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A B S T R A C T   

Ocean Thermal Energy Conversion (OTEC) is a promising renewable energy technology that is the most economical 
at large scale. But contemporary literature does not address how OTEC could reach such scale with current 
technology, and what the techno-economic impact of location-dependent factors and technological learning are. 
This paper tackles these issues by simulating OTEC’s upscaling with a model that implements OTEC to meet local 
electricity demand and extrapolates to the global relevance of OTEC. The model uses a learning rate for in
vestment costs and cost of finance. This study shows that up to 45 GW of OTEC capacity can be installed in 
Indonesia with national demand coverage of 22% in 2050. Even with small cost reduction rates, OTEC could be 
profitable and cost-competitive against other power generation technologies with an aggregated Net Present Value 
(NPV) of up to US$ 23 billion. OTEC’s upscaling could be funded via state budget reallocation or international 
financial institutions, e.g. via the feed-in tariff suggested in the paper. However, large-scale OTEC is only feasible 
in regions with high electricity demand and until that size is reached, upscaling must be coordinated globally, e. 
g. with the proposed upscaling strategy. To contribute to the global energy transition, OTEC needs to grow by 
28% per year, a rate similar to wind power and solar PV. This paper provides good reasons to fight for the 
attention of global decision makers and future research could focus on refining the concepts of this study.   

1. Introduction 

In the last two decades, Indonesia’s electricity demand has grown by 
more than 6% annually [1,2] and is expected to rise at a similar rate 
until 2050 [3]. Despite abundant domestic reserves of coal and natural 
gas [4], the recent depletion of Indonesia’s oil reserves shows that these 
reserves may not be enough to satisfy the country’s hunger for electricity 
on the long term [5]. Currently, Indonesia aims to increase the share of 
renewables in the energy mix and policymakers explicitly call for the 
refinement of ocean energy potentials, including Ocean Thermal Energy 
Conversion (OTEC) [3]. 

OTEC produces electricity by utilising the temperature difference 
between warm surface and cold deep-sea water. Despite a theoretical 
potential of up to 30 TW [6] globally, OTEC is still in early development 
with no commercial plants, so countries like Indonesia cannot yet 
benefit from clean baseload power from OTEC and additional applica
tions like cooling and freshwater production [7,8]. This is unfortunate, 
as an earlier work [9] showed the practical potential of large-scale OTEC 
is 103.2 GW in Indonesia, with up to 2.0 GW that could be implemented 

profitably today under certain techno-economic conditions. However, 
that study omitted the cost-reducing effects of technological learning 
during the upscaling process from small to large OTEC plants. 

In response to the points raised above, this paper aims to shed light 
on the following research question: 

What are possible upscaling scenarios of OTEC in Indonesia using 
technological learning, and what global techno-economic insights can 
be drawn from them? 

The combination of growing electricity demand and the region’s 
steeply declining seabeds enabling floating OTEC installations nearshore 
make Indonesia an excellent subject to study the upscaling of OTEC to 
reach its high economic potential [9,10]. But given the myriad of 
countries suitable for OTEC [11], its upscaling is a global challenge and 
should be treated as such. As Indonesia consists of over 16,000 islands 
[12] with significant differences in electricity demand, electricity tariff, 
oceanography, and ocean thermal resources, the country can be viewed 
as a host of multiple cases. For instance the isle of Java, the economic 
centre of Indonesia, could serve as a proxy for Hawai’i, USA, with its 
high electricity demand. Meanwhile, the rural, dispersed communities 
in Maluku and Kepulauan Nusa Tenggara could represent Small Island 
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Developing States (SIDS). Therefore, the results presented are not only 
relevant for Indonesia, but also for several other regions of the world. 

This study aims to shed light on how OTEC’s commercialisation 
could be promoted, when OTEC could make meaningful contributions to 
Indonesia’s and the global energy transition, how the upscaling could be 
financed, and what hurdles lie ahead. It is assessed how OTEC could be 
scaled up from its current pilot stage to full commercial size. The 
upscaling process considers local conditions such as electricity demand 
and its growth, electricity tariffs, and the location of the plants. To the 
authors’ knowledge, such detailed upscaling scenarios are innovative in 
OTEC literature. Another novelty of this work is the application of a 
learning rate not only to Capital Expenses (CAPEX), but also to the dis
count rate. With this, the gradual reduction of financing costs as seen in 
practice for other renewables is simulated. Moreover, this study pro
poses a support scheme to finance OTEC’s upscaling via a Feed-In Tariff 
(FIT). This addresses an important knowledge gap in literature, as the 
costs of OTEC are frequently assessed but not its financing. Lastly, the 
results are gathered to propose a global OTEC upscaling concept. These 
insights are not only valuable for OTEC researchers, but also global 
policymakers who search for ways to decarbonise their energy systems 
and decrease their dependency on imported fossil fuels. 

This paper is organised as follows. Section 2 presents current work on 
technological learning in the fields of energy technologies and OTEC 
specifically. Section 3 elaborates the methods, data and assumptions 
deployed in this study. Section 4 encompasses the results and discussion 
of the scenarios as well as the global upscaling concept. The paper ends 
with conclusions in Section 5. 

2. Literature overview and knowledge gaps 

2.1. Technological learning and upscaling scenarios in OTEC literature 

Technological learning is commonly visualised via experience curves 
showing the development of a technology’s costs against its economic 
output, e.g. the installed capacity or produced electricity. An important 
metric is the learning rate, by which the costs of a technology change per 

doubling of economic output of that technology [13,14]. Currently, 
there are no empirical OTEC experience curves due to the absence of 
commercial plants and long-term operational data [15,16]. Current 
work mainly estimates the cost reduction potential based on experience 
in related industries, such as shipbuilding, petroleum, and utility engi
neering. In OTEC literature, a learning rate of 7% is frequently assumed 
based on the maturity of several system components like turbines and 
generators [17,18]. The total cost reduction potential is estimated to be 
30% of initial CAPEX [16], reached after the 4th or 5th doubling of 
installed capacity [18]. Cost reductions are expected to be achieved by 
standardisation and technical improvements of components like heat 
exchangers and seawater pumps [18,19]. 

