estimated using

the enhanced PLL structure proposed by [16], as shown in Figure 2. This PLL improves

phase detection and frequency tracking by directly estimating the phase and amplitude

of the fundamental component of the input signal. Unlike conventional PLLs, this model

directly estimates the phase and amplitude of the fundamental component of the input

signal, improving robustness against noise and parameter variations. The loop filter gains

were fine-tuned using the MATLAB Linearization Toolbox and PID tuner, ensuring optimal

response time and robustness in tracking ocean wave frequencies.

Figure 2. Block diagram of the PLL used in this study. The block diagram consists of three main

components: the PD, which extracts the phase difference between the input wave signal and the

internally generated VCO output; the LF, which smooths the phase error signal and determines the

system’s bandwidth and transient response; and the VCO, which dynamically adjusts its frequency

to match the estimated instantaneous frequency of the incoming wave. The control gains within the

loop filter are tuned for optimal tracking performance in varying wave conditions.

3. Comparison of Methods

To evaluate the performance of the frequency estimation techniques, four different

wave scenarios were analyzed:

• Case 1: Sinusoidal fluctuation in frequency centered around a 9 s dominant period.

• Case 2: Step change in wave amplitude, maintaining the frequency condition of Case 1.

• Case 3: A 50% step increase in frequency from the baseline 9 s condition.

• Case 4: JONSWAP sea condition with a 9 s peak period and a peak enhancement factor

γ = 3.3.

These scenarios, with simulation examples illustrated in Figures 3–6, provide a com-

prehensive basis for evaluating the accuracy and robustness of each frequency estimation

method. In each case, the true instantaneous frequency is compared against the estimates

obtained using the CHT and PLL approaches.
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Figure 3. Case 1: Instantaneous frequency comparison between the true value, CHT estimation, and

PLL-based estimation.

Figure 4. Case 2: Instantaneous frequency comparison for step change in amplitude, evaluated using

CHT and PLL.

Figure 5. Case 3: Instantaneous frequency comparison for frequency step-down, showing perfor-

mance of CHT and PLL estimations.
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Figure 6. Case 4: Instantaneous frequency comparison showing performance of CHT and PLL

estimations for JONSWAP sea condition.

3.1. NRMSE Comparison of Estimation Methods

The normalized root mean square error (NRMSE) is computed as follows:

NRMSE =

√

1
N ∑

N
i=1( fest,i − ftrue,i)2

fmax − fmin
× 100, (7)

where fest and ftrue represent the estimated and true instantaneous frequencies, respectively,

and fmax and fmin denote the maximum and minimum observed frequencies.

Parameter Sensitivity Analysis for Instantaneous Frequency Estimation

To determine the optimal tuning parameters for the instantaneous frequency estima-

tion methods, an iterative parameter sweep was performed using 50 different random

wave realizations. In each iteration, a JONSWAP wave elevation time series was generated

over a 1200 s duration, sampled at 10 Hz. The key wave parameters were set as follows:

a significant wave height of Hs = 1.5 m, a peak frequency of fp = 1/9 Hz, uniformly

distributed random phase information, and a spectral peakedness parameter γ = 3.3.

The generated time series were characterized by an energy mean frequency fe, defined

as follows:

fe =
m1

m0
, (8)

where m0 and m1 are the zeroth and first spectral moments, respectively. The n-th spectral

moment mn is given by the following:

mn =
∫ ∞

0
f nS( f ) d f , (9)

where S( f ) is the wave energy spectrum. Specifically, m0 represents the total energy of

the spectrum while m1 quantifies the energy-weighted mean frequency. These spectral

moments were numerically computed based on the discretized JONSWAP spectrum used

in each random realization.

The resulting time series, denoted as Case 4, served as the input for both the CHT- and

PLL-based instantaneous frequency estimation tests. This setup ensured that the param-

eter tuning was evaluated under realistic, irregular sea conditions exhibiting broadband

frequency content.

