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We present an analysis of wave energy devices with
air-filled compressible submerged volumes, where
variability of volume is achieved by means of a
horizontal surface free to move up and down relative
to the body. An analysis of bodies without power take-
off (PTO) systems is first presented to demonstrate the
positive effects a compressible volume could have on
the body response. Subsequently, two compressible
device variations are analysed. In the first variation,
the compressible volume is connected to a fixed
volume via an air turbine for PTO. In the second
variation, a water column separates the compressible
volume from another volume, which is fitted with
an air turbine open to the atmosphere. Both floating
and bottom-fixed, axisymmetric, configurations
are considered, and linear analysis is employed
throughout. Advantages and disadvantages of each
device are examined in detail. Some configurations
with displaced volumes less than 2000 m3 and
with constant turbine coefficients are shown to be
capable of achieving 80% of the theoretical maximum
absorbed power over a wave period range of
about 4 s.

1. Introduction
It is well known that a heaving axisymmetric wave
energy device in the open sea is potentially capable
of absorbing all the wave power that is incident on a
wavefront λ/2π wide, where λ is the wavelength [1–3].
For regular 8-s, 1-m amplitude, waves, this amounts to a
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potential of about 500 kW of power absorbed by a single device. The condition is that the device
resonates with the waves, with the optimum amplitude [4,5].

The resonance period of a heaving body, however, is governed by its waterplane area and its
mass. To resonate at 8 s, for example, a heaving semi-submerged sphere would need a diameter of
approximately 30 m, equivalent to a displaced volume of 7000 m3. On the other hand, although,
to resonate at 8 s, a heaving circular cylinder can have less volume than the sphere, the resonance
bandwidth would be narrower. Unless some means of phase control is used, a heaving body
has to be sufficiently large to resonate at frequencies typical of ocean waves as well as to have a
satisfactorily broad bandwidth.

The above is true if the heaving body is rigid. However, if we allow the submerged volume
of the heaving body to be compressible, then the rate of change of its buoyancy with heave, i.e.
its hydrostatic stiffness, is lowered. As a lower stiffness means a longer resonance period for
the same mass, with a compressible volume it is possible to achieve resonance with a smaller
device. Moreover, for two systems with equal resonance periods, the bandwidth of the system
with a lower stiffness would be broader than that of the one with a higher mass, provided the
two systems have the same damping.

Motivated by this idea, Farley [6,7] recently proposed an air-filled compressible wave energy
device in the form of a heaving wedge which opens and closes as it heaves. As it does so, air
is pumped into and out of a fixed volume which is connected to the compressible volume via a
self-rectifying turbine. The resonance period of the device is tunable by adjusting the stiffness of
the wedge, which is governed by the air volume inside. An axisymmetric version of the device
has also been proposed [8]. Several other devices used some kind of flexible volume, although
not necessarily motivated by the same idea. A device resembling one of the devices which we
shall analyse below was proposed as early as 1974, although a mathematical analysis was not
presented [9, §2.3]. The Lancaster flexible bag was developed at around the same time [10,11],
as also the SEA Clam [12]. Both were of the order of a wavelength long, and both used flexible
bags to pump air through a turbine. More recently, the Archimedes Wave Swing, a comparatively
smaller device in the form of a completely submerged cylinder with a movable top, was proposed
and developed [13]. Instead of an air turbine, the device used a linear generator to convert the
absorbed wave power directly from vertical oscillations of the movable top. Another flexible
device which has been under development recently is the Anaconda, a long rubber tube filled
with water [14,15]. It captures wave energy by bulge wave, which is associated with longitudinal
oscillations of water inside the tube.

This paper concerns air-filled compressible wave energy devices which absorb wave energy
via vertical motions. All devices considered here are axisymmetric, with horizontal extents much
smaller than the operating wavelengths. We first look at the more fundamental problem of bodies
with compressible volumes but without power take-off (PTO) systems, to study the effects a
compressible volume can have on the body response. The volume is filled with air, and variability
of volume is achieved by means of a horizontal surface free to move up and down relative to the
body. We consider both fixed and floating bodies and study the effects of having the wetted side
of the moving surface facing up or down.

By including suitable PTO systems, we can transform these compressible bodies into wave
energy devices, and these are considered next. Two device variations are investigated. In the
first variation, the compressible volume is connected to a fixed volume via a self-rectifying air
turbine. In the second variation, a water column separates the compressible volume from another
volume, which is fitted with an air turbine open to the atmosphere. The water column replaces
the fixed volume in providing the required restoring force on the compressible volume. Both
bottom-fixed and floating device configurations are considered. The former is more suited for
near shore locations, while the latter can operate further offshore. Linear, frequency-domain,
analysis is employed throughout, where the hydrodynamic parameters are obtained from linear
potential theory and no losses are taken into account. Numerical results in the form of device
displacements and absorption widths for some representative device dimensions are presented.
Based on these, the advantages and disadvantages of each device are discussed in detail.
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2. Preliminaries
Before deriving the equations specific to each compressible body or device, we shall summarize
some of the more general equations applicable to all bodies and devices considered in this paper.

We employ a Cartesian coordinate system, where the mean free surface is z = 0 and the incident
wave propagates in the positive x-direction. Time-harmonic motions of small amplitudes are
considered, with the complex factor eiωt applied to all oscillatory quantities, where ω is the
angular frequency.

As the x-axis has been chosen to be parallel to the incident wave direction, only three modes
are necessary to describe the rigid body motions, namely surge, heave and pitch (j = 1, 3, 5). In
addition to the conventional rigid body modes, we have one additional mode (j = 7) defined
as the vertical displacement of the moving surface Ss relative to the body. In the following, we
shall restrict our attention to vertical motions only (j = 3, 7). Within linear theory, only the vertical
motions contribute to power absorption.