In current OTEC literature, only two studies report on upscaling 
scenarios. Vega [20] outlined the development from pre-commercial 
plants below 5 MW to commercial 100 MW plants in Hawai’i, USA. In 
the same region, Martel et al. [18] analysed scaling up of OTEC via 100, 
200 and 400 MW plants. Both studies implied the technical viability of 
large-scale OTEC within 5–6 years due to OTEC’s modularity [18]. 

2.2. Knowledge gaps and how they are addressed 

Section 2.1 indicates three knowledge gaps in OTEC literature 
regarding upscaling and technological learning. First, no studies were 
found that simulate the upscaling of OTEC from today’s pilot stage to 
large commercial systems. Instead, current literature implies that the 
latter is within reach in the next years. However, such outlooks disre
gard the current state of the art of some OTEC components. For example, 
some studies suggest cold seawater pipes with diameters of at least 10 m 
for a 100 MWnet system [16,18], while current pipes only reach di
ameters of up to 4 m [21]. This is an indication that not only the OTEC 
plants must be developed to reach commercial scale, but also the in
dustries associated with OTEC, like pipe manufacturers and offshore 
contractors who need vessels suitable to lay such large pipes. Second, 
existing scenarios do not take into account the local conditions on shore 
that affect the plants’ economic viability, such as local electricity de
mand and tariffs. Thus, it is unclear whether the suggested upscaling 

Abbreviations, Symbols, and Indices 

ΔT Seawater Temperature Difference ◦C 
ADB Asian Development Bank 
b Learning Coefficient 
BPP Basic Cost of Electricity Production (Biaya Pokok 

Penyediaan) US¢/kWh 
c Capacity Factor % 
CAPEX Capital Expenses US$ million 
CRF Capital Recovery Factor % 
d Distance from Plant to Populated Connection Point at 

Shore km 
DR Discount Rate % 
E Annual Electricity Production MWh/year 
EEZ Exclusive Economic Zone 
FIT Feed-In Tariff US¢/kWh 
GIS Geographic Information System 
HC High Cost 
LCOE Levelized Cost of Electricity US¢/kWh 
LR Learning Rate % 
LC Low Cost 
N Plant Lifetime Years 
NPV Net Present Value US$ billion 
OPEX Operational Expenses US$ million per year 
OTEC Ocean Thermal Energy Conversion 
P Power MW, GW 

PPA Power Purchase Agreement (Tariff) US¢/kWh 
PR Progress Rate % 
r Growth Rate % per year 
SIDS Small Island Developing States 
η Transmission Efficiency % 

Index Meaning 
0 First Ever Implemented Plant 
agg Aggregated 
dem Demand 
diff Difference 
f Factor 
goal Implementation Goal 
h hth Implemented Plant in Year i 
H Total Number of Implemented Plants in Year i 
HX Heat Exchanger 
i Year of Implementation Scenario 
ind Independent 
inst Installed 
max Maximum 
min Minimum 
net Nominal Net Power Output 
prov Provincial 
sup Supply 
trans Transmission  
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scenarios are economically feasible and what funding would be neces
sary to finance the plants’ operation. Third, technological learning plays 
a limited role in OTEC literature. Only one study created hypothetical 
experience curves for OTEC’s deployment [18], which differ greatly 
from curves found in learning literature. In an earlier study these dif
ferences and the validity of the experience curves were discussed [15]. 
Consequently, most current studies only look at OTEC’s economics 
through the lens of today without considering what the future might be. 

This study tackles all three knowledge gaps above by envisioning the 
natural progression of OTEC from small to large scale. The upscaling 
scenarios presented here consider the pace of OTEC implementation, 
local bottlenecks imposed by provincial electricity demand and regional 
electricity tariffs, and location-dependent costs and electricity produc
tion of OTEC plants. It is shown when and how OTEC could reach full 
scale as well as the associated techno-economic implications. OTEC’s 
cost decline through time is visualised with experience curves. By 
comparing the required tariff to breakeven with the existing local 
electricity tariffs, it is possible to deduce the annual funding re
quirements of the upscaling scenarios, e.g. via a FIT scheme. Techno
logical learning is a key element in this study to not only show by how 
much costs could decline in the future, but vice versa to indicate what 
cost reduction rates are necessary to make OTEC profitable in the mid to 
long term. Using and combining the pace of OTEC implementation, 
location-specific costs and regional market factors are novel and inno
vative in the view of the authors and can potentially add significant 
value to the existing body of OTEC literature. 

3. Methodology 

The methodology in this paper builds on earlier work [9] and has 
been further developed to allow the modelling of upscaling scenarios. 
First, suitable OTEC sites are mapped across the Indonesian sea at a 
resolution of 0.25◦ or 27.8 km using a Geographic Information System 
(GIS) approach. With this resolution, the goal is to limit local thermal 
degradation at the seawater outlets of the OTEC plants. This is important 
as thermal degradation not only has negative impacts on the local 
ecosystem, but also on the technical performance of the plant due to the 
decrease of seawater temperature difference [6]. Suitable sites are 
determined via the criteria of (1) water depth, (2) seawater temperature 
difference, and (3) marine protected areas. Regarding (1), sites are 
excluded with a depth of less than 1000 m and more than 3000 m to 
ensure the extraction of sufficiently cold water while considering the 
current state of the art of mooring lines. Regarding (2), the 5-year 
average seawater temperature difference must be at least 20 ◦C. 
Regarding (3), the sites within marine protected areas are excluded, 
which is a common practice when mapping offshore wind resources [22, 
23]. Then, a model was created that scales up OTEC from small to large 
scale over 30 years until 2050. For each year, an installation target is 
declared based on a predetermined OTEC growth rate rOTEC. The model 
tries to achieve this target by selecting favourable sites for OTEC 
implementation based on distance to shore and local electricity gener
ation cost in provinces with sufficient electricity demand. The upscaling 
scenarios are evaluated based on the aggregated Net Present Value (NPV) 
of all implemented plants. The NPV considers the devaluation of future 
cash flows and represents the cash balance at the end of the scenario in 
today’s currency. Next, the results of the scenario with the highest NPV 
are presented in more detail, including the collective economic potential 
and hypothetical experience curves displaying the Levelised Cost of 
Electricity (LCOE). The collective economic potential refers to all plants 
of a net profitable scenario. Thus, even if individual plants are unprof
itable, they contribute to the accumulation of experience and drive 
down the costs of future plants. Next, the impact of variables outside the 
control of OTEC stakeholders on the results are studied. The analysis is 
concluded by presenting a nationally uniform FIT to finance OTEC. All 
costs are denoted in US$(2018). 

