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The forecasted short‐time Hilbert‐transform method delivers the most accurate real-
time tracking of changing wave periods—matching the non-causal benchmark with 
minimal lag and error—enabling adaptive WEC control to respond instantaneously to 
dynamic sea states and maximize energy capture.
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Ocean wave energy is distributed across a 
range of frequencies that evolve over time, 
especially during transitions between sea 
states. Accurately tracking the frequency 
content of waves in real time is essential for 
understanding wave dynamics and for 
potential use in forecasting, control, and 
system design.

While frequency-domain spectra (e.g., 
Pierson-Moskowitz) provide time-averaged 
insight, they lack the temporal resolution 
required to capture short-term fluctuations 
or transient events. Instantaneous frequency 
(IF), derived from the phase of the analytic 
signal, offers a promising alternative — 
enabling time-localized characterization of 
wave energy content.

However, real-time IF estimation presents key 
challenges:

• The Hilbert transform is inherently non-
causal.

• Using only past data introduces endpoint 
artifacts.

• Noise and multiple peaks per wave cycle 
can degrade frequency tracking 
performance.

To address these issues, this work 
investigates four real-time IF estimation 
strategies based on the Short-Time Hilbert 
Transform (ST-HT), augmented with filtering 
and forecasting techniques, and evaluates 
their accuracy under dynamically changing 
sea conditions.

This study evaluates four real-time strategies to 
estimate the instantaneous frequency (IF) of ocean 
waves during sea state changes. Methods use the 
Short-Time Hilbert Transform (ST-HT) applied to a 
trailing time window of the surface elevation signal. 

• ST-HT computes the analytic signal, and the IF is 
derived by differentiating its phase. Only past data is 
used for real-time compatibility. 

• Two post-processing techniques are used to 
stabilize the IF output: 

(1) Median Filtering, which removes outliers and 
sharp noise spikes.

(2) Polynomial Fitting, which smooths the IF trend 
using either a 0th-order (constant) or 1st-order 
(linear) fit. 

• In addition, a “forecasted” version of the ST-HT 
method is evaluated by incorporating known future 
wave values into the analysis window. This simulates 
a centered (non-causal) window to assess the 
potential performance gain when future information 
is available. It offers a preview of wave-by-wave 
prediction capabilities using tools such as AI-trained 
wave models and buoy-based wave forecasts.

• The four methods are: 

o M1 – ST-HT + Median Filter. 

o M2 – ST-HT + Polynomial Fit (0th / 1st order). 

o M3 – ST-HT with inserted future values. 

o M4 – Full non-causal Hilbert transform

To benchmark our real-time frequency trackers, we synthesize a 
controlled Pierson–Moskowitz sea-state transition using Douglas Sea 
Scale categories as shown in Figure 1 (top) and (bottom) :

• Ramp 1 (0–3600 s): from Sea State 4 (Moderate; Hs = 1.44 m, Tp = 6 s) 
to Sea State 5 (Rough; Hs = 2.6 m, Tp = 8 s)

• Hold (3600–7200 s): maintain Sea State 5 (Hs = 2.6 m, Tp = 8 s)

• Ramp 2 (7200–10800 s): from Sea State 5 to Sea State 6 (Very Rough; 
Hs = 4 m, Tp = 10 s)

Spectrally, each ramp shifts the energy peak toward lower frequencies 
(longer periods).

We generate η(t) via randomized-phase synthesis with 100 Monte Carlo 
runs performed to ensure statistical reliability.. This nonstationary, 
overlapping-component input poses a stringent challenge for short-
window, causal frequency-tracking methods. 
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2.Methodology

Figure 1 (top). Surface elevation η(t) (orange) over three 1 h segments, with translucent bands marking the 6→8 s ramp, 8 s hold, and 8→10 s ramp.
(bottom). Douglas Sea‐scale index time series showing the transition from state 4 to 5, plateau, and then to state 6 over the same intervals.

Figure 2. (top) Moving‐mean period estimates by five methods (bottom) their segment‐wise linear fits with the intended mean‐period trajectory overlaid.

Discussion
Figure 2 shows:

(top) Moving‐average instantaneous period estimates for each method.

(bottom) Their piecewise linear regressions overlaid on the PSD‐based 
mean‐period profile.

• The fully non‐causal Hilbert transform tracks the true trend most 
accurately.

•  The forecasted ST-HT is the next best, closely following the 
non‐causal result.

• Zero- and first-order polynomial fits perform moderately, with only 
small lag and bias.

•  The median‐filtered method shows the largest errors—its double 
filtering introduces extra distortion and prevents it from following 
the true profile.

Method Bias (s) RMSE (s)

Poly0 –0.066 0.256

Poly1 –0.053 0.267

Median –1.047 1.101

Full HT –0.017 0.266

Forecast 0.036 0.275

Phase Time 
Interval (s)

Start 
Condition

End 
Condition

Ramp 1 0–3600

Sea State 4 
(Moderate; 
Hs = 1.44 

m, Tp = 6 s)

Sea State 5 
(Rough; Hs 
= 2.6 m, Tp 

= 8 s)

Hold 3600–7200

Sea State 5 
(Rough; Hs 
= 2.6 m, Tp 

= 8 s)

Sea State 5 
(Rough; Hs 
= 2.6 m, Tp 

= 8 s)

Ramp 2 7200–
10800

Sea State 5 
(Rough; Hs 
= 2.6 m, Tp 

= 8 s)

Sea State 6 
(Very 

Rough; Hs 
= 4 m, Tp = 

10 s)

Since the forecasted ST-HT delivered the best real-time tracking, 
we will next explore AI-driven or buoy-based pre-processing 
algorithms to predict the upcoming wave cycle.  In parallel, we 
will use WEC-Sim to simulate wave energy–harvest efficiency 
under dynamic sea-state transitions by feeding our real-time 
dominant-period estimates into the WEC control model.

Table 1. Sea‐State Transition Phases and Wave Conditions

Table 2. Estimator Performance Metrics
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