For each wave realization, the true instantaneous frequency was assumed to be com-

puted using a Non-Causal Hilbert Transform (NCHT) algorithm, which has full access to
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both the past and future history of the signal. In contrast, the CHT method relies on the

choice of a median window to estimate the instantaneous frequency. The median window

was defined to cover approximately ten wave cycles, calculated as follows:

window size = round

(

10

fe∆t

)

, (10)

where fe is the energy mean frequency and ∆t is the simulation time step. The median

window fraction is defined as the ratio of the chosen median window size to the total

analysis window size. In the parameter sweep, the median window fraction was varied

from 0.005 to 0.2 in increments of 0.005. For each median window fraction, the CHT-

based instantaneous frequency estimate was computed, compared against the true NCHT-

derived frequency (after conversion to radians per second), and the corresponding NRMSE

was evaluated.

For the PLL method, the key tuning parameter is the cutoff frequency fc of the PI

controller within the loop filter. The cutoff frequency was swept according to the following:

fc = 0.05 × i (Hz), (11)

where i is the sweep index, ranging from 1 to 40 (corresponding to 0.05 Hz to 2 Hz). For

each cutoff frequency, the PI controller gains were tuned to maintain a fixed phase margin

of 60◦, using MATLAB’s Linearization Toolbox.

For each tuning parameter value, a simulation of Case 4 was performed, and the

PLL-based instantaneous frequency was estimated. This entire parameter sweep procedure

was repeated for 50 independent iterations, each corresponding to different random phase

information while preserving the same JONSWAP spectral.

Table 1 presents the final comparison of the optimized NRMSE values achieved by the

CHT and PLL methods across different wave cases.

Table 1. NRMSE comparison of CHT and PLL estimation methods.

Case Number CHT NRMSE (%) PLL NRMSE (%)

1 16.91 18.82
2 16.93 21.46
3 6.80 3.80
4 14.59 17.40

An analysis of the CHT and PLL methods reveals varying performance across the

four test cases as shown in the Figure 7. In Cases 1 and 2, the HT method consistently

achieved lower NRMSE values (16.91% and 16.93%) compared to PLL (18.82% and 21.46%).

In Case 3, however, the PLL method outperformed CHT, achieving an NRMSE of 3.80%

versus 6.80% for CHT. In the more challenging broadband condition of Case 4, CHT again

demonstrated superior performance with an NRMSE of 14.59%, while the PLL method

exhibited a slightly higher error of 17.40%. Overall, the results indicate that while the

PLL method offers strong performance in sudden frequency change, the Hilbert-based

method tends to provide more robust performance across a broader range of irregular wave

conditions as shown in the Figure 8. Plus, the performance of the PLL is very sensitive to

loop gain, while CHT is less so.
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Figure 7. Sensitivity of NRMSE to tuning parameters for instantaneous frequency estimation across

all cases: (a) CHT median window fraction; (b) PLL cutoff frequency.

Figure 8. Sensitivity of NRMSE to tuning parameters for CHT and PLL methods in Case 4. (a) NRMSE

for CHT method as a function of median window fraction. (b) NRMSE for the PLL-based method

as a function of cutoff frequency (Hz). Error bars represent one standard deviation computed over

50 random realizations.

3.2. Application of Instantaneous Frequency Estimation to WEC Control

The instantaneous frequency estimation methods described in this paper—namely

the CHT and the PLL—are directly applied to optimize real-time control of WECs. In

the context of WEC operation, effective energy absorption is highly dependent on the

dynamic matching of the PTO system impedance to the time-varying incident wave con-

ditions. Traditional methods relying on fixed or slowly updated parameters may fail to

capture the rapid fluctuations present in realistic sea states. By employing real-time in-

stantaneous frequency estimation, the PTO damping can be continuously adjusted based

on the current sea state characteristics without requiring full knowledge of future wave
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profiles. Specifically, the HT approach leverages past wave elevation data within a moving