3.1. Data and assumptions 

3.1.1. Suitable OTEC sites 
This study adopts the methodology of Langer et al. [9] to obtain a 

dataset of suitable sites for moored OTEC, including Indonesia’s Exclu
sive Economic Zone (EEZ). Especially at later stages of the implementa
tion scenarios, when costs have decreased, sites outside provincial sea 
borders and within the EEZ become economically interesting. 

The dataset of potential OTEC locations used for the model contains 
the following information:  

• Longitude and latitude of the OTEC site and its connection point  
• Province of connection point  
• Distance between plant and connection point d in kilometres [km]  
• Seawater temperature difference ΔT in degrees Celsius [◦C]  
• Water depth in metres [m]  
• Electricity tariff at connection point in US¢/kWh 

3.1.2. Techno-economic assumptions regarding OTEC 
Based on a previous literature review [15], estimations on CAPEX 

found in OTEC literature form a total of three scale curves. These curves 
show how the specific CAPEX decline with increased system size due to 
economies of scale. However, the lowest of the three cost curves is based 
on system designs and cost assumptions that are yet to be validated 
within the OTEC field. This curve is therefore omitted in this study and 
the two remaining cost curves are referred to as Low- and High-Cost 
Curves (LC and HC). Besides this terminology, all technical and eco
nomic assumptions of the OTEC plants are adopted from an earlier study 
[9], as summarised in Table 1. Regarding the location-independent cost, 
the functions in Ref. [9] return the costs in US$(2018)/kW. Therefore, 
functions shown in Table 1 were slightly changed to return costs in US 
$(2018) million. Moreover, in contrast to Ref. [9], the Operational Ex
penses (OPEX) of LC-OTEC are assumed to be 3% of LC-CAPEX and 5% of 
HC-CAPEX, respectively. 

3.1.3. Technological learning and LCOE 
This study assumes a constant learning rate of 7% [17,18], which 

includes learning-by-doing, research & development, standardisation, 
automation and knowledge spill-overs from other industries [13,14]. 
The relationship between costs and learning rate are described with 
equations (1)–(3). Learning is assumed to be continuous for the entire 
timespan, which goes beyond current practice reported in OTEC 
literature. 

Table 1 
Techno-economic assumptions for OTEC plants.  

Technical assumptions 

Lifetime N 30 years 
Capacity Factor cf 91.2% 
Transmission Efficiency ηtrans 

(function of distance from 
plant to shore d) 

(100 − 2 *10− 4 *d2 − 1.99 *10− 2 *d) %  

Economic assumptions LC-OTEC HC-OTEC 

Location-independent 
components CAPEXind [US 
$(2018) million] (function of 
net power output Pnet) 

(39.6 *P− 0.418
net )*Pnet  (51.8 *P− 0.315

net )*Pnet  

Heat Exchangers CAPEXHX [US 
$(2018) million] (function of 
seawater temperature 
difference ΔT and net power 
output Pnet 

(1.97 − (ΔT −

20◦C) *0.19)*Pnet  

(5.82 − (ΔT −

20◦C) *0.56)*Pnet  

Power Transmission CAPEXtrans 

[US$(2018) million] 
(function of distance from 
plant to shore d and net power 
output Pnet) 

(0.0497 *d + 0.304)*Pnet  

Operational Expenses OPEX 3% of CAPEX per year 5% of CAPEX per year  
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The discount rate is used to determine the present value of future 
cash flows [24]. This study assumes an initial discount rate DR of 10% 
[9] which harmonises with previous studies on OTEC [19,25,26] and 
other ocean technologies like tidal current and wave current power [27, 
28]. Then again, it is relatively high compared to more mature renew
able technologies implemented in more developed countries. With rising 
experience, the risks of implementing a technology can decline and with 
them the discount rate [29,30]. For instance, the average discount rate 
for solar PV was as low as 4% in 2018 in Japan [31]. Therefore, this 
study suggests a discount rate that decreases with accumulated experi
ence. The LCOE and NPV are calculated using equations (4)–(7), 
respectively. 

CAPEXh =
(
CAPEXind,h + CAPEXHX,h + CAPEXtrans,h

)
*
(

Pinst,h

Pinst,0

)b

(1)  

PR = 2b (2)  

LR = 1 − PR (3)  

Eh = Pnet,h*cf *8, 760*ηtrans (4)  

LCOEh =
CRFh*CAPEXh + OPEXh

Eh
(5)  

with CRFh =

DR0*
(

Pinst,h

Pinst,0

)b

*

(

1 + DR0*
(

Pinst,h

Pinst,0

)b
)N

(

1 + DR0*
(

Pinst,h

Pinst,0

)b
)N

− 1

(6)  

NPV =
∑H

h=1

∑i+N

i=1

Eh*(PPA − LCOEh)
(

1 + DR0*
(

Pinst,h

Pinst,0

)b
)i (7)   

Inputs  Indices 

η: Efficiency LR: Learning Rate 0: Starting Year   

b: Learning Coefficient N: Project Lifetime h: hth Implemented Plant 
CAPEX: Capital 

Expenses 
NPV: Net Present Value inst: Installed 

CRF: Capital Recovery 
Factor 

OPEX: Operational 
Expenses 

H: Total Number of 
Implemented Plants 

DR: Discount Rate P: Installed Capacity net: Nominal Net Power 
Output 

E: Annual Electricity 
Production 

PPA: Tariff from Power 
Purchase Agreement 

trans: Transmission 

i: Year of Plant 
Implementation 

PR: Progress Rate  

LCOE: Levelized Cost of 
Electricity    

3.1.4. Provincial electricity demand and electricity tariff 
The dataset of provincial electricity demand was extracted from BPS 

Statistics Indonesia [32]. Based on the growth since 2000 [1,2] and the 
projected development until 2050 [3], this paper assumes a uniform 
constant electricity demand growth rate rdem of 6.4% p. a. for all prov
inces. The model does not take into account load variations, but only the 
total demand within a year. In practice, OTEC would occasionally be 
shut down in times of low demand and a continuous operation at full 
capacity might not be possible. 