Following the generalized modes method of Newman [16], we define each mode by a vector
‘shape function’ Sj(x) with Cartesian components uj(x), vj(x) and wj(x). For heave (j = 3), the shape
function S3 is simply a unit vector in the vertical direction. For the additional mode (j = 7), the
shape function S7 is given as

u7 = 0, v7 = 0 and w7 =
{

1 for x ∈ Ss

0 elsewhere.
(2.1)

The displacement of an arbitrary point x within the body is given by
∑

j ξjSj(x), where ξj is the
complex displacement amplitude of the body in mode j. The normal component of Sj(x) on the
wetted body surface Sb is expressed as

nj(x) = Sj(x) · n(x) = uj(x)nx(x) + vj(x)ny(x) + wj(x)nz(x), (2.2)

where the unit normal vector n points out of the fluid domain and into the body. The normal
component of S7 on the wetted body surface is therefore

n7 = S7 · n =
{

nz for x ∈ Ss

0 elsewhere.
(2.3)

In accordance with linear theory, the generalized pressure force corresponding to mode j is
defined as

Fj =
∫∫

Sb

pnj dS = −ρ

∫∫
Sb

(iωφ + gz)nj dS, (2.4)

where the first term is the hydrodynamic contribution and the second term is the hydrostatic
contribution. Here, φ is the total velocity potential, which may be expressed as the sum of the
diffraction potential φD and the radiation potential φR. The diffraction potential φD is defined as
the sum of the incident wave potential φI and the scattering potential φS.

The contribution from the diffraction potential is defined as the wave excitation force Fej

Fej = −iωρ

∫∫
Sb

φDnj dS = −iωρ

∫∫
Sb

φD
∂φj

∂n
dS, (2.5)

where φj is the unit-amplitude radiation potential according to the definition φR = iω
∑

j ξiφj.
The contribution from the radiation potential is expressed in terms of the added mass and

radiation damping, whose coefficients mij and Rij are defined in the form

mij − i
ω

Rij = ρ

∫∫
Sb

φjni dS = ρ

∫∫
Sb

φj
∂φi

∂n
dS. (2.6)
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The hydrostatic restoring force coefficients, i.e. the change in the hydrostatic component of the
generalized force Fi due to a unit displacement in mode j, are given as [16]

Kij = ρg
∫∫

Sb

nj(wi + zDi) dS, (2.7)

where Dj is the divergence of Sj(x). For the additional mode (j = 7),

D7 = ∇ · S7 = 0. (2.8)

Lastly, the coefficients of the generalized mass matrix are given as

Mij =
∫∫∫

V
ρmSi · Sj dV, (2.9)

where ρm is the density of the body, which is a function of x, and the integral is taken over the
total volume of the body. We assume that the mass of the moving surface is zero. It then follows
from (2.9) and (2.1) that

M37 = M73 = M77 = 0, (2.10)

while M33 is equal to the total mass M of the body, excluding the added mass.

3. Air-filled compressible bodies

(a) Floating cylinder with downward-facing moving surface
We consider first a compressible floating cylinder enclosing a volume of air, as shown in figure 1a.
The total air volume may be greater or smaller than the submerged volume of the cylinder. The
moving surface at the bottom is assumed to be a rigid horizontal surface, free to move up and
down relative to the cylinder. There is then a pneumatic restoring force on the moving surface.

Using (2.1)–(2.3) and (2.8), it follows from (2.7) that

K37 = K73 = K77 = ρg
∫∫

Ss

nz dS = ρgS1, (3.1)

where S1 is the projected area of the moving surface on the horizontal plane, while K33 = ρgS2,
where S2 is the water plane area of the cylinder. For a cylinder with a flat horizontal moving
surface, S1 is just the area of the moving surface.

Let the equilibrium air volume and pressure in the compressible volume be V10 and p0 =
patm + ρgd, where d is the equilibrium submergence of the moving surface (figure 1). Assuming a
linearized isentropic air pressure–density relation, we have, for the compressible volume,

p1 = −γ p0

V10
V1, (3.2)

where p1 is the dynamic air pressure in the compressible volume and V1 is the volume change,
which may be expressed as

V1 = −ξ7S1. (3.3)

Substituting (3.3) into (3.2) and noting that the pneumatic force on the moving surface is pointing
in the negative z-direction, we may write the pneumatic stiffness of the moving surface as

Kp77 = S2
1
γ p0

V10
. (3.4)

Note that the pneumatic stiffness of the moving surface is linearly dependent on the ratio of the
equilibrium pressure p0 to the compressible volume V10, and quadratically dependent on the area
S1, whereas its hydrostatic stiffness is only linearly dependent on S1.
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Figure 1. (a–c) Sketch of the air-filled compressible cylinders. For (c), the upper and lower cylinders move together as one
body. For each cylinder, the moving surface is free to move up and down relative to the body. (Online version in colour.)

Putting all the terms together, we can write the coupled dynamic equations for the floating
cylinder in the following matrix form:

⎧⎨
⎩−ω2

[
M + m33 m37

m73 m77

]
+ iω

[
R33 R37
R73 R77

]
+

⎡
⎣ρgS2 ρgS1

ρgS1 ρgS1 + S2
1
γ p0

V10

⎤
⎦

⎫⎬
⎭

[
ξ3
ξ7

]
=

[
Fe3
Fe7

]
. (3.5)

In accordance with (2.5) and (2.3), Fe7 is the vertical component of the diffracted wave pressure
integrated over the moving surface only, whereas Fe3 is the vertical component of the diffracted
wave pressure integrated over the entire wetted surface.

An estimate of the modified heave natural frequency of the cylinder due to compressibility
of the submerged volume may be obtained based on quasi-static assumption. Under quasi-static
assumption, the pressure change in the compressible volume is determined by hydrostatics only

p1 = −ρg(ξ3 + ξ7). (3.6)

Combining (3.2), (3.3) and (3.6), we have the ratio of the relative displacement of the moving
surface to the heave displacement of the cylinder

ξ7

ξ3
≡ r = − ρg

γ p0S1/V10 + ρg
. (3.7)

Noting that the change in buoyancy is given by

Fb = −ρg(S2ξ3 + S1ξ7) = −ρgξ3(S2 + S1r), (3.8)

we may therefore estimate the heave natural frequency of the compressible cylinder as

ωn3 =
√

ρg(S2 + S1r)
M + m33 + m37r

. (3.9)

As p0, S1 and V10 are positive, so −1 ≤ r ≤ 0 according to (3.7), and, assuming that S1 ≤ S2, we
have 0 ≤ ωn3 ≤ √

ρgS2/(M + m33). The latter is just the heave natural frequency of a rigid cylinder.
Note that ωn3 → 0 as V10 → ∞.

