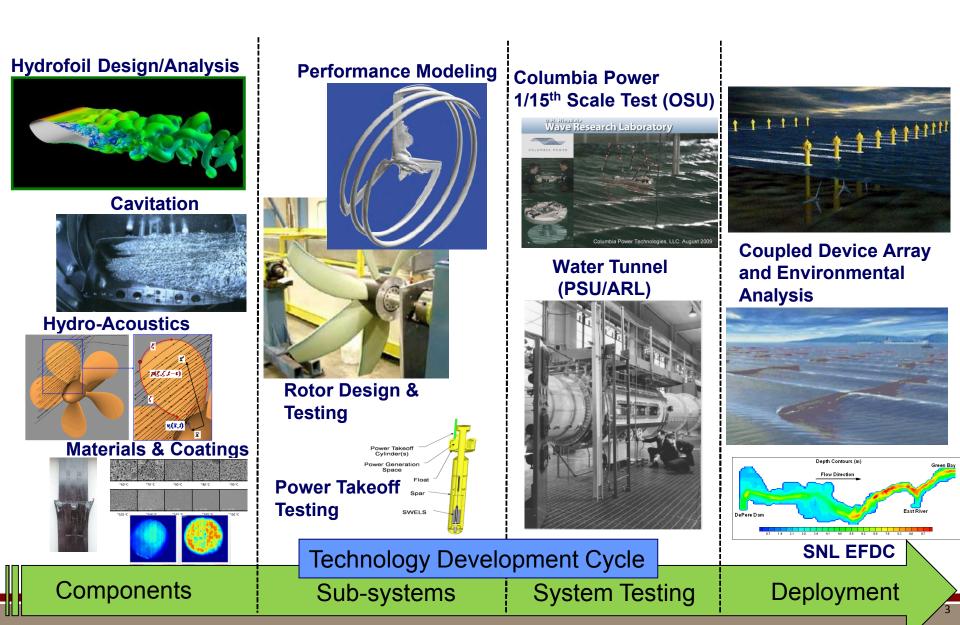

SAND2016-10739C

Exceptional service in the national interest

Marine Energy Conversion Technologies: Lowering the Levelized Cost of Energy through Control Systems, Materials Research and Systems Engineering

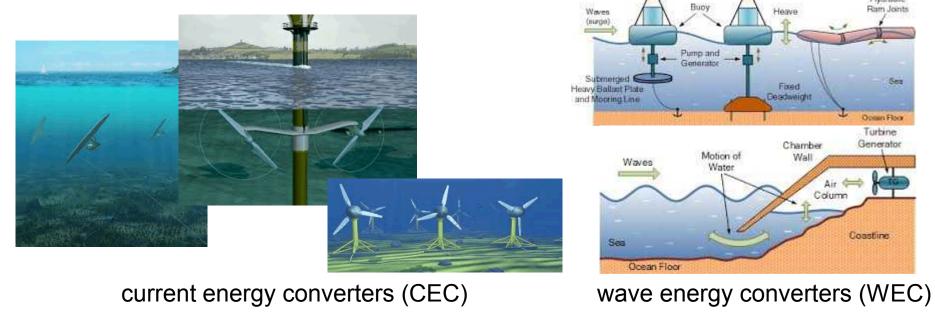
Peter H. Kobos, Vincent S. Neary, Ryan G. Coe, Bernadette A. Hernandez-Sanchez Sandia National Laboratories

> Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.