Under the current renewable energy regulation, the remuneration for 
renewables is based on the basic cost of electricity production in 
Indonesia, also referred to as Biaya Pokok Penyediaan (BPP). Next to a 
national BPP of 7.85 US¢/kWh in 2018, there are also regional BPP, 

which varied in 2018 between 6.91 and 21.34 US¢/kWh [33]. 
Depending on technology and region, different fractions of the BPP are 
used as a benchmark for Power Purchase Agreements (PPA) between the 
state-owned utility company and the plant operator. For OTEC, the PPA 
tariff can be up to 85% of the regional BPP if it is higher than the na
tional BPP. If the regional BPP is equal or lower than the national BPP, 
the PPA tariff is based on negotiations with the state-owned utility 
company [34,35]. For simplicity, all PPA tariffs are assumed to be equal 
to 85% of the local BPP, resulting in a PPA tariff range of 5.87–18.14 US 
¢/kWh [33]. It is further assumed that these PPA tariffs stay constant for 
the entire useful lifetime of the plant. 

These assumptions bear some limitations that are discussed here. In 
practice, many PPA tariffs would probably be lower, as the 85% rule 
merely functions as a cap, but not as a guaranteed tariff. Therefore, the 
profitability of OTEC plants might be overestimated in regions where the 
local BPP is higher than the national BPP. On the other hand, the prof
itability might be underestimated in high-demand regions like Java, 
Sumatera, and Bali, where the regional BPP is lower than the national 
BPP. Furthermore, the BPP will most likely not stay constant throughout 
the perceived timespan. Renewable energy policies in Indonesia were 
frequently subject to fundamental changes in the last years with varying 
effects on the technologies’ implementation [36]. The stimulation 
scheme on which this study foots is relatively new itself and thus does 
not allow the extrapolation of PPA tariffs. Practically, the PPA tariffs 
assumed in this study would probably not persist over the perceived 
timespan, and upcoming reforms might affect the upscaling potential of 
OTEC in an unpredictable way. Despite these limitations, the results 
presented here provide a useful projection of the long-term profitability 
of OTEC. 

3.2. Upscaling model 

The logic of the model is summarised in the flowchart depicted in 
Fig. 1. The implementation of OTEC starts at year i = 1 in the year 2021 
and ends at year i = 30 in the year 2050. At the start of each year i, the 
annually growing variables are updated, namely the maximum OTEC 
system size Pmax, the implementation goal Pgoal and the provincial 
electricity demand Edem,prov. It is assumed that the maximum available 
system size grows at the same rate as the implementation goal, namely 
by the OTEC growth rate rOTEC. While the implementation goal can grow 
unlimitedly, the maximum system size Pmax is capped at 100 MW, as it is 
a large-scale size commonly analysed in OTEC literature [16,18] and 
assumed to be adequate for most provinces in Indonesia. 

Next, the model enters an implementation loop, in which the dif
ference Pdiff is calculated between implementation goal Pgoal and 
currently installed capacity Pinst. If Pdiff is smaller than the smallest 
available system size Pmin, the implementation goal is considered ful
filled and the next year is initiated. In this paper, a Pmin of 10 MW was 
chosen based on the recent efforts to build such a system in Hawai’i, 
China and Martinique [37]. If Pdiff is higher than Pmin, the imple
mentation goal is not fulfilled yet and the model tries to implement more 
systems. 

Regarding the selection of a suitable site, the model differentiates 
between a supply- and demand-driven logic. If there is enough demand 
across provinces for the electricity supply of the maximum available 
system size Esup,max,i from Pmax,i, the model acts supply-oriented and 
picks the most favourable site based on a weighted index. The index by 
which the available sites are ranked consists of the distance from the 
plant to a populated connection point and the local PPA tariff as shown 
in equation (8). These two site criteria were found to have the highest 
influence on OTEC’s profitability [9]. The smallest distance and the 
highest PPA tariff within the dataset of available OTEC sites are used as 
references for the index to ensure that the model selects sites close to 
shore with high enough tariff. 
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Indexh =
dmin

dh
*

PPAh

PPAmax
(8)   

Inputs Indices 

d: Distance between OTEC Plant and Connection Point  h: hth Implemented Plant   

PPA: Tariff from Power Purchase Agreement min: minimum  
max: maximum  

If the remaining demand in every provinces is lower than Esup,max,i, 
the model switches to a demand-driven logic. In that case, the model 
picks the province with the highest remaining electricity demand 
Edem,prov,max and chooses an appropriate plant size below Pmax to cover as 
much of that demand as possible. The sites at the province available for 
selection are again ranked by the above-mentioned index. 

After a site has been selected, it is removed from the set of available 
sites and added to an implementation plan with details like imple
mentation year and location as well as individual and aggregated ca
pacity and electricity production. Once a site is occupied, it is not 
available throughout the plant’s lifetime N of 30 years. The capacity of 
the newly selected plant is added to Pinst. Pdiff is recalculated and the 
implementation loop starts anew. 

If Edem, prov,max is lower than the electricity production of the smallest 
available OTEC plant Esup,min, the model breaks the implementation loop 
and continues with the next year, as no more OTEC plant can be 
implemented without oversupplying the province. In such case, the 
implementation goal cannot be fulfilled. 

3.3. Sensitivity analysis and nationally uniform feed-in tariff 

The goal of this study is not to specify one favourable scenario under 
rigid boundary conditions, but to indicate the impact of individual 
variables on the upscaling scenarios and key metrics like aggregated 
installed capacity, aggregated NPV and LCOE. For this, the discount rate 

DR, learning rate LR, and demand growth rate rdem are varied and their 
impact on the outputs is assessed. Moreover, a nationally uniform FIT is 
presented as an alternative to the regionally varying PPA scheme which 
is currently used. For this, the regionally varying BPP benchmarks in the 
dataset are swapped for a uniform FIT. As in the other scenarios, the 
uniform FIT does not change throughout time and is perceived as an 
average FIT. However, such an average FIT would not offer insights on 
the subsidy requirements of pioneer plants with costs above average, 
which is why the concept is expanded with an annually updated FIT 
scheme based on the average values. 

4. Results and discussion 

4.1. Impact of the OTEC growth rate on costs and capacity 

Fig. 2 shows how the OTEC growth rate rOTEC affects (a) the final 
installed capacity, (b) the aggregated NPV at the end-state of the sce
nario, and (c) the average LCOE of the implementation scenarios. 