(b) Bottom-fixed cylinder with upward-facing moving surface
Next, we consider a bottom-fixed cylinder as shown in figure 1b. In this case, there is only one
mode, i.e. the motion of the moving surface, defined by (2.1).
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On the moving surface, the unit normal vector is pointing in the negative z-direction. The
hydrostatic restoring coefficient is therefore negative and is given as (cf. (3.1))

K77 = −ρgS1, (3.10)

where S1 is the projected area of the moving surface on the horizontal plane. The volume change
of the compressible volume is given as

V1 = ξ7S1. (3.11)

Combining (3.11) with (3.2) and noting that the pneumatic force on the moving surface is pointing
in the positive z-direction, the pneumatic stiffness of the moving surface is again as given in (3.4).

With M77 = 0, the dynamic equation for the moving surface can finally be written as(
−ω2m77 + iωR77 − ρgS1 + S2

1
γ p0

V10

)
ξ7 = Fe7, (3.12)

and the natural frequency of the moving surface obtained as

ωn7 =
√

S1(−ρg + S1γ p0/V10)
m77

. (3.13)

As the total stiffness of the moving surface is a sum of the negative hydrostatic stiffness and
the positive pneumatic stiffness, there is a possibility that the moving surface may be unstable.
Stability of the moving surface requires that the sum of the pneumatic stiffness and the hydrostatic
stiffness is positive, that is,

S1 >
ρgV10

γ p0
. (3.14)

This means that the area S1 has to be sufficiently large for a given volume V10 and pressure p0, or
that V10 cannot be too large for a given area S1 and pressure p0.

Theoretically, according to (3.13), we can have 0 ≤ ωn7 < ∞. Note that ωn7 → 0 as V10 →
γ p0S1/ρg, that is, the compressible volume does not have to be infinitely large to achieve ωn7 → 0,
in contrast to the case of a floating cylinder with downward-facing moving surface, for which
ωn3 → 0 as V10 → ∞.

(c) Floating cylinder with upward-facing moving surface
If we consider a floating cylinder as shown in figure 1c, since the unit normal vector on the moving
surface is pointing in the negative z-direction, we have

K37 = K73 = K77 = −ρgS1 (3.15)

instead of (3.1). Also, equation (3.11) applies instead of (3.3). With (2.10) and (3.4) still applicable,
the coupled dynamic equations for the cylinder can therefore be written in the form (cf. (3.5))⎧⎨
⎩−ω2

[
M + m33 m37

m73 m77

]
+ iω

[
R33 R37
R73 R77

]
+

⎡
⎣ ρgS2 −ρgS1

−ρgS1 −ρgS1 + S2
1
γ p0

V10

⎤
⎦

⎫⎬
⎭

[
ξ3
ξ7

]
=

[
Fe3
Fe7

]
. (3.16)

The heave natural frequency of the cylinder may be estimated quasi-statically as in §3a. The
ratio of the relative displacement of the moving surface to the heave displacement of the cylinder
may be obtained by combining (3.2), (3.11) and (3.6) to give

ξ7

ξ3
≡ r = ρg

γ p0S1/V10 − ρg
. (3.17)

Stability of the moving surface requires the denominator of (3.17) to be positive, i.e. the
condition (3.14). The change in buoyancy is given by

Fb = −ρg(S2ξ3 − S1ξ7) = −ρgξ3(S2 − S1r). (3.18)
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The heave natural frequency of a compressible cylinder with upward-facing moving surface may
therefore be estimated as

ωn3 =
√

ρg(S2 − S1r)
M + m33 + m37r

. (3.19)

Denoting the ratio S1/S2 as rS, stability of the cylinder requires that r < 1/rS, or

S1 >
ρgV10

γ p0
(1 + rS), (3.20)

according to (3.17). This is a more stringent condition than (3.14). As 0 ≤ r < 1/rS, therefore
0 ≤ ωn3 ≤ √

ρgS2/(M + m33). The latter is again the heave natural frequency of the cylinder if the
moving surface were rigidly fixed to the cylinder. Note that ωn3 → 0 as V10 → γ p0S1/ρg(1 + rS),
in contrast to the floating cylinder with downward-facing moving surface, for which ωn3 → 0 as
V10 → ∞. This implies that the natural frequency ωn3 decreases more rapidly with the volume V10
for the cylinder with upward-facing moving surface than for the cylinder with downward-facing
moving surface.

4. Air-filled compressible bodies as wave energy devices

(a) Floating devices
If the compressible volume of the cylinders in figure 1 is connected to a fixed volume via an air
turbine for PTO, we have wave energy devices which absorb energy by pumping air between
the two volumes as the moving surface oscillates relative to the cylinder, under wave action.
Schematics of these devices are shown in figure 2, illustrating the general configurations. Note
that, for the device in figure 2a, we have chosen the moving surface to be a hemispherical surface
instead of a flat horizontal surface. In this case, the area S1 is the projected area of the hemisphere
on the horizontal plane, and the equilibrium submergence d is measured from the mean free
surface to a distance a/3 from the lowest point of the hemisphere, where a is the radius of
the hemisphere.

As before, let us denote the equilibrium compressible volume as V10 and the equilibrium
pressure in both the compressible and fixed volumes as p0 = ρgd + patm, while the equilibrium
mass of air in each volume is denoted as m10 and m20. Assuming a linearized isentropic air
pressure–density relation, for the fixed volume we have

p2 = γ p0
m2

m20
, (4.1)

where p2 and m2 are, respectively, the dynamic air pressure and the change of air mass in the fixed
volume. For the compressible volume, we have

V1

V10
= m1

m10
− p1

γ p0
, (4.2)

where V1 is the volume change of the compressible volume, while m1 and p1 are, respectively, the
change of air mass and the dynamic air pressure in the compressible volume.

If we assume that the flow through the turbine is governed by the following linear relationship:

iωm2 = −iωm1 = C(p1 − p2), (4.3)

where C is the mass flow through the turbine for a unit pressure difference, substituting (4.1)
into (4.3) gives

m1 = −m2 = −m20Dp1, where D = C
γ p0C + iωm20

. (4.4)
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Figure 2. (a–c) Schematics of the air-filled compressible devices. The compressible volume V1, whichmay be greater or smaller
than the volume enclosed above or beneath the moving surface, is connected via a turbine to a fixed volume V2, which may
be contained in the float, or located onshore for the bottom-fixed device (c). For device (a), the ballast may alternatively be
contained inside V1. Device (c) resembles that proposed by Budal & Falnes [9, §2.3]. (Online version in colour.)