time window to estimate the predominant oscillation frequency, enabling the dynamic

calculation of optimal PTO parameters. The PLL method, alternatively, provides a causal

and computationally efficient estimation of frequency by locking onto the phase of the

incoming wave signal, offering improved tracking performance under rapidly changing

conditions. Through these methods, the WEC system is capable of adapting its control

strategy on a wave-by-wave basis, resulting in enhanced CWR and improved overall energy

harvesting efficiency compared to conventional fixed parameter designs. The proposed

framework, therefore, represents a significant step toward practical, real-world WEC de-

ployments where computational efficiency, robustness to non-stationary ocean conditions,

and real-time adaptability are critical for maximizing energy capture.

4. WEC Control Using Estimated Instantaneous Frequency

4.1. WEC Control Overview

There are many WEC control approaches [17]. At the most basic level, WEC control

can be considered a mechanical impedance matching problem. The WEC hydrodynamics

present an intrinsic frequency-dependent combination of mass, damping, and spring

behavior. Linear optimal power transfer to a PTO system is achieved when the apparent

spring, mass, and damping behavior of the PTO is matched to the equivalent intrinsic

mechanical impedance of the WEC. In regular sea conditions, the reactive elements of the

intrinsic mechanical impedance—the mass and spring—can be combined into a single

reactive element. Therefore, under regular sea conditions, optimal impedance matching

can be achieved by a PTO presenting a damping and spring element, such that the damping

of the PTO matches the intrinsic damping of the WEC, and the spring effect of the PTO

cancels out the combined mass and spring effect of the WEC.

If the PTO is controlled to present damping (i.e., force proportional to velocity) and a

spring term (i.e., force proportional to position), then it can be considered to be a form of

proportional–integral (PI) control.

Fpto(t) = Kpvpto(t) + Ki

∫

vpto(t) dt = Kpvpto(t) + Kizpto(t) (12)

where vpto is the PTO velocity, zpto is the PTO position, the proportional term Kp corre-

sponds to a damping constant, and the integral term Ki corresponds to a spring constant.

In the frequency domain, the mechanical impedance of this control is expressed as

Zpto(ω) = Kp − jKi/ω (13)

Consider the WEC intrinsic mechanical impedance expressed as a frequency-

dependent complex impedance Zi(ω). Optimal impedance matching for some frequency

ω̂ is achieved when

Kp = Re[Zi(ω̂)] (14)

Ki = ω̂ Im[Zi(ω̂)] (15)

In some cases it is desirable for the PTO to avoid reactive power. In that case, the

suboptimal control policy is

Kp =
√

Re[Zi(ω̂)]2 + Im[Zi(ω̂)]2 (16)

Ki = 0 (17)
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In this paper, the former case, (14) and (15), which utilizes both Kp and Ki for full

reactive control, will be referred to at PI control. The second case, (16) and (17), which

utilizes only Kp, will be referred to as P control.

4.2. Real-Time Active PTO Control Implementation

This paper proposes a real-time impedance matching technique that leverages in-

stantaneous frequency estimation to dynamically adjust PTO parameters [14]. Since the

hydrodynamic coefficients of the WEC are frequency-dependent, the accurate estimation

of the incoming wave frequency enables the real-time calculation of optimal control pa-

rameters. This ensures continuous adaptation of PTO damping and stiffness, maximizing

energy extraction under varying wave conditions.

The complete real-time control process is illustrated in Figure 9. The method in-

volves estimating the instantaneous frequency of the incoming wave using real-time

signal processing techniques and then computing the optimal impedance matching

parameters accordingly.

Figure 9. Diagram illustrating the real-time PTO control strategy. The instantaneous frequency

estimation feeds directly into the impedance matching calculations, dynamically adjusting PTO

damping and stiffness to optimize energy extraction.