In Fig. 2(a), the aggregated installed capacity rises with rOTEC until 
reaching a plateau at 45 GW at a growth rate of 34% per year. The 
exponential growth cannot be maintained, because supply growth 
eventually outpaces demand growth. Consequently, the regions that are 
suitable for OTEC become maximally saturated with OTEC and a higher 
growth rate merely leads to a faster saturation, but not to higher 
aggregated capacities. With an annual electricity production of 339 
TWh, 45 GW of OTEC could cover 22% of Indonesia’s electricity demand 
in 2050. These results show both OTEC’s potential and hurdles, not only 
in Indonesia but worldwide. Large-scale OTEC could become a centre
piece in global energy systems, but only where there is sufficient de
mand. Even in a country of the size of Indonesia, local electricity 
demand proves to be a major bottleneck and the technical, economic, 
and ecological benefits of full-size OTEC cannot be fully harnessed in 
some areas. This indicates that only tiny fractions of the global theo
retical and technical OTEC potential can be tapped economically. For 
example, in island states in the Pacific, where ocean thermal resources 
are especially high [6,11], a few small-scale plants would already be 

Fig. 1. Flowchart of the upscaling model used in this study.  
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sufficient to cover demand. 
The scenarios are evaluated based on the aggregated NPV, which 

reflects the cash balance at the end-state of the scenario. For scenarios 
with an aggregated NPV ≥0, the economic potential encompasses the 
capacities of all installed plants. This includes plants with a negative 
NPV, as the experience gained from these plants reduces the costs of 
follow-up plants, which then are profitable. As seen in Fig. 2(b), the 
aggregated NPV is highest at annual growth rates of 26–28% with a total 
installed capacity of 9–16.5 GW and a NPV of US$ 3–23 billion, 
respectively. The NPV reaches zero at growth rates between 24% and 
32% and lead to an economic potential of 6–41 GW. To illustrate what 
these OTEC growth rates mean, it might help to compare them to the 
global growth rates of solar PV and wind power. Between 2009 and 
2019, solar PV and wind power capacity grew on average by 39% and 
15% per year, respectively [38]. Hence, OTEC would have to grow at a 
rate higher than wind power and lower than solar PV. Given how much 
policy support these two maturing technologies received in the last 
decades, this paper shows that strong global policy support will also be 
necessary for OTEC to make a meaningful contribution to the global 
energy transition in the near future. Illustrations like Fig. 2(b) might 
help to show that public investments in OTEC could eventually pay off 
not only ecologically but also economically. To the authors’ knowledge, 
this study is the first to discuss OTEC’s required growth, the way to 
enable such growth, and its possible economic merit. With these con
tributions, this study has the potential to encourage the field to shift 
from a solely engineering-oriented perspective to a more multidisci
plinary one that draws the attention of global decision makers. 

A minimum average LCOE between 8.5 and 12.8 US¢/kWh can be 
reached at an annual growth rate of 30% as shown in Fig. 2(c). At lower 
growth rates, OTEC is scaled up slower and full scale is reached later. 
Due to the weaker economies of scale of small-scale and medium-scale 
plants, the average LCOE is higher. At growth rates higher than 30% 
per year, the LCOE also rises, as fewer large plants can be implemented 
without oversupplying the respective provinces. Instead, more small-to 
mid-sized plants are implemented with weaker economies of scale. 
Furthermore, to maintain such high growth rates, more and more OTEC 
plants must be implemented. First, these systems are deployed in high- 
quality sites close to shore with high local PPA tariffs. But eventually, 
the model is forced to use economically less attractive sites further away 
from shore. The consequent increase in power transmission costs and 
losses increase the average LCOE. Shown as error bars in Fig. 2(c), it can 
be seen that the standard deviation of the sample of LCOE decreases with 
rOTEC. At low growth rates, the standard deviation is calculated with a 
rather small sample size, as only few plants are implemented with even 
fewer full-size systems. At higher growth rates, more and more larger 
systems are implemented, which increases the sample size. Since the 
model tries to deploy as many full-size systems as possible with lower 
and less sensitive LCOE, the standard deviation decreases at these OTEC 

growth rates. The global significance of the LCOE and their ranges is 
discussed in more detail in the following section. 

4.2. Results of the scenario with highest NPV 

This section presents the key results of the scenario that yielded the 
highest aggregated NPV at rOTEC of 28% p. a. Fig. 3(a) shows that OTEC 
implementation proceeds exponentially without restrictions by elec
tricity demand with a final aggregated capacity of roughly 16.5 GW. 
Within the context of Indonesia’s national energy plan, OTEC could be 
as important to Indonesia’s future power system as already established 
renewables like geothermal [3]. However, OTEC would not be able to 
fully replace Indonesia’s coal power capacity, which was 31.6 GW in 
2018 [39]. 

In this scenario, the first 100 MW OTEC plant is implemented after 
16 years. This is reasonable as the main priorities in the first decade 
would probably be the collection of operational data and monitoring of 
pilot plants. Due to technological learning from these initial projects, 
larger systems would follow at lower costs. This interpretation adds a 
practical touch to the otherwise hypothetical scenario and offers a novel 
perspective to the upscaling period of 5–6 years in literature [16,18]. 
With more and more countries suitable for OTEC pledging to carbon 
neutrality by 2050 or 2060, like USA [40], Brazil [41], and Indonesia 
[42], this finding is important as it shows that OTEC could be scaled up 
fast enough to make a meaningful contribution to fulfilling these 
pledges. 

The LCOE of all implemented plants form two experience curves as 
presented in Fig. 3(b). They illustrate the development of LCOE 
throughout time and cumulative capacity, from an initial range of 
33.9–50.7 US¢/kWh for the first pioneer plant to 6.2–9.9 US¢/kWh in 
2050 after reaching maturity. However, the LCOE does not drop indef
initely. After a decline to a minimum of 6.2 US¢/kWh, the LCOE tends to 
rise again. Attractive sites close to shore and with high PPA tariffs 
become more scarce, resulting in the selection of gradually economically 
less attractive sites. This is in line with practical observations made in 
the offshore wind industry. There, the trend of going further offshore 
also led to increased CAPEX, although this probably stems more from the 
motivation of utilising the higher wind speeds further offshore for higher 
electricity yield than from the depletion of implementation sites [43]. 