Marine Hydrokinetics Technology

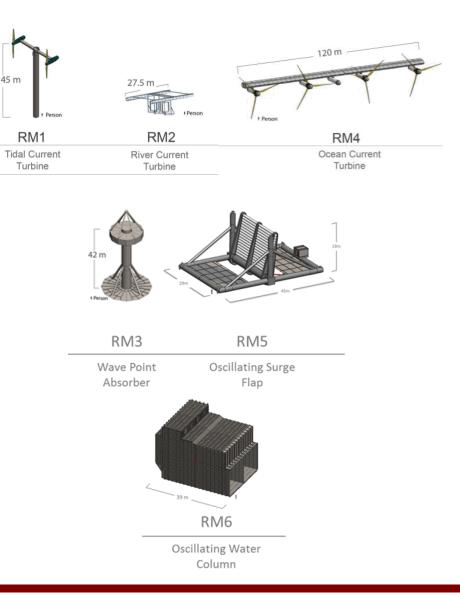
Reference Model Project

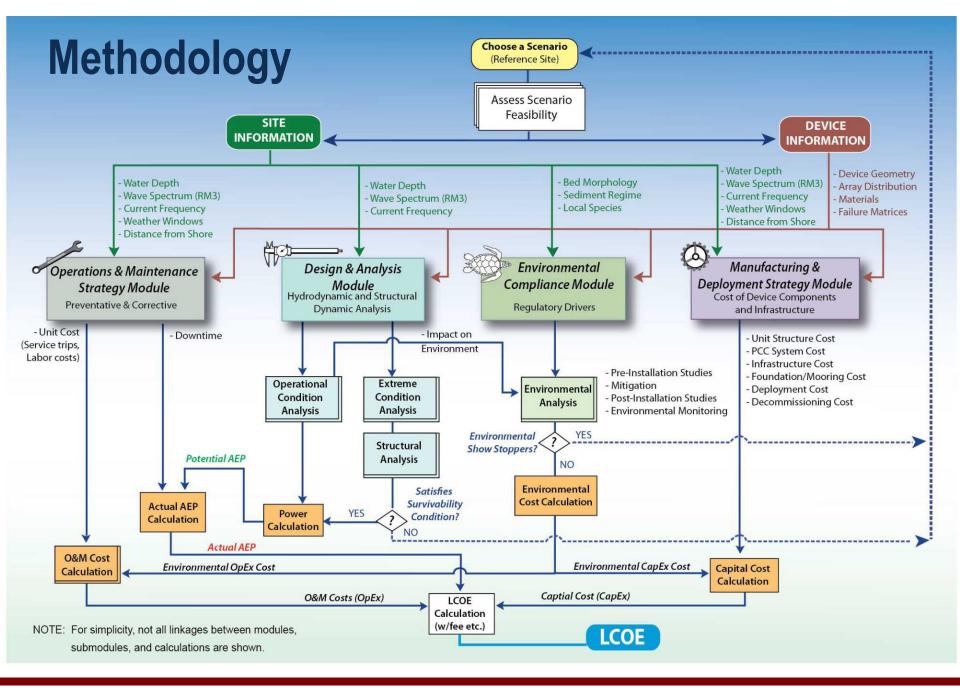

- LCOE development for various devices
- Advanced Controls
 - Increased performance from various controls strategies
- Advanced Materials
 - Example Applications
- Concluding remarks

MHK Research Focus Areas at Sandia National Labs

Reference Model Project

- Motivation:
 - Marine energy renewable, low-carbon resource
 - Dozens of proprietary design concepts
- Objectives
 - Design non-proprietary MEC devices for R&D
 - Benchmark cost of energy
 - Identify knowledge gaps, cost drivers


Linear Absorber


Point Absorbers

Reference Models

- Non-Proprietary Devices
 - 3 Current Energy Converters (CECs)
 - 3 Wave Energy Converters (WECs)
- Point Designs
 - Reference resource site
 - Utilizing "today's" technology
 - <u>http://energy.sandia.gov/rmp</u>

LCOE Formula

- Levelized Cost of Electricity
 - Denotes "Break Even" cost assuming minimum rate of return.
- 4 Primary Inputs
 - Capital Expenditures (CapEx)
 - Year 0 costs
 - Operational Expenditures (OpEx)
 - Year 1 to n costs
 - Average Annual Energy Production (AEP)
 - Fixed Charge Rate (FCR)
 - **10.8%**
 - Lumped financing term including discount rate, inflation, taxes, depreciation, and project life.
- Analysis Performed for 1, 10, 50 and 100 – unit arrays

 $LCOE = \frac{(FCR \times CapEx) + OpEx}{AEP}$

LCOE Formula (CapEx Categories)