4.3. WEC Modeling

The response of a WEC is governed by its dynamic equations, which account for

multiple interacting forces. Assuming the linear superposition of forces, the governing

equation of motion is expressed as follows:

ma = Fex + Frad + Fν + Fb + Fpto, (18)

where Fex is the excitation force due to incident waves; Frad is the radiation force from the

body’s motion-induced waves; Fν is the viscous damping force; Fb is the buoyancy force;

and Fpto is the Power Take-Off (PTO) force.

The hydrodynamic coefficients are used to estimate Fex, Frad, and Fb, which are derived

using potential flow theory through BEM solvers such as WAMIT [12]. These coefficients

are frequency-dependent and also influenced by the angle between the WEC body and

incoming waves. However, for symmetrical geometries (e.g., cylindrical WECs), wave

directionality effects can often be neglected.

A significant challenge in modeling WEC responses arises from the time-varying

nature of real sea conditions. While regular waves of a single frequency can be readily

simulated, real ocean waves exhibit continuously varying frequencies. To address this,

Cummins’ equation [1] uses an impulse response function to model radiational hydro-

dynamic coefficients through convolution. Although this method provides an accurate

estimation, it imposes a high computational cost due to the need for continuous integration.

An alternative approach, explored in [11], incorporates instantaneous frequency esti-

mation to determine hydrodynamic coefficients in real sea conditions. This method effec-

tively transforms the complex time-varying frequency problem into a regular wave problem
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by assigning hydrodynamic coefficients based on the momentary frequency at each time

step. However, a limitation noted in [11] is that wave signals must be known in advance to

compute the true instantaneous frequency, which is not feasible in real-time applications.

This paper extends the previous sections by introducing the real-time estimation of

instantaneous frequency using different methods. Based on these estimations, the PTO

damping coefficient, or an additional stiffness coefficient for complex conjugate control [14],

is dynamically adjusted in response to varying wave frequency. This adaptive approach

enhances energy absorption efficiency.

The next section presents the methodology and results, comparing the following:

• Fixed PTO damping: Tuned to the dominant wave period for baseline comparison.

• Variable PTO damping: Adaptively adjusted in real-time based on the estimated

instantaneous frequency.

4.4. Capture Width Ratio (CWR)

To quantify WEC performance, the CWR is utilized as a key metric. CWR represents

the ratio between the wave energy flux per unit width and the normalized power harvested

by the WEC over time. The Capture Width Ratio can be thought of as somewhat analogous

to the coefficient of power for a wind turbine. It is the fraction of environmental power

available to the device that is converted to mechanical power.

The wave energy flux per unit width is a fundamental metric in wave energy studies,

representing the transport of wave energy across a unit crest length. In deep water, where

wave dispersion follows σ2 = gk, the wave energy flux is given by the following:

Pwave =
ρg2

64π
H2

s Te, (19)

where ρ = 1000 kg/m3 is the water density, g = 9.81 m/s2 is the gravitational acceleration,

Hs is the significant wave height, and Te is the energy period of the wave.

This expression is derived from the general wave energy transport equation:

Pwave = Ecg, (20)

where E = 1
16 ρgH2

s is the wave energy density, and cg = gTe
4π is the deep-water group velocity.

By substituting these expressions and simplifying, we obtain Equation (19), which

provides an analytical formulation for wave energy flux per unit width. This equation is

widely used in ocean wave energy research [18].

For a JONSWAP spectrum characterized by a peak period of Tp = 9 s, a significant

wave height of Hs = 2.4 m, a peak modulation factor of γ = 4, and the energy period of

Te ≈
Tp

1.1 = 8.18 s, the wave energy flux is computed as follows:

Pwave ≈ 22.56 kW/m. (21)

This value serves as the reference for evaluating the efficiency of WEC power absorp-

tion through the CWR.

The normalized average power captured by the PTO is expressed as follows:

Ppto =
Epto

DWECTsim
(W/m), (22)

where Epto is the total energy harvested by the PTO at the end of the simulation, DWEC

is the WEC body’s diameter interacting with the incoming wave, and Tsim is the total

simulation time.
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The CWR is then computed as follows:

CWR =
Ppto

Pwave
. (23)

In the context of WEC performance, the CWR provides a normalized metric that quanti-

fies how effectively a device converts available wave energy into usable mechanical power.