Throughout the scenario, the system costs of 100 MW plants were 
driven down by 43%, which exceeds the estimations in literature [16,18, 
19]. This is due to the assumption of continuous learning, which is not 
restricted by fixed cost reduction rates [16,19] or doublings of output 
[18] as described in Section 2. Despite the usefulness of the learning rate 
for this study and the research field as a whole, a constant single-factor 
learning rate as used here has limitations, which are briefly addressed. 
First, the cost reductions in Fig. 3(b) cannot be pinpointed to specific 
learning mechanisms, which would have been possible with a 

Fig. 2. The influence of the OTEC growth rate rOTEC on the (a) aggregated installed capacity, (b) aggregated net present value after 60 years, and (c) average LCOE 
(error bars show standard deviation). 
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multi-factor rate. Second, the learning rate is not constant in practice 
and can vary over time [44,45]. But since it is not yet possible to predict 
the impact of individual learning factors on OTEC’s costs, the simplified 
approach in this paper is adequate until more practical data is available. 

Fig. 3(c) depicts the aggregated NPV, where HC-OTEC does not break 
even, as many full-scale projects remain unprofitable late into the sce
nario as seen in Fig. 3(d). LC-OTEC collectively breaks even after 20 
years and yields US$ 23 billion after 60 years. Before the breakeven 
point, negative net cash flows of pre-maturity plants accumulate to a 
total of US$ 378 million, which could be understood as the total 
financial support required for OTEC contractors to break even with all 
costs at the end of the lifetime of these pioneer plants. This sum is only a 
fraction of what the Indonesian government spent on electricity sub
sidies in 2018 with roughly US$ 3.4 billion [46], so a reallocation of 
public subsidies could be a way to finance OTEC’s upscaling. Globally, 
international banks could take the lead especially for SIDS where public 
spending might be more restricted. Also in terms of mere investment 
costs, OTEC’s funding is feasible. Until breakeven after 20 years, OTEC 
would require US$ 2.5–4.6 billion of investment, which is considerably 
less than the US$ 10.5 billion that the World Bank invested in fossil fuels 
in the five years since the Paris Agreement [47]. This paper shows that 
OTEC’s upscaling, despite its capital intensity, could be easily funded, 
either via public support or private engagement. 

OTEC could cover 43.6% of all supplied provinces and 8.4% of na
tional electricity demand, respectively. Table 2 shows how both average 
LC- and HC-LCOE are below the average local PPA tariff, thus implying 
the cost-competitive supply of up to 99% of local electricity demand. 
Fig. 4(a) shows the distribution of OTEC plants and their sizes across 
Indonesia in the NPV-optimised scenario. Small-scale OTEC is primarily 

implemented in rural provinces like Maluku and Maluku Utara, while 
large-scale OTEC is deployed on larger and more urbanised islands like 
Sumatera and Bali. These insights are used for the global OTEC 
upscaling concept in Section 4.5. 

The island of Java has by far the highest electricity demand in 
Indonesia, as well as many suitable sites for OTEC plants. However, no 
plant was implemented in Java in the highest-NPV scenario. This is 
because OTEC sites and connection points in Java tend to be further 
away from shore compared to other high-demand islands like Sumatera 
and Bali, thus increasing costs. But at annual OTEC growth rates above 
30%, implementation shifts noticeably towards Java. Fig. 4(b) shows the 
implementation of OTEC across Indonesia at an annual growth rate of 
40%. In that scenario, 45 GW of OTEC could cover 22% of national 
electricity demand. 

Another key result is OTEC’s economic viability within Indonesia’s 
electricity mix. As seen in Fig. 5, large-scale OTEC could be cost- 
competitive against all other energy technologies currently deployed 
in Indonesia. This is in good agreement with Vega [16], who estimated 
cost-competitiveness for a range of 50–100 MW. Embodied in Fig. 5 is 
the implicit assumption that the LCOE of all competing technologies will 
not change in the next thirty years. But unlike OTEC, these competitors 
have been on the market for several decades and already benefitted from 
cost reductions. 

The competitiveness of OTEC in Indonesia could also be explained by 
the challenges renewables generally face there [5]. If the USA is used as 
the reference, OTEC is not competitive against solar PV and wind power 
even at full scale and after 30 years of learning. But against other 
baseloads like geothermal and coal, medium-scale and large-scale OTEC 
remain competitive. This indicates that OTEC could be an economically 

Fig. 3. Results of the highest-NPV scenario. (a) Aggregated installed capacity. (b) LCOE over aggregated installed capacity and time. Interpolating through these 
LCOE yields the experience curves shown as dotted lines. (c) Aggregated NPV. (d) Annualised aggregated cash flows. 
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attractive baseload not only in Indonesia, but also other countries and 
the economic potential of OTEC there should be addressed in future 
research. 

4.3. Sensitivity of scenario with highest NPV 

As explained in more detail in the methodology section, a novel 
feature of the upscaling model is the use of a dynamic discount rate. Not 
only do CAPEX and OPEX decrease with experience, but also the cost of 
finance, represented by the discount rate, as the risk associated with the 
technology will gradually decline. 

With this assumption, Fig. 6(a) shows that OTEC could be profitable 
even at high initial financing costs, as long as these costs decline at later 
stages. If the financing costs remain static, a discount rate of 5–13% is 
required to break even with costs in 2050, while the range changes to 
10–20% with a dynamic rate. Considering that the interest rate on a 
concessionary loan from the Asian Development Bank (ADB) can be as 
low as 2% [50], the above-mentioned discount rates could be feasible for 
many developing countries. Fig. 6(a) also illustrates how the effects of 
discount rate dynamisation become less prominent with the increase of 
the initial discount rate. In the case of HC-OTEC, a high dynamic dis
count rate even leads to a worse NPV compared to a static one. This can 
be explained by the nature of the discount rate. The present value of 
future cash flows declines with an increasing discount rate. As shown in 
Fig. 3(d), most HC-OTEC plants remain unprofitable even after reaching 
full scale. Hence, a high discount rate devalues financial losses and 
instead puts a stronger value on the cash flows of early pioneer plants. 
This phenomenon is far more prominent for HC-OTEC than for LC-OTEC, 
since the latter is profitable after reaching full scale. Thus, a devaluation 
of future positive cash flows does not improve the aggregated NPV in the 
LC-case. In the scenario with the highest aggregated NPV, the discount 
rate drops to 5% after 30 years, which harmonises with the rates for 
more mature technologies [51]. However, the discount foots not only on 
technology, but many other, non-technical influences [24]. Therefore, 
the reduction of discount rate shown here should be validated in more 
detail in future research. 