The volume change of the compressible volume is given by

V1 =
{

−ξ7S1 for downward-facing moving surface

ξ7S1 for upward-facing moving surface.
(4.5)

Substituting (4.4) into (4.2) and combining with (4.5), we have

ξ7 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

V10

S1

(
m20

m10
D + 1

γ p0

)
p1 for downward-facing moving surface

−V10

S1

(
m20

m10
D + 1

γ p0

)
p1 for upward-facing moving surface.

(4.6)

Let L be a complex non-dimensional quantity defined as

L ≡ S1

ρgV10((m20/m10)D + 1/γ p0)
. (4.7)

The pneumatic force on the moving surface due to a unit relative displacement of the same is
therefore given as −S1ρgL, regardless of whether the moving surface is downward- or upward-
facing. As L is complex, this force on the moving surface may be decomposed into a real part
which is proportional to its displacement, and an imaginary part which is proportional to its
velocity. The pneumatic stiffness and damping coefficients Kp77 and Rp77 may thus be expressed as

Kp77 = ρgS1 Re{L} and Rp77 = ρgS1

ω
Im{L}. (4.8)

Note that both coefficients depend on the wave frequency ω.
For the floating device, the coupled dynamic equations may therefore be written in the form⎧⎨

⎩−ω2

[
M + m33 m37

m73 m77

]
+ iω

⎡
⎣R33 R37

R73 R77 + ρgS1

ω
Im{L}

⎤
⎦

+
[

ρgS2 ±ρgS1
±ρgS1 ±ρgS1 + ρgS1 Re{L}

]}[
ξ3
ξ7

]
=

[
Fe3
Fe7

]
, (4.9)

where + and − in ± correspond to downward-facing moving surface and upward-facing moving
surface, respectively. It is clearly seen that the presence of the turbine modifies both the stiffness
and damping of the moving surface. When the turbine is blocked, i.e. when C = 0, equation (4.9)
reduces to (3.5) if the moving surface is downward-facing, or to (3.16) if the moving surface is
upward-facing.
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Equation (4.9) can be solved for the displacements ξ3 and ξ7, and, upon finding p1 and p2 from,
for example (4.6), (4.4) and (4.3), the mean absorbed power in regular waves may be obtained
from

P = C
2ρair

|p2 − p1|2, (4.10)

where ρair is the equlibrium air density in both volumes.

(b) Bottom-fixed device
For the bottom-fixed device (figure 2c), which has an upward-facing moving surface,
equations (4.1)–(4.4), (4.7) and (4.8), as well as the second lines of equations (4.5) and (4.6), apply.
The dynamic equation may thus be written as (cf. (4.9) and (3.12))[

−ω2m77 + iω
(

R77 + ρgS1

ω
Im{L}

)
− ρgS1 + ρgS1 Re{L}

]
ξ7 = Fe7. (4.11)

The mean absorbed power may be obtained, as in the floating device, using (4.10).

5. Air-filled compressible devices with water columns

(a) Bottom-fixed device with a water column
If the compressible volume of the bottom-fixed cylinder in figure 1b is connected to a water
column, and the air volume above the water column is fitted with an air turbine open to the
atmosphere, we have another device variation. The water column replaces the fixed volume in
the devices described in §4, in providing the required restoring force on the compressible volume.
A possible arrangement is shown in figure 3a. Under wave excitations, the moving surface and
the water column, which are coupled via the compressible volume V1, oscillate, pumping air into
and out of the volume V2 via the turbine.

Let us denote the equilibrium volumes in V1 and V2 as V10 and V20, respectively. The
equilibrium pressure in V1 is p0 = ρgd + patm, where d is the submergence of the moving surface,
while the equilibrium pressure in V2 is patm. The equilibrium water column levels are related as
h20 = h10 + d. Assuming an isentropic air pressure–density relation, for volume V1, relation (3.2)
holds, while for volume V2,

V2

V20
= m2

m20
− p2

γ patm
. (5.1)

The flow through the turbine is idealized according to the following linear relationship:

− iωm2 = Cp2, (5.2)

where C is the mass flow through the turbine for a unit pressure difference.
Under the assumption that water is incompressible, the amplitudes of the outer and inner

water column levels, h1 and h2, are related through the cross-sectional areas St1 and St2 according
to St1h1 = −St2h2. The volume amplitudes in V1 and V2 are given as

V1 = −h1St1 + ξ7S1 = h2St2 + ξ7S1 (5.3)

and
V2 = −h2St2 = h1St1. (5.4)

Employing the lumped-parameter approach, we may write the equation of motion for the
water column, assuming no losses, as

p1 − p2 = −ω2ρh2

[
d + h10

(
1 + St2

St1

)]
+ ρgh2

(
1 + St2

St1

)
. (5.5)

On the right-hand side, the first and second terms are the inertia and the restoring terms.
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Figure 3. (a–c) Schematics of the compressible devices withwater columns. Part of V1 and thewater columnmay alternatively
be located above water or onshore. (Online version in colour.)

Using (3.2), and (5.1)–(5.4), we may eliminate p1 and p2 in (5.5) to obtain an equation of motion
for the water column in terms of the variables h2 and ξ7. We can then write the coupled equations
of motion for the moving surface and the water column in the following matrix form:⎧⎨

⎩−ω2

[
m77 0

0 ρ(d + h10f )

]
+ iω

⎡
⎣R77 0

0
ρg
ω

Im{L}

⎤
⎦

+

⎡
⎢⎣−ρgS1 + S2

1
γ p0

V10
S1St2

γ p0

V10

S1
γ p0

V10
ρgf + St2

γ p0

V10
+ ρg Re{L}

⎤
⎥⎦

⎫⎪⎬
⎪⎭

[
ξ7
h2

]
=

[
Fe7
0

]
, (5.6)

where the non-dimensional quantities f and L are defined as

f ≡ 1 + St2

St1
and L ≡ St2

ρgV20(C/iωm20 + 1/γ patm)
. (5.7)

Equation (5.6) can be solved for ξ7 and h2, and upon finding p2 using (5.1), (5.2) and (5.4), we
may obtain the mean absorbed power in regular waves as

P = C
2ρair

|p2|2, (5.8)

where ρair is the atmospheric air density.
The water column resonance when the moving surface is fixed to the body may be derived

from (5.5) as

ω0 =
√

g
l

, (5.9)

where

l =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d + h10f
f + St2/Sp1 + St2/Sp2

when C = 0 (V2 is closed)

d + h10f
f + St2/Sp1

when V2 is completely open to the atmosphere,
(5.10)

with

Sp1 ≡ V10

γ (d + patm/ρg)
and Sp2 ≡ ρgV20

γ patm
. (5.11)
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(b) Floating devices with a water column
The water column idea can be applied to floating devices as well. In addition to the components
of the bottom-fixed device (§5a), the floating device has a float at the top and an amount of ballast
to balance the buoyancy force (figure 3b,c).