4.5. Fixed Parameter PTO Control

To establish a baseline for comparison and validate the effectiveness of the impedance

matching technique applied to the state-space model of RM3, a period-sweeping control

test was conducted. The test considers a sea state with an incoming wave spectrum

characterized by a dominant period of 9 s, while the PTO control parameters are tuned

separately for different assumed periods, as listed in the first column of Table 2.

This approach allows for the evaluation of how PTO tuning affects energy absorption

when the control period does not match the actual dominant wave period. The results

demonstrate that maximum energy absorption occurs when the PTO damping and stiffness

parameters are tuned to match the dominant period of the incoming wave spectrum.

Table 2. CWR comparison across different control tuning periods. The incoming wave spectrum has

a dominant period of 9 s, while the PTO control parameters are tuned to the values corresponding to

the listed periods.

Control Period (s) 5 6 7 8 9 10 11 12

CWR (%) 14.49 19.21 22.95 24.71 24.79 23.13 19.28 12.34

The implementation is performed using a state-space model of the WEC. The Simulink

model used for this study is shown in Figure 10, representing the dynamics of the RM3

WEC system.

Figure 10. Block diagram of RM3 system using state-space modeling.

To optimize PTO control in real-time, a dedicated sub-block for optimal control estima-

tion is designed, as illustrated in Figure 11. This block computes the optimal PTO damping

and stiffness control based on the estimated instantaneous frequency, ensuring efficient

energy conversion under varying wave conditions. The calculation of these parameters

follows the impedance matching technique to maximize energy absorption.

To enhance stability, the real-time frequency estimate is saturated to within a range

of frequencies of interest for a typical sea state, as shown in Figure 12. In Figure 11, this

function is seen as the "Saturation" block in the center of the diagram.
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Figure 11. PTO control estimation block using estimated instantaneous frequency information.
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Figure 12. Saturation block tuning to mitigate excessive overshoot in instantaneous frequency

estimation.

4.5.1. Description of Estimation Methods and Control Scheme

There are four frequency estimation methods utilized:

• Fixed Parameter Control: No real-time frequency estimation is used. The PTO damp-

ing is tuned to a fixed value based on the dominant wave period.

• Phase Locked Loop (PLL)-Based Estimation: The instantaneous frequency is esti-

mated using a PLL, which tracks phase variations to determine frequency changes

dynamically.

• Causal Hilbert Transform (CHT): The CHT is applied within a short time window,

providing an approximation of the instantaneous frequency using past wave data.

• Non-Causal Hilbert Transform (NCHT): The Hilbert transform is applied with full

access to both past and future wave signals.

In reference to Section 4.1 and Equations (16) and (17), the control applied is simple

proportional damping PTO control, in which the damping is calculated and applied at

each real-time sample time in accordance with one of the frequency estimation methods

described above.

4.5.2. Iteration Setup for Statistical Performance Analysis

The key parameters for the simulation setup are summarized in Table 3.
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Table 3. Summary of iteration setup for statistical performance analysis.

Parameter Value/Description

Number of simulations 1000 iterations
Simulation duration 20 min per run
Time step 0.1 s
Computational platform MacBook Pro 16′′ (2021), Apple M1 Pro, MATLAB R2024b
Wave spectrum JONSWAP spectrum
Peak enhancement factor (γ) 3.3
Significant wave height (Hs) 2.4 m
Peak period (Tp) 9 s
Phase distribution Uniformly random in probability domain
Excitation force estimation Convolution with IRF from WAMIT data

A total of 1000 independent 20 min simulations were conducted for the statistical

analysis of each control approach, using a time step of 0.1 s. This relatively low sampling

rate was chosen to ensure that the proposed techniques remain compatible with practical

measurement systems for future experimental integration.