Fig. 6(c) and (d) illustrate the strong impact of the learning rate on 
OTEC’s profitability. A doubling of learning rate from 7 to 14% would 
increase NPV by almost a fourfold. While LC-OTEC could collectively 
break even at a learning rate of 4%, HC-OTEC requires a rate slightly 
above 7%. These learning rates are smaller than the average learning 

rates observed for other power generation technologies, which were 8% 
for coal, 14–15% for gas, 12% for wind power, 23% for solar PV, and 
11–32% for biomass [51]. This indicates that the cost reductions pre
sented here could be feasible and might even be higher if OTEC’s 
learning rate follows the ones of other power generation technologies. 

The relationship between electricity supply and demand can be seen 
in Fig. 7. If the OTEC growth rate rOTEC is too high, supply eventually 
outpaces demand and the growth slows down. In such a case, an increase 
in electricity demand growth rdem provides more room for OTEC 
implementation and at a certain point allows unhampered upscaling, as 
depicted in Fig. 7(a) at a rOTEC of 32% per year. This and Fig. 7(b) 
support the results from Section 4.1 regarding the bottleneck imposed by 
electricity demand and its growth. The aggregated NPV is lowest at a 
rOTEC of 32% p. a., because the model resorts to small- and medium-scale 
plants at low-PPA-tariff locations to meet the implementation targets. 
This growth rate only becomes economically viable if it is matched with 
a high demand growth rdem. For a rOTEC of 32% p. a., breakeven is ach
ieved at a sustained annual demand growth rdem of 6–9%. Then again, if 
rdem is higher than rOTEC, NPV as well as LCOE stabilise as shown in Fig. 7 
(c). At a sufficiently high rdem, the model locks in on few provinces with 
high availability of close-to-shore sites and high PPA tariffs. Eventually, 
an optimum implementation configuration is reached and a further in
crease of demand growth has no effect on OTEC implementation. 

Until now, it was assumed that OTEC may cover as much of Indo
nesia’s electricity demand as possible. In practice however, most of that 
demand is already covered by other power generation technologies, 
today by fossil-fuelled generators, in the future by renewables. So, how 
does electricity demand affect OTEC’s upscaling in a competitive envi
ronment? In large countries like Indonesia, electricity demand will 
probably be even more restrictive than assumed in this study due to the 
broad set of renewables that are and will be deployed there over the next 
years [3,52]. In SIDS, where most electricity is produced via expensive, 
imported Diesel [53,54] and where there might not be enough area for 
solar PV and onshore wind power [55], OTEC might face less competi
tion. Then again, electricity demand in SIDS is not particularly high and 
can already be met with small OTEC plants. Thus, to materialise the 
economic potentials shown in this study, OTEC must prevail against 
strong global competition from fossil and renewable energy technolo
gies and will probably rely on sustained public and private support to do 
so. 

Table 2 
Key results of the highest-NPV scenario per province. The PPA tariff is weighted based on installed capacity.  

Province Aggregated Installed  
Capacity [MW] 

Weighted Average PPA  
Tariff [US¢/kWh] 

LCOE [US¢/kWh] x ± σ  Supply of Electricity  
Demand [%] 

LC HC 

Sumatera Barat 2300 11.5 8.1 ± 1.4 12.1 ± 1.3 79.3 
Aceh 2092 10.0 7.4 ± 0.1 11.7 ± 0.3 98.8 
Sulawesi Selatan 1500 7.0 6.9 ± 0.3 10.6 ± 0.3 33.4 
Nusa Tenggara Barat 1400 15.4 7.8 ± 0.4 12.2 ± 0.6 96.1 
Sulawesi Utara 1354 11.8 9.1 ± 5.2 14.6 ± 7.4 99.5 
Sumatera Utara 1300 16.7 9.0 ± 1.3 13.0 ± 1.1 14.9 
Sulawesi Tengah 900 16.3 7.8 ± 0.3 12.2 ± 0.7 94.0 
Sulawesi Tenggara 700 14.1 8.0 ± 0.7 12.9 ± 1.3 94.0 
Papua 689 14.6 8.8 ± 3.4 12.9 ± 4,7 92.3 
Nusa Tenggara Timur 667 17.4 9.6 ± 1.8 15.4 ± 2.8 88.3 
Bali 600 5.9 6.7 ± 0.2 10.6 ± 0.1 14.0 
Bengkulu 600 6.3 6.8 ± 0.2 10.7 ± 0.1 80.8 
Maluku 481 17.8 17.1 ± 8.1 25.5 ± 11.8 99.1 
Kalimantan Timur 400 9.0 7.6 ± 0.2 11.1 ± 0.1 13.3 
Papua Barat 400 14.3 7.5 ± 0.6 11.7 ± 0.7 85.9 
Gorontalo 300 11.4 7.3 ± 0.0 11.3 ± 0.2 72.7 
Maluku Utara 273 17.2 12.5 ± 5.8 19.5 ± 8.7 83.0 
Lampung 200 7.0 6.9 ± 0.2 10.6 ± 0.1 5.7 
Sulawesi Barat 200 6.2 6.8 ± 0.5 11.4 ± 1.1 71.6 
Kalimantan Utara 100 9.0 8.0 ± 0 11.4 ± 0 65.4 

Total 16,455 12.7 8.9 ± 8.4 13.8 ± 12.2 43.6  
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Fig. 4. Map of available and occupied OTEC sites including system size for the (a) highest-NPV and (b) maximum possible capacity scenario.  
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4.4. Impact of a nationally uniform FIT 

All results above adhere to the existing PPA-based support scheme in 
Indonesia. This section briefly presents a novel FIT-based scheme and its 
impact on the NPV. Fig. 8(a) only shows a linear increase of NPV, as only 
the profit margin changes while the installed capacity and LCOE remain 
unaffected. To break even in 2050, an average FIT of roughly 8–12 US 
¢/kWh is needed. This could be reflected by a FIT scheme as depicted in 

Fig. 8(b), in which the FIT starts at 34–50 US¢/kWh and eventually 
decreases to around 7–11 US¢/kWh. To gain the same NPV for LC- and 
HC-OTEC as shown in Section 4.2, an average nationally uniform FIT of 
roughly 12–14 US¢/kWh would be required. 