If the displacement of the moving surface and the levels of the water column are defined
relative to the float, then equations (3.2), (5.1), (5.2) and (5.4) apply without change. The volume
amplitude in V1 is given as

V1 =
{

−h1St1 − ξ7S1 = h2St2 − ξ7S1 for downward-facing moving surface

−h1St1 + ξ7S1 = h2St2 + ξ7S1 for upward-facing moving surface.
(5.12)

Equation (5.5) is modified to include a coupling from the acceleration of the float

p1 − p2 = −ω2ρh2

[
d + h10

(
1 + St2

St1

)]
+ ρgh2

(
1 + St2

St1

)
− ω2ρdξ3. (5.13)

In addition, momentum conservation dictates that, due to the acceleration of the water column,
the float experiences a vertical force which is given as ω2h2ρdSt2.

Proceeding as in the case of the bottom-fixed device, we may then write the coupled equations
of motion for the float, the moving surface and the water column as follows:⎧⎪⎨

⎪⎩−ω2

⎡
⎢⎣M + m33 m37 ρdSt2

m73 m77 0
ρd 0 ρ(d + h10f )

⎤
⎥⎦ + iω

⎡
⎢⎣

R33 R37 0
R73 R77 0

0 0
ρg
ω

Im{L}

⎤
⎥⎦

+

⎡
⎢⎢⎢⎢⎣

ρgS2 ±ρgS1 0

±ρgS1 ±ρgS1 + S2
1
γ p0

V10
∓S1St2

γ p0

V10

0 ∓S1
γ p0

V10
ρgf + St2

γ p0

V10
+ ρg Re{L}

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⎡
⎢⎣ξ3

ξ7
h2

⎤
⎥⎦ =

⎡
⎢⎣Fe3

Fe7
0

⎤
⎥⎦, (5.14)

where + and − in ±, as well as − and + in ∓, correspond to downward-facing moving surface
and upward-facing moving surface, respectively. The non-dimensional quantities f and L are
as defined in (5.7). As in the bottom-fixed device, the mean absorbed power may be obtained
using (5.8).

6. Results and discussions
The hydrodynamic coefficients, i.e. the added mass, radiation damping and wave exciting
force coefficients, for all the geometries considered in this paper are computed using a three-
dimensional radiation/diffraction program [17], which is based on linear potential theory. For
the floating configurations, the water depth is assumed to be infinite. It should be noted that the
following numerical results are obtained using linear models, and losses have not been taken into
account. As such, they should be regarded as optimistic estimates.

(a) Compressible bodies
The dimensions of the compressible cylinders chosen for the numerical calculations are shown in
figure 4. Figure 5a,b shows the calculated heave displacements, per unit incident wave amplitude
A, of the floating cylinders with downward- and upward-facing moving surfaces, for various
equilibrium compressible volume V10. For the floating cylinder with a 5-m-radius upward-
facing moving surface, stability condition (3.20) requires that V10 cannot be greater than 1104 m3.
It is shown from both figures that compressibility lowers the heave natural frequencies of the
cylinders in comparison with the rigid cylinders. For the floating cylinder with an upward-facing
moving surface, we do not require as much V10 as that of the cylinder with a downward-facing
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Figure 4. (a–c) Dimensions (in metres) of the compressible cylinders used in the numerical calculations. The three
configurations have the same equilibrium submerged volume of 785 m3. (Online version in colour.)
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Figure 5. Heave displacements, per unit incident wave amplitude, of (a) the cylinder in figure 4a and (b) the cylinder in
figure 4c and (c) moving surface displacements, per unit incident wave amplitude, of the bottom-fixed cylinder in figure 4b,
for various V10.

moving surface to obtain the same reduction in natural frequency. This observation agrees with
our expectation in §3, namely that the heave natural frequency decreases more rapidly with V10
for the cylinder with upward-facing moving surface than for the cylinder with downward-facing
moving surface.
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Figure 6. (a) Plots of−Im{Z}/ω, where Z is the impedance of the system, for the floating cylinder with a downward-facing
moving surface and V10 = 1000 m3 (solid line); the floating cylinder with an upward-facing moving surface and V10 = 500 m3

(dashed line); the bottom-fixed cylinder with an upward-facingmoving surface and V10 = 1800 m3 (dotted line). Resonance is
achieved when Im{Z} = 0. (b) Radiation damping coefficients of the compressible bodies: R33 = R77 for the floating cylinder
with a downward-facingmoving surface (solid line); R33 for the floating cylinderwith an upward-facingmoving surface (dashed
line); R77 for the floating cylinder with an upward-facingmoving surface (dashed dotted line); R77 for the bottom-fixed cylinder
with an upward-facing moving surface (dotted line).

The calculated moving surface displacements of the bottom-fixed cylinder for various V10 are
shown in figure 5c. For the bottom-fixed cylinder with a 5-m-radius moving surface, stability
condition (3.14) requires that V10 cannot be greater than 2208 m3. The natural frequency of the
moving surface is shown to be sensitive to the variation of V10. A broad-banded resonance
covering typical ocean wave frequencies can be obtained for a sufficiently large value of V10.
The value of V10 also determines the displacement of the moving surface at the zero-frequency
limit, which may be written as (cf. (3.12))

lim
ω→0

ξ7 = ρgS1A

S2
1γ p0/V10 − ρgS1

, (6.1)

where ρgS1A is the wave exciting force on the moving surface as ω → 0. Equation (6.1) gives
limω→0 ξ7/A values of 1.2, 2.1 and 4.4 corresponding to V10 of 1200, 1500 and 1800 m3, in
agreement with figure 5c.