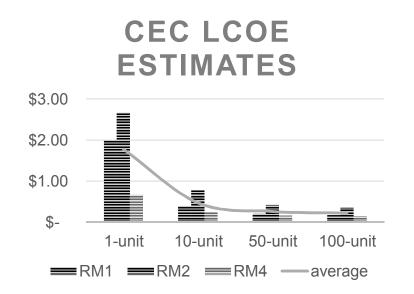
Sandia National Laboratories

- Development
- Infrastructure
- Mooring/Foundation
- Device Structural Components
- Power Take Off (PTO)
- Subsystem Integration & Profit Margin
- Installation
- Contingency

$$LCOE = \frac{(FCR \times CapEx) + OpEx}{AEP}$$

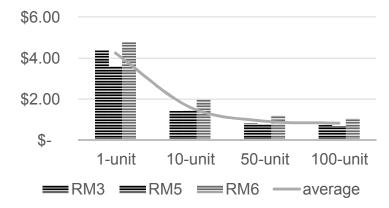
LCOE Formula (OpEx Categories)

- Marine Operations & Maintenance (O&M)
- Shore-side Operations & Maintenance (O&M)
- Post Installation Environmental O&M
- Replacement Parts
- Consumables
- Insurance


$$LCOE = \frac{(FCR \times CapEx) + OpEx}{AEP}$$

Results - LCOE Overview

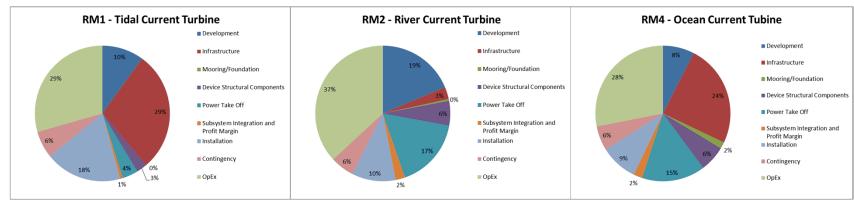
CECs


	1-unit		10-unit		50-unit		100-unit	
RM1	\$	1.99	\$	0.40	\$	0.20	\$	0.17
RM2	\$	2.67	\$	0.78	\$	0.42	\$	0.35
RM4	\$	0.67	\$	0.24	\$	0.17	\$	0.15
average	\$	1.78	\$	0.47	\$	0.26	\$	0.22

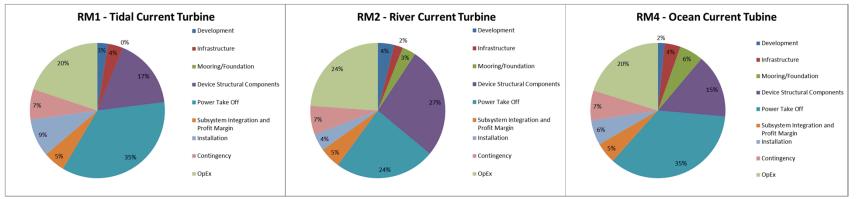
WECs

	1	10	50	100
RM3	\$ 4.36	\$ 1.41	\$ 0.83	\$ 0.73
RM5	\$ 3.59	\$ 1.44	\$ 0.77	\$ 0.69
RM6	\$ 4.79	\$ 1.98	\$ 1.20	\$ 1.06
average	\$ 4.25	\$ 1.61	\$ 0.93	\$ 0.83

WEC LCOE ESTIMATES

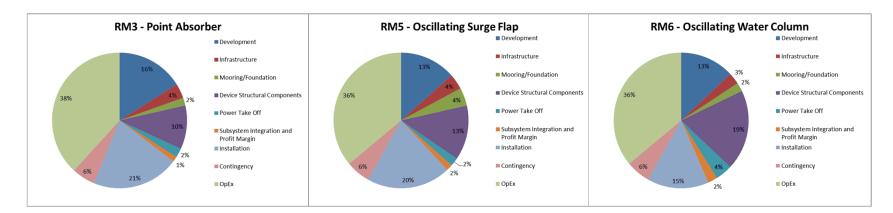


Results – CEC Breakdown

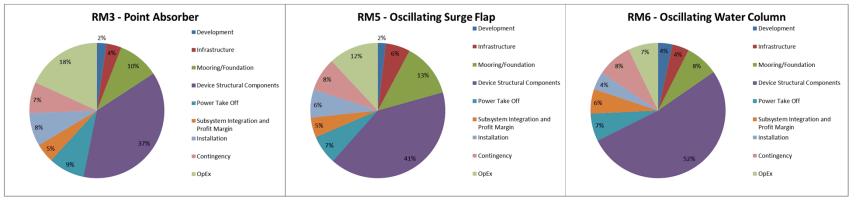

1-unit

- O&M (green) & Infrastructure (red) dominate tidal & ocean current LCOE
- O&M (green), Development (blue) & PTO (marine) dominate river current LCOE