All simulations were performed using a MacBook Pro 16′′ (2021) equipped with an

Apple M1 Pro chip (Apple Inc., Cupertino, CA, USA), running MATLAB R2024b.

The wave elevation signals were generated based on a JONSWAP spectrum with a

peak enhancement factor of γ = 3.3, significant wave height Hs = 2.4 m, and peak period

Tp = 9 s. These parameters were selected to ensure a consistent wave energy flux per unit

width, thereby enabling a fair conditional CWR comparison across all simulations. Phase

information for constructing the wave signals was assumed to be uniformly distributed in

the probability domain.

The excitation force was estimated by convolution with the IRF of the excitation force,

precomputed from WAMIT hydrodynamic data.

5. Results

Comparison of CWR

Table 4 presents the CWR percentages for different estimation methods and

control schemes.

Table 4. Statistical summary of CWR comparison across different estimation methods and control

schemes. Higher values indicate more efficient energy absorption. The percent increase over the

baseline fixed parameter case is given in parentheses.

Tuning Strategy Mean CWR % Standard Deviation

Fixed 24.8 2.37
NCHT 25.93 (+4.6) 2.45
PLL 25.02 (+0.9) 2.84
CHT 27.42 (+10.6) 2.69

The simulation results shown in Figure 13 provide insight into the comparative perfor-

mance of different frequency estimation methods. Notably, the CHT-based control strategy

demonstrates a more stable cumulative energy accumulation, suggesting improved consis-

tency in energy capture over the observed period. On the other hand, both the PLL and

NCHT methods are associated with higher instantaneous peak powers, which, while occa-

sionally yielding more instantaneous absorbed power, introduce greater variability in the

energy harvesting process. The time points at which significant divergence in cumulative

energy occurs are under further investigation, aiming to better understand the transient

dynamics introduced by different estimation techniques.
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Figure 13. Comparison of simulation outputs from the WEC model using different instantaneous

frequency estimation methods: (a) Wave elevation (m); (b) estimated instantaneous frequency (Hz)

using NCHT, PLL, and CHT methods; (c) damping coefficient trajectories (N/(m/s)) for fixed, NCHT,

PLL, and CHT—based tuning strategies, plotted on a log10 scale to better capture their dynamic

range; (d) instantaneous PTO power output (MW) (the average PTO power over the time span shown

is fixed tuning = 281.3 kW, NCHT = 291.9 kW, PLL = 289.6 kW, and CHT = 327.7 kW).

During this study, multiple parameter sweep tests were conducted using the RM3 SS

model. First, the estimation parameters were varied, including the median filter window

sizes for the CHT method and the cross-over frequencies of the PLL loop filter, while

maintaining a fixed phase margin of 60 degrees. Second, the saturation block window

sizes were adjusted, with the lower saturation limit set to 0.01 × fp, where fp denotes the

dominant peak frequency of the incoming wave spectrum. It was observed that setting the

upper saturation limit to 1.2 × fp while maintaining the lower limit at 0.01 × fp yielded

the best performance for the PLL technique. However, for the NCHT and CHT methods,

allowing an unbounded upper limit, while keeping the same lower limit as in the PLL

setup, resulted in higher energy capture. All sweep tests were conducted with the goal of

maximizing the CWR.

An important observation from these tests is that the NRMSE of the frequency estima-

tion is not directly correlated with the performance of the PTO control when using the PLL

technique. In contrast, the CHT method showed the best performance when the median

window size was set at the value corresponding to the minimum NRMSE for Case 1 and