The broad-bandedness of the displacement curve for the bottom-fixed cylinder, as seen in
figure 5, relative to those for the floating cylinders may be explained by looking at figure 6. In
figure 6a, we plot the imaginary part of the system impedance Z for each of the three cylinders
with representative V10 values. For the floating cylinders, we reduce the system impedance from
a matrix to a scalar using the quasi-static approximation described earlier. Resonance happens
when Im{Z} = 0. It is seen that, for the bottom-fixed cylinder, Im{Z} is much closer to zero over a
wide range of frequencies, compared with that for the floating cylinders.

Figure 6b shows that the moving surface of the bottom-fixed cylinder has the highest amount
of radiation damping. As the radiation damping coefficient corresponds to the amount of energy
that the body is able to radiate, it is notable that an upward-facing moving surface is a better
wave radiator than a downward-facing moving surface of the same size and submergence.
Furthermore, in the case of the floating cylinders, the total mass is the displaced mass plus the
added mass of the body. For the bottom-fixed cylinder, however, the total mass is just the added
mass of the moving surface, as the rest of the cylinder is stationary. As resonance bandwidth is
determined by the ratio of the system damping to the system mass (e.g. [18, §§2.1 and 3.5]), the
high radiation damping and low mass associated with the moving surface of the bottom-fixed
cylinder explain its broad-bandedness.
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Figure 7. (a–c) Dimensions (in metres) of the devices without water columns. The displaced volume V of each device is
indicated. (Online version in colour.)
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0.02 ms,V10 = 1000 m3 andvariousV20:V20 = 2000 m3 (solid line);V20 = 3000 m3 (dashed line);V20 = 4000 m3 (dotted line).
The descending line in (b) is the theoretical maximumλ/2π .

(b) Devices without water columns
For the devices without water columns, the dimensions used in the numerical calculations
are shown in figure 7. We consider first the floating device with a downward-facing moving
surface (figure 7a). Figure 8a shows that the heave of the body, normalized with the incident
wave amplitude, tends to the value of one at low frequencies, whereas the normalized relative
displacement of the moving surface tends to zero at low frequencies. This is as expected, since,
for long waves, the whole device moves together with the wave.

As in the compressible bodies, to achieve the same reduction in natural frequency, a floating
device with a downward-facing moving surface needs a larger compressible volume V10 than
a floating device with an upward-facing moving surface does. Moreover, as figure 8b shows,
the fixed volume V20 of a floating device with a downward-facing moving surface has to be
sufficiently large to generate adequate flow through the turbine. Otherwise, the power absorption
of the device is below the theoretical maximum, even at resonance. Thus, although the displaced
volume of the device can be small, a large storage is required to house V20.

Figure 9 shows that increasing the turbine coefficient C increases the displacement peaks, as
high C means low damping. Varying C shifts the peak of the absorption width curve within a
range determined by V20 when V10 is kept constant. This is more clearly seen below in the case of
a floating device with an upward-facing moving surface.
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1000 m3, V20 = 3000 m3 and various turbine coefficients C: C = 0.01 ms (solid line); C = 0.02 ms (dashed line); C = 0.03 ms
(dotted line).
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Figure 10. (a) Displacements, per unit incident wave amplitude, and (b) absorption widths of the device in figure 7a, for
C = 0.02 ms, V10 = 1000 m3 and V20 = 3000 m3 (solid line), compared with those of a completely rigid device with equal
dimensions taking off power by a linear damper (dashed line) and of a compressible device with equal dimensions taking off
power by a linear damper (dotted line).

In figure 10, we compare the performance of the device in figure 7a with those of a completely
rigid device and a compressible device both having the same dimensions as the device in
figure 7a, but where, for each, power is taken from the body heave via a linear damper reacting
against a fixed reference. The PTO damping coefficient is chosen to be 3 × 105 kg s−1, which is
approximately equal to the heave radiation damping coefficient of the rigid body at resonance.
It is evident from figure 10b that the peak of the absorption width curve for the rigid device is
at a frequency higher than those for the compressible devices, demonstrating the positive effect
of a compressible volume in lowering the resonance frequency. The bandwidth of the device in
figure 7a is however narrower than those of the devices with linear PTO dampers. Note, however,
that the latter two devices are not self-reacting, but require a fixed reference for the PTO damper
to react against.

For the floating device with an upward-facing moving surface as shown in figure 7b, we do not
need as much compressible volume V10 as the floating device with a downward-facing moving
surface does. Also, the required fixed volume V20 is much less, and, thus, storage of V20 is not a
problem. Figure 11 shows that varying the turbine coefficient C has the effect of shifting the peaks
of the displacement and the absorption width curves within a determined range, as previously
observed for the device with a downward-facing moving surface (cf. figure 9).
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Figure 12. (a) Displacements, per unit incident wave amplitude, and (b) absorption widths of the device in figure 7b, for
C = 0.003 ms, V10 = 600 m3 and V20 = 500 m3 (solid line), compared with those of a completely rigid device with equal
dimensions taking off power by a linear damper (dashed line) and of a compressible device with equal dimensions taking off
power by a linear damper (dotted line).

The performance of the device in figure 7b is compared in figure 12 with those of a completely
rigid device and a compressible device both having the same dimensions as the device in figure 7b,
but where, for each, power is taken from the body heave by a linear damper, whose coefficient
is chosen to be 3 × 105 kg s−1. This value is approximately equal to the heave radiation damping
coefficient of the rigid body at resonance. The bandwidth of the device in figure 7b is shown in
figure 12b to be comparable to those of the devices with linear PTO dampers. As the device in
figure 7b is self-reacting rather than requiring a fixed reference, it is arguably a better device than
those with linear PTO dampers and equal dimensions.

Comparing the dashed curve in figure 12b with that in figure 10b, i.e. the curves corresponding
to the rigid devices with dimensions given in figure 7b,a, respectively, we may note that the peak
in figure 12b is at a lower frequency than that in figure 10b, although the displaced mass of the
device in figure 7b is smaller than that of the device in figure 7a and the waterplane area of the
two devices are the same. This is because the heave added mass of the device in figure 7b is higher
than that of the device in figure 7a, due to the presence of the gap in the former device between
the upper and lower parts of the body.