100-unit

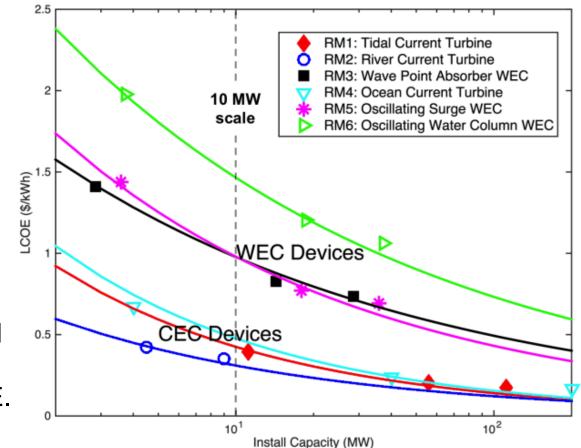

PTO (marine), Structure (purple), and O&M (green) dominate LCOE

Results – WEC Breakdown

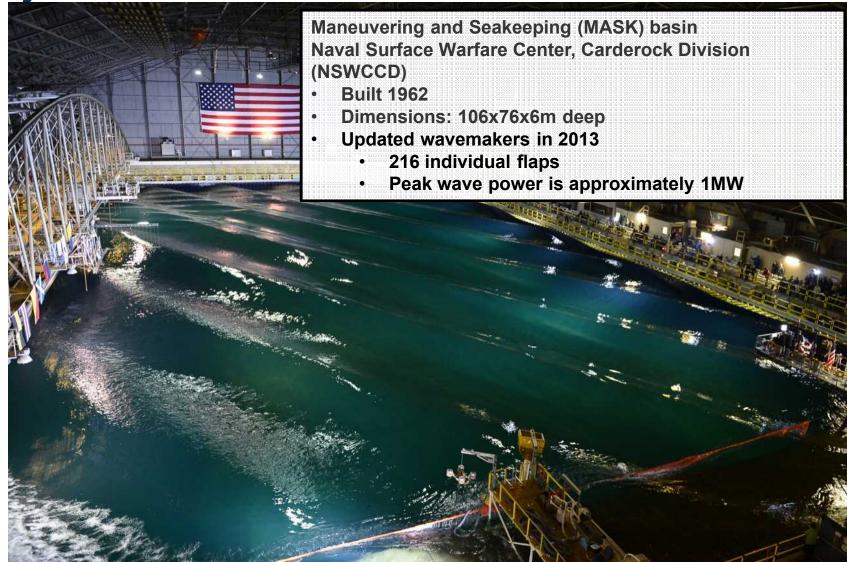


- 1-unit
 - O&M (green), Development (blue), and Installation (lavender) are LCOE drivers

100-unit


Structure (purple) is primary cost driver, which is driven by large structural mass

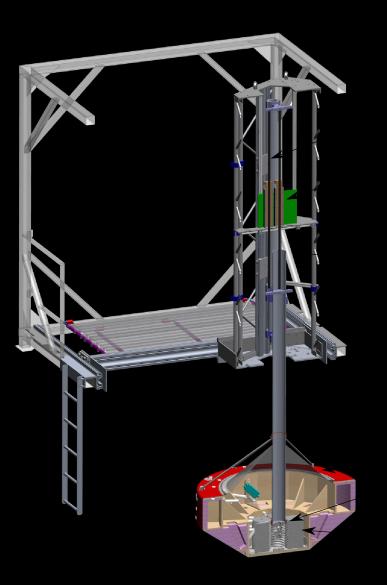
Results – 10 MW Installed Capacity



- CECs
 - ≈ \$0.31-0.45/kWh
 - Varying resource conditions impact installation, permitting, capacity factors, etc.
- WECs
 - ≈ \$0.98-1.53/kWh
 - At 10 MW structural mass is the largest contributor to LCOE.