In recent years, subsidies on fuels and electricity have strained 
Indonesia’s state budget considerably [5]. At first glimpse, this FIT 
scheme might be seen as an additional burden. However, the initial high 
rates would only apply to a few pilot plants. For example, the first 
implemented OTEC plant requires a FIT of maximally 50 US¢/kWh to 
compensate US$ 40 million of annualised lifecycle cost. This is only 
1.2% of total electricity subsidies paid out by the Indonesian govern
ment in 2018. Moreover, at a range of 7–12 US¢/kWh starting from year 
22 in Fig. 8(b), one might wonder whether the FIT would have to be 
financed by subsidies at all, given Indonesia’s electricity tariff of 
5.7–10.1 US¢/kWh in 2018 and its recent upwards trend despite sub
sidies [56]. Nevertheless, the concept presented here needs further 
refinement, e.g. on the impact on stakeholders within and outside the 
electricity sector. 

4.5. Towards a global OTEC upscaling strategy 

The OTEC upscaling scenario presented in Section 4.2 can be 
expanded to a global OTEC upscaling strategy as shown in Fig. 9. Initial 
small-scale plants would be implemented in SIDS and small islands of 
larger countries. This makes sense, because these islands need an 
alternative to fossil fuels as fast as possible. Moreover, although the 
LCOE of small-scale OTEC is rather high, it might still be lower than the 
current costs for imported diesel [57] and thus near-term implementa
tion of OTEC is economically reasonable. These initial plants could be 
funded by international institutions like the World Bank or ADB with 

Fig. 5. OTEC’s competitiveness against other energy technologies in Indonesia 
in 2019. Small OTEC < 20 MW, medium OTEC 20 MW < Pnet < 75 MW, large 
OTEC 75 MW < Pnet < 100 MW. Gas includes open-cycle, closed-cycle, and 
combined-cycle. Coal refers to subcritical plants. LCOE of competing technol
ogies based on [48] in Indonesia and based on [49] in USA. 

Fig. 6. Impact of discount rate DR on (a) aggregated NPV and (b) average LCOE and impact of learning rate LR on (c) aggregated NPV and (d) average LCOE.  
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low-interest finance or the financing scheme proposed in Section 4.4. 
While these first plants are operating, policymakers could prepare the 
regulatory framework to streamline the permitting processes associated 
with OTEC, which today can take several years [16]. The experience 
gained from the pioneer plants paired with easier permitting would 
allow OTEC to diffuse at a faster pace to larger island states, where 
population and electricity demand are higher, e.g. Sri Lanka and 

Madagascar. As shown in Fig. 5, medium-scale OTEC could also make 
sense economically in large developed countries, so some plants could 
be implemented there as well. Depending on the state budget of these 
islands, these 2nd generation plants could be financed by national 
financial institutions, the state budget, or again by the international 
institutions above. Once OTEC reaches full scale, it can be implemented 
in large developed countries like Indonesia, USA, Japan, and many 

Fig. 7. Impact of electricity demand growth rdem for LC-OTEC and HC-OTEC and different rOTEC on (a) aggregated capacity, (b) aggregated NPV, and (c) average 
LCOE. To avoid repetition, the legends for LC-OTEC, HC-OTEC, and rOTEC are only shown once, but they apply for all three figures where relevant. 

Fig. 8. (a) Impact of a nationally uniform FIT (Solid Lines) compared to the current PPA scheme (Dashed Line) on aggregated NPV. (b) Annually updated FIT scheme 
to break even in 2050. 

Fig. 9. Proposed global upscaling strategy for OTEC.  
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others. If the cost reductions shown in Fig. 3(b) materialise, OTEC might 
be profitable enough so that developers are able to finance their projects 
internally, at least partially. 

5. Conclusion 

This paper reports scenarios for the upscaling of Ocean Thermal En
ergy Conversion (OTEC) from small pilots to large-scale plants using a 
simulation model, which implements OTEC plants based on annual 
growth targets. Novel elements of the model include the (1) use of 
location-specific data like electricity demand, electricity tariff, and in
vestment costs as a function of distance to shore and seawater temper
ature difference, as well as (2) the inclusion of technological learning as 
a cost-reducing mechanism on both investment cost and cost of finance. 
Upscaling is simulated in Indonesia, but discussed globally as this 
diverse country can serve as a proxy for many other regions worldwide. 
This study shows OTEC’s promises as well as its barriers. On the one 
hand, OTEC could make a significant contribution to the decarbon
isation of global energy systems, with up to 45 GW in Indonesia. OTEC’s 
commercialisation could be financed easily either via reallocation of 
electricity subsidies or with loans from international banks. These in
vestments could pay off, as 16.5 GW in Indonesia could yield more than 
US$ 23 billion by 2050. The rate by which OTEC’s costs would have to 
decline is relatively small compared to other power generation tech
nologies. Based on the Levelized Cost of Electricity (LCOE), medium-scale 
to large-scale OTEC could be competitive against other baseload gen
erators. On the other hand, this study shows that most likely only a tiny 
fraction of the massive global theoretical OTEC potentials in literature 
can actually be tapped economically. In regions where resources are the 
highest, e.g. in the Pacific, population and electricity demand are too 
low and can already be met with small, less economic OTEC plants. 
Therefore, large-scale OTEC will probably only be relevant for an 
exclusive group of sufficiently large countries in the tropics and sub
tropics. If OTEC should play a role in reaching carbon neutrality as 
pledged by several countries, it would require capacity growth rates in 
the dimensions between wind power and solar PV, both of which 
enjoyed sustained global policy support for decades. However, OTEC’s 
upscaling will require global efforts and collaboration beyond country 
borders. To initiate this, OTEC must reach the desks of public and pri
vate decision makers as soon as possible. The capital to fund OTEC is 
there, the technology to build OTEC, at least on small scale, is also there. 
The only thing that is missing is commitment from people outside the 
field. Since most global decision makers probably have never heard of 
OTEC, proponents must convey the technology’s unique benefits and 
address the concerns of opponents. This might generate enough confi
dence to boost its development. For this, the Feed-In Tariff (FIT) scheme 
and the global upscaling strategy presented in this paper might get more 
relevant and provide a roadmap to guide OTEC’s expansion. All of these 
things might sound daunting. However, as shown in this paper’s model, 
upscaling OTEC would benefit millions of people by providing reliable, 
clean electricity. Therefore, the endeavour, albeit challenging, is 
worthwhile. 
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