Before we move on to the bottom-fixed device, it is important to note that, for a floating body
with an upward-facing moving surface, the wave exciting forces on the moving surface Fe7 and
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Figure 13. (a) Moving surface displacements, per unit incident wave amplitude, and (b) absorption widths of the device in
figure 7c, for C = 0.04 ms, V10 = 1000 m3 and V20 = 1300 m3 (solid line), compared with those of a device with equal radius
and V10 but with d = 8 m, C = 0.03 ms and V20 = 1200 m3 (dashed line) and a device with equal radius and V10 but with
d = 7 m, C = 0.02 ms and V20 = 1100 m3 (dotted line).

on the body Fe3 are in opposite phases. By a well-known reciprocity relation between radiation
damping and exciting force [19], the off-diagonal radiation damping coefficients R37 = R73 are
therefore negative. On the other hand, for a floating body with a downward-facing moving
surface, the exciting forces Fe7 and Fe3 are in phase. The radiation damping coefficients R37 = R73
are therefore positive. Furthermore, for a floating body with a downward-facing moving surface,
the moving surface moves approximately in antiphase with the body. As the body moves down,
the moving surface moves up relative to the body. On the other hand, for a floating body with
an upward-facing moving surface, when the resonance frequency of the moving surface is much
higher than the heave resonance frequency of the body, as considered here, the moving surface
moves approximately in phase with the body. As the body moves down, the moving surface also
moves down relative to the body. It follows that, for the same heave amplitude, the total wave
energy radiated by a compressible heaving body with a relatively stiff moving surface is always
less than the total wave energy radiated by a completely rigid body of the same dimensions,
irrespective of the moving surface orientation.

In figure 13, we plot the moving surface displacement and absorption width of the bottom-
fixed device with dimensions as shown in figure 7c, together with those of the devices having
smaller moving surface submergences. A notable feature of the bottom-fixed device is its broad-
banded resonance. As discussed in §6a, this broad-bandedness is due to the high ratio of radiation
damping to added mass corresponding to the moving surface. The total air volume V10 + V20
has to be sufficiently large to achieve resonance at typical ocean wave frequencies, as discussed
previously. The individual values of V10 and V20 do not matter, as similar performance can be
obtained for various combinations of V10 and V20 which give the same combined total volume,
provided the turbine coefficient C is varied accordingly. This offers more design flexibility. The
total air volume also determines the moving surface displacement at the zero frequency limit,
whose value is given as in (6.1), but with V10 replaced by V10 + V20. This gives limω→0 ξ7/A of
3.2, 3.3 and 3.5, corresponding to figure 13a.

The required air volume is somewhat reduced when the submergence of the moving surface is
smaller, as the equilibrium pressure p0 is reduced as submergence is decreased. Moreover, having
the equilibrium position of the moving surface higher up increases its radiation damping, which
in turn results in a broader resonance bandwidth, as figure 13b shows.

(c) Devices with water columns
For the devices with water columns, the dimensions used in the numerical calculations are shown
in figure 14. We consider first the floating device with a downward-facing moving surface as
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shown in figure 14a. The water column introduces two peaks in both the displacement and the
absorption width curves (figure 15). The frequency of the trough corresponds approximately to
the water column resonance frequency when the moving surface is fixed to the body, as given
in (5.9)–(5.11). Although we do not require as much air volume as that required by the device
without the water column (figure 7a) to reach the theoretical maximum absorbed power, the
power absorption bandwidth is very narrow. Increasing V10 may widen the bandwidth, but only
slightly. The performance of the device in figure 14a appears to be relatively poor compared with
the other devices considered so far.

In figure 15, we also compare the response of this device with that of a device of equal
dimensions but with the turbine removed, i.e. with V2 completely open to the atmosphere,
and where power is extracted from the body heave by a linear damper reacting against a fixed
reference. The absorbed power has a minimum at a frequency corresponding to the resonance
frequency of the water column. This is as expected, since, at this frequency, the water column
motion is amplified, while the body becomes relatively stationary. Apart from this minimum, the
absorbed power bandwidth is broader, as it corresponds to the bandwidth of the body heave,
which is broader than that of the water column.

For the floating device with an upward-facing moving surface (figure 14b), an interesting effect
is observed when the equilibrium compressible volume V10 is varied (figure 16). For a sufficiently
small V10, better performance is obtained relative to that of the device with a downward-facing
moving surface (figure 14a). When V10 is increased, the absorption width curve widens towards
lower frequencies, but at the same time a trough is created which also widens as V10 is increased.
Further increasing V10 removes the low-frequency peak and adds a high-frequency peak to the
absorption width curve. The peak that remains at the same frequency corresponds to the heave
natural frequency of the body. This behaviour may be explained by recalling that the water
column resonance frequency depends on the volume V10, as shown in equations (5.9)–(5.11).
The high-frequency peak observed when V10 is further increased corresponds to the resonance
frequency of the moving surface.

The response of the bottom-fixed device with a water column (figure 14c) for various values
of compressible volume V10 is shown in figure 17. A broad-banded power absorption covering
typical ocean wave frequencies is obtained with a sufficiently large V10. Reducing V10 decreases
the displacements of the device, but also decreases the amount of absorbed power. The water
column introduces a trough in the power absorption curve, and it appears that the water column
does not offer any clear advantages relative to a device without a water column (cf. figure 13b).
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Figure 15. (a) Displacements and (b) water column amplitudes per unit incident wave amplitude, and (c) absorption widths of
the device in figure 14a, for C = 0.015 ms, V10 = 1500 m3 and V20 = 250 m3 (solid line), compared with those of a device with
equal dimensions but taking off power by a linear damper from the body heave (dashed line).

The poor performance of the floating devices with water columns may be explained by
comparing them with the bottom-fixed counterpart. The latter has two modes: the moving surface
displacement and the water column displacement. The two are coupled through the compressible
volume V1 (see (5.6)). With a sufficiently large V10, the moving surface has a broad-banded
resonance, which is passed on to the water column in the manner of two coupled oscillators
where only the main mass is excited. The main mass in this case is the moving surface. On
the other hand, the floating devices with water columns have three modes: the heave of the
body, the displacement of the moving surface and the displacement of the water column. The
dynamic interactions between the three is more complex. For the configurations considered here,
the moving surface is relatively stiff, i.e. its resonance frequency is much higher than the heave
resonance frequency of the body. In this case, the water column is excited mainly by the body
heave instead of the moving surface (see (5.14)). It is therefore necessary to match the resonance
frequency of the water column to the heave resonance frequency of the body. As we have just
observed, however, the resulting power absorption bandwidth is narrow. When V10 is increased
(figure 16), the water column resonance frequency moves away from the heave natural frequency
of the body, and it results in two separate narrow peaks.