Wave Energy Converter (WEC) – Controls Project: Test hardware – wave basin

Project motivation



- Project goal: accelerate/support usage of advanced WEC control by developers
- Numerous studies have shown large benefits of more advanced control of WECs (e.g., Hals et al. showed 330% absorption increase)
- Most studies rely on significant simplifications and assumptions
 - Availability of incoming wave foreknowledge
 - 1-DOF motion
 - Linear or perfectly know hydrodynamics
 - No sensor noise
 - Unlimited actuator performance

Test hardware – WEC device

cal carriages

dment

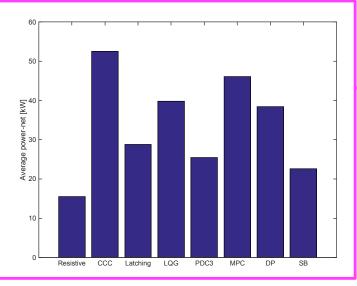
r stators

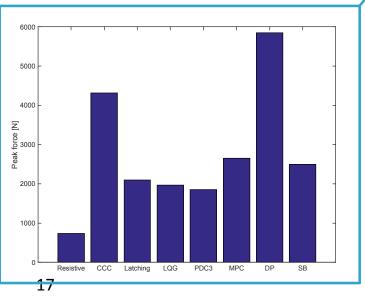
- PCC tower

sliders

lanar motion table

down-tube

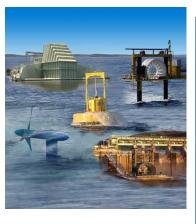

tation lockout bars ave seal


int

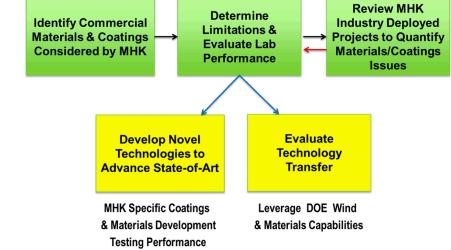
ast plates

Summary of results

		Resistive	CCC	Latching	LQG	PDC3	Linear MPC	DP	SB		
	Power production characteristics	Power increase of >330%									
	Average power-in	0	279	0	46.5	45.8	98.8	374.8	39.0		
	Average power-net	15.5	52.5	28.8	39.8	25.5	46.1	38.4	22.6		
	Average energy-stored	0	251	0	27.5	42.9	76.4	332.9	23.8		
	Power-in, peak/RMS	0.0	5.8	0.0	5.6	5.1	5.6	5.4	4.3		
	Power-net, peak/RMS	7.3	38.8	6.2	14.3	17.3	20.2	60.1	16.2		
	Total absolute power flow	15.5	313.3	28.8	76.0	91.5	131.8	384.9	54.5		
-	PCC requirements										
	PCC force, peak	739	4312	2099	1970	1854	2653	5850	2500		
	Slew rate requirements	2.8 E+3	1.1 E+3	1.5 E+6	5.9 E+3	4.5 E+3	7.0 E+3	1.2 E+3	5.5 E+3		
	PCC force, RMS	315	2367	923	915	1086	1401	2730	1010		
	PCC Force, peak/RMS	2.35	1.82	2.27	2.15	1.71	1.89	2.14	2.49		
-	Mechanical loading										
	Oscillation amplitude, peak	0.06	0.25	0.10	0.14	0.11	0.17	0.28	0.12		
	Oscillation amplitude, peak/RMS	2.52	1.97	2.05	2.27	1.89	2.09	1.99	2.52		
	Oscillation velocity, peak	0.14	0.47	0.30	0.31	0.22	0.35	0.50	0.22		
	Oscillation velocity, peak/RMS	2.63	2.20	2.77	2.43	2.30	2.33	2.17	2.6		
	Oscillation acceleration, peak	0.39	1.02	0.45	0.78	0.22	0.46	1.27	0.64		
	Oscillation acceleration, peak/RMS	2.70	2.39	1.21	2.58	2.30	1.95	2.36	2.56		