Case 2, as presented earlier, which is approximately 4.5% of the total estimation window

size and is close to the average half-cycle of the dominant wave. Increasing the median

window size beyond this point, while improving smoothing of the frequency estimate,

consistently led to a reduction in CWR. Similarly, for the PLL, decreasing the cross-over

frequency toward fp resulted in lower NRMSE values; however, it only improved the CWR

up to the level achieved by the fixed PTO control technique. These findings highlight that

minimizing estimation error alone is insufficient for maximizing WEC performance—timely

adaptation to changing wave conditions is equally, if not more, important. Another inter-

pretation of the observed discrepancies is that the structure of the WEC system itself acts as
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a causal filter from an input–output perspective, where the input is the wave excitation

and the output is the harvested energy. Utilizing non-causal information for tuning, such

as with the NCHT, produces overly stabilized estimation that may not allow the system to

react dynamically to real-time variations. Therefore, the CHT not only enables real-time

operation with lower peak power excursions—beneficial for the sustainability and stability

of the power electronics—but also provides the best overall energy harvesting performance.

Figure 14 presents a comparison of the CWR distributions between the baseline control

(fixed parameter tuning) and real-time frequency estimation methods. It can be observed

that both the CHT and NCHT approaches achieve higher mean CWR values compared to

the baseline, whereas the PLL-based control yields a similar level of performance to the

fixed parameter case. In particular, Figure 14d shows a direct comparison between the

CHT and NCHT methods, indicating that the CHT method achieves superior performance

relative to NCHT.

Figure 14. Histograms of CWR obtained from 1000 iterations of JONSWAP wave simulations for four

different PTO parameter tuning strategies: (a) Fixed tuning (baseline), (b) NCHT-based estimation of

the wave elevation frequency compared to the baseline, (c) PLL-based estimation compared to the

baseline, and (d) CHT-based estimation compared to NCHT.

6. Conclusions

This study presented and compared several methods for real-time instantaneous

frequency estimation for WEC control, focusing on PLL, CHT, and NCHT. The results

demonstrated that the CHT method achieved superior energy capture performance and

better cumulative energy accumulation compared to the baseline fixed parameter tuning

and other real-time estimation methods. The NCHT approach also showed improved mean

performance over the baseline, while the PLL-based control yielded a performance similar

to the fixed parameter case but exhibited higher instantaneous peak powers.
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A key finding of the study was that minimizing the NRMSE of frequency estimation

alone does not guarantee better energy harvesting performance. Instead, the responsiveness

of the estimation method played a critical role. Faster adaptation to wave frequency changes

consistently led to higher CWR values, highlighting the importance of real-time estimator

responsiveness in WEC control design.

Additionally, practical aspects of implementation were emphasized. The proposed

control strategies rely solely on standard WEC sensor measurements, without requir-

ing external wave forecasting, making them well-suited for deployment on embedded

hardware systems. Statistical validation using 1000 randomized JONSWAP simulations

demonstrated the robustness and repeatability of the proposed methods under irregular

sea conditions.

Future work will focus on further enhancing the estimation methods by incorporating

predictive modeling. In particular, the use of Long Short-Term Memory neural networks is

being explored to forecast future wave signals at an affordable computational cost. Inte-

grating such predictive capabilities with the proposed real-time control framework could

further improve robustness under highly dynamic sea conditions. Moreover, the dynamic

tuning strategies developed in this study are planned to be experimentally validated using

the Laboratory Upgraded Point Absorber developed at Oregon State University [10].
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Abbreviations

BEM Boundary Element Method;

CHT Causal Hilbert Transform;

CWR Capture Width Ratio;

EMD Empirical Mode Decomposition;

EKF Extended Kalman Filter;

FFT Fast Fourier Transform;

HHT Hilbert-Huang Transform;

HT Hilbert Transform;

LF Loop Filter;

NCHT Non-Causal Hilbert Transform;

NRMSE Normalized Root Mean Square Error;

PD Phase Detector;

PeWEC Pendulum Wave Energy Converter;

PI Proportional-Integral;
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PLL Phase-Locked Loop;

PTO Power Take-Off Unit;

RM3 Reference Model 3;

SOGI-FLL Second-Order Generalized Integrator-based Frequency-Locked Loop;

VCO Voltage-Controlled Oscillator;

WEC Wave Energy Converter.
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