(d) Further remarks
For a floating device with a downward-facing moving surface, with or without a water column,
we may increase the air volume V10 to lower the resonance frequency of the moving surface,
without any concerns about stability. However, it is not possible to lower the resonance frequency
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Figure 16. (a) Displacements and (b) water column amplitudes per unit incident wave amplitude, and (c) absorption widths
of the device in figure 14b, for C = 0.005 ms, V20 = 250 m3 and various V10: V10 = 300 m3 (solid line); V10 = 1000 m3 (dashed
line); V10 = 1700 m3 (dotted line).

of the moving surface below a certain value, which is determined by the area of the moving
surface. The resonance frequency of a downward-facing moving surface therefore remains much
higher than the heave resonance frequency of the body. On the other hand, for a floating device
with an upward-facing moving surface, it might be possible for the resonance frequency of the
moving surface to approach typical wave frequencies by increasing V10 within the limits defined
by the stability requirement. When the resonance frequency of the moving surface approaches
that of the body, however, instead of moving in phase relative to the body, the moving surface
begins to move in antiphase relative to the body. This means that, as the body moves up, the
moving surface moves down, i.e. buoyancy drops, and so the upward motion of the body is
reduced. While the moving surface motion itself might be amplified, the combined wave radiation
of the two modes when both are in resonance is generally less than that when only one mode is
in resonance. As we need optimum wave radiation for wave absorption, it follows that, for the
floating devices with upward-facing moving surface, tuning the moving surface by increasing V10
such that its resonance frequency is close to that of the body heave is detrimental to the power
absorption of the device.

One way to improve the performance of the floating devices with upward-facing moving
surface involves tuning the moving surface, by increasing the compressible volume V10, to
resonate at typical wave frequencies, while tuning the heave resonance of the body away from
those frequencies. The body then serves as a relatively stationary reference for the moving surface
to do work, and the moving surface becomes the main wave radiator. In this case, the device
behaves almost like the bottom-fixed device. In [20], the approach was to increase the heave
added mass of the body by modifying its geometry, such that its resonance frequency is lowered.
Another possible approach is to increase the heave stiffness of the body, e.g. by tethering it to
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Figure 17. (a) Moving surface displacement and (b) water column amplitudes per unit incident wave amplitude, and
(c) absorption width of the device in figure 14c, for C = 0.002 ms, V20 = 250 m3 and various V10 : V10 = 2600 m3 (solid line);
V10 = 2000 m3 (dashed line); V10 = 1000 m3 (dotted line).

the sea bottom, so that its resonance frequency is increased. Both approaches, provided the air
volume V10 is sufficiently large, would result in a broad absorbed power bandwidth. The latter
approach would result in device dynamics more closely resembling the bottom-fixed device, so
we expect a slightly broader bandwidth than what we would obtain from the former.

7. Conclusion
A heaving wave energy device should have a large waterplane area for it to radiate well.
However, a large waterplane area means high stiffness, and therefore the displaced mass has
to be large for the device to resonate with the waves. This is true for a rigid device. A heaving
body with a compressible volume, however, has a lower stiffness than a rigid body, so it can have
a smaller mass. Its resonance period is not governed by its size.

Based on this idea, a number of air-filled compressible devices have been investigated in this
paper, where the variability of volume has been achieved by means of an idealized horizontal
surface free to move vertically relative to the body. In total, six different device configurations
have been analysed (table 1).

In summary, we have two design options depending on which mode should be the dominant
wave radiator. If the body heave is the dominant wave radiator, the body should be in resonance,
while the moving surface should not. If the moving surface is the dominant wave radiator, the
moving surface should be in resonance, while the body should not. Our results suggest that the
two modes should not be both in resonance. For the first option, the air volume should be small.
For the second option, the air volume has to be sufficiently large. Some of this air volume can be
above water.
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Table 1. Qualitative comparison of the six wave energy devices with compressible volumes.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

device
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dominant radiator body heave body heave moving surface body heave body heave moving surface
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

air volume

requirement

very large small large small small large

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

absorbed power

bandwidth

narrow narrow broad very narrow narrow broad

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

water depth

limited?

no no yes no no yes

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The floating devices with downward-facing moving surfaces can only work with the first
option, as the downward-facing moving surface is relatively stiff. Our findings suggest that
the performance of these devices is poor. Without a water column, the air volume requirement
is very large. While the addition of a water column relaxes the air volume requirement, the
absorbed power bandwidth becomes narrower. For the floating devices with upward-facing
moving surfaces, we have in this paper considered the first option, but it is possible to design
it to work with the second option, as discussed in §6d. With the first option, the required air
volume is small, but its bandwidth is relatively narrow. Indeed, when the body heave is the
dominant wave radiator, the compressible volume tends to reduce the total wave radiated by the
device, regardless of the orientation of the moving surface. For all the floating devices, however,
the advantage of the compressible volume in lowering the resonance frequency of the device is
clearly demonstrated: resonance happens at a frequency lower than the resonance frequency of a
rigid device with equal dimensions.

A remarkably broad bandwidth is obtained for the bottom-fixed devices with upward-facing
moving surface. Here, the moving surface is the only wave radiator. Devices with displaced
volumes less than 2000 m3 and with constant turbine coefficients have been shown to be capable
of achieving 80% of the theoretical maximum absorbed power over a wave period range of
about 4 s. The required air volume in this case was about 2500 m3. In comparison, a heaving
rigid semi-submerged sphere with a displaced volume of 7000 m3 and with a constant PTO
damping attains 80% of the theoretical maximum absorbed power only over a wave period range
of 2 s.

In practice, the moving surface may possibly be a rigid surface mounted on flexible bellows,
or a rigid surface connected to the walls of V1 in the manner of a loudspeaker diaphragm, or it
may be made completely out of a flexible membrane, as suggested in [9, §2.3].
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