Advanced Materials for Marine Hydrokinetic (MHK) Technology

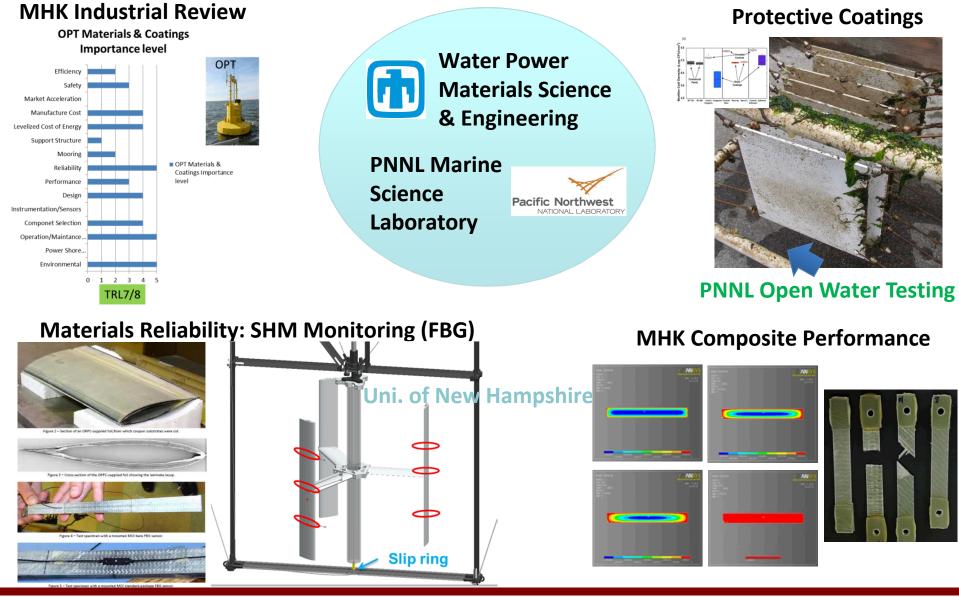


Purpose:

Applied research and provides guidance on Materials & Coatings to enable viability, lower the cost of energy (COE), and accelerate commercialization of marine and hydrokinetic technology (MHK).

Procedure:

Early Program Addressed:


- Industrial Survey on Materials & Coatings
- Development & Characterization of MHK Specific Protective Coatings
- Materials Reliability & Performance Testing
- Initial Assessment of Underwater NDI Monitoring
- Meeting with Industry/Researcher coatings community
- MHK Composites Workshop

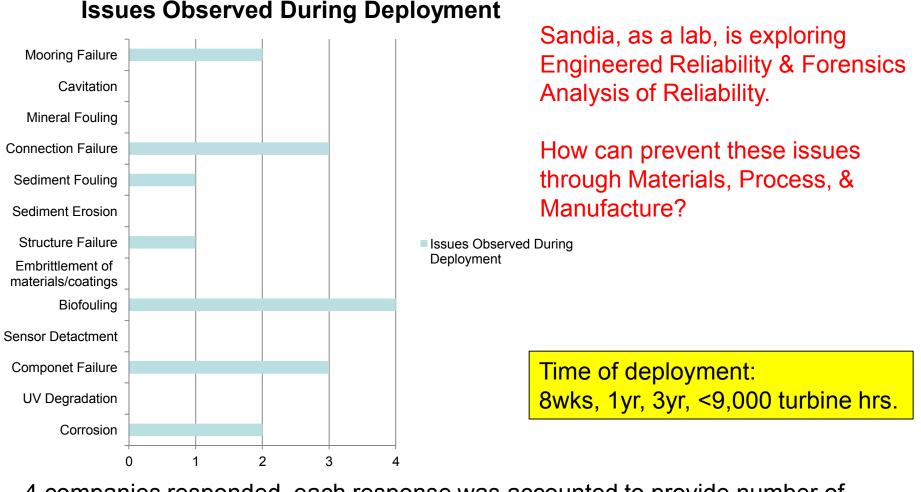
Future Program to Address:

- Removing Uncertainty & Barriers of using Composites (Industry Directed)
- Leverage Coatings Research & Library
- Understand Materials & Coatings Impact on MHK Manufacture, O&M, Reliability, Safety, Cost
- Support MHK Developers on Their Deployments

MHK Advanced Materials & Coatings

Ocean Renewable Power Co. / MSU

Montana State University (MSU) ¹⁹


Sandia Industrial Survey on Materials & Coatings

- Coatings (\$/mass) = \$8/kg for epoxy; \$30/kg for Copper based coating. \$130/gal for paint system color
- No or limited Nondestructive Inspection (NDI) and Inspection Analysis after manufacture/prior to deployment
- Carbon Composites-interest, but high cost
- Not all the materials used for deployment will be the same for manufactures. (not yet determined)

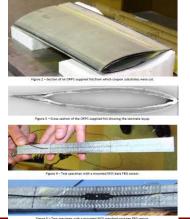
Question to Companies: Did any of the following Issues Occur During the Deployment/Test Period (check all that apply).

4 companies responded, each response was accounted to provide number of issues (1-4)

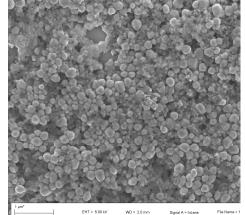
Upcoming Composites Research

Past Work

 Research and analysis of composite materials and coatings in operating environment (i.e. sea water). SNL, PNNL, MSU, BYU, NDSU, ORNL (Toxicity)

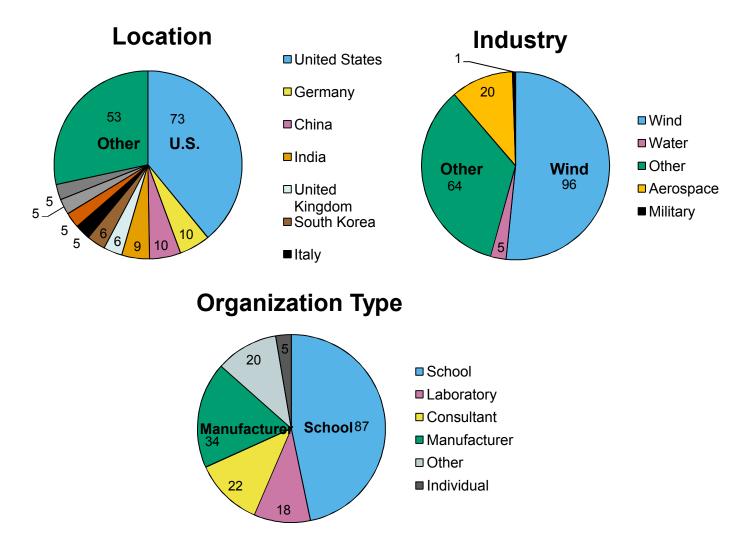

Material Design Tools for Marine Hydrokinetic Composite Structures (SNL, PNNL, NREL, MSU, FAU)

- Helping MHK industry reduce uncertainty in using composites
- Developing U.S. DOE MHK Composite Materials & Structures Database: <u>http://energy.sandia.gov/energy/renewable-energy/water-power/technology-development/advanced-materials/mhk-materials-database/</u>
- Mitigating biofouling & metal-carbon fiber interconnect corrosion in saltwater
- Examining MHK load challenges on material & substructure performance
- Examine impact on LCOE


Structural Health Monitoring

MHK Environmental Effects on Composites

Nanomaterials Development



DOE/SNL/MSU Wind & Water Database

Current User Community of U.S. DOE Materials & Structures Database

Concluding Remarks

\rightarrow Reference Models (LCOE)

Current Energy Converters

- Close to market readiness:
 - Average 100-unit array LCOE ≈ \$0.22/kWh
- Cost drivers: Power Takeoff, Structure, O&M

Wave Energy Converters

- Farther from market readiness:
 - Average 100-unit array (approximately 30 MW) LCOE ≈ \$0.83/kWh
- Cost drivers: Structure, Mooring, O&M
- Need to increase Annual Energy Production (AEP) through improved energy capture
- → Advanced Controls: systems may increase power production substantially (300%+)
- → Materials Research: may provide longevity & cost reductions

Acknowledgements

- The authors would like to thank the Department of Energy, office of Energy, Efficiency & Renewable Energy for supporting this research, as well as colleagues at Sandia National Laboratories, others at the National Renewable Energy Laboratory (D. Scott Jenne & Yi-Hsiang Yu (NREL)), other national laboratories and in the Marine Hydrokinetic research and industrial community.
- Presentation elements adapted from Neary et al., 2016.
- Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

References

 Neary, V., Kobos, P., Jenne, D.S. and Y-H Yu, 2016, Levelized Cost of Energy for Marine Energy Conversion (MEC) Technologies, EPRC⁶, Santa Fe, NM, September 8-9, 2016.

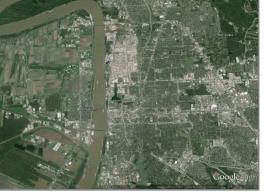
THANK YOU

BACKUP SLIDES

RM Current Energy Converters

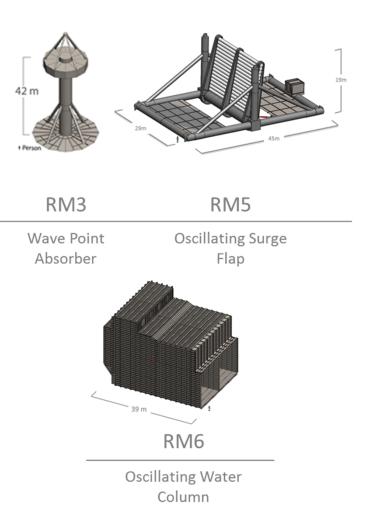
- 3 Current Energy Converters (CECs)
 - RM1 Dual Rotor Axial Flow Tidal Turbine
 - RM2 Dual Rotor Cross Flow River Turbine
 - RM4 4 Rotor Axial Flow Ocean Turbine

CEC Design and Resource


RM1

- Tacoma Narrows Puget Sound, WA
- 1.1 MW Rated Power
- 30% Capacity Factor
- RM2
 - Mississippi River Baton Rouge, LA
 - 90 kW Rated power
 - 30% Capacity Factor
- RM4
 - Florida Strait Boca Raton, FL
 - 4 MW Rated Power
 - 70% Capacity Factor

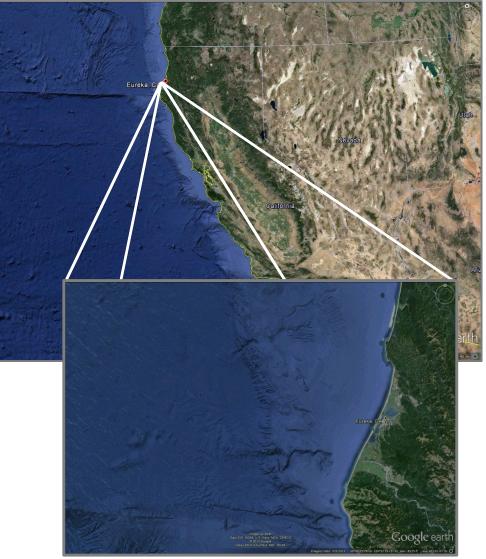
Tacoma Narrows: Image courtesy of Google Earth



Florida Strait: Image courtesy of Google Earth

Sandia National Laboratories

RM Wave Energy Converters


- 3 Wave Energy Converters (WECs)
 - RM3 Point Absorber
 - RM5 Oscillating Wave Surge Converter (OWSC)
 - RM6 Backward Bent Duct Buoy Oscillating Water Column (BBDB)

WEC Design and Resource

- All WECs designed for Humboldt Bay – Humboldt County, CA
- RM3
 - 286 kW Rated Power
 - 30% Capacity Factor
- RM5
 - 360 kW Rated power
 - 30% Capacity Factor
- RM6
 - 370 kW Rated Power
 - 30% Capacity Factor

Humboldt Bay, near Eureka, CA: Image courtesy of Google Earth