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1. Introduction 
 
This document describes ocean testing of the Northwest Energy Innovations (NWEI) prototype 
Azura wave energy converter at the Naval Facilities Engineering Command (NAVFAC) 30-meter 
Wave Energy Test Site (WETS 30m Site) in Hawai‘i.  The WETS 30m site is located at the 
Kaneohe Marine Corps Base Hawai‘i (MCBH) on the northeast coast of the island of O‘ahu.  The 
Azura prototype test has been a cooperative effort of NWEI, NAVFAC, University of Hawaii’s 
Hawaii National Marine Renewable Energy Center (HINMREC), and the U.S. Department of 
Energy’s National Renewable Energy Laboratory (NREL).  The Azura was deployed on May 27-30, 
2015 for a one year period.  This report describes the results of this testing through March 2016. 

 

2. Test Plan and other Reference Documents 
 
The following documents are referenced elsewhere in this report. 

2.1 Test Plan 
The NWEI document Test Plan - NWEI Wave Energy Demonstration at the Navy’s WETS 30m 
Project Site includes a description of the test article, test objectives, test setup, and test 
instrumentation.   

2.2 Other Reference Documents 
The following documents describe aspects of the prototype Azura deployment not covered in 
this report, including preliminary testing of the device power take-off (PTO) that was performed 
prior to the WETS deployment and the grid interconnection system used to connect the device 
at WETS:  

• Dry Testing of the Azura PowerPod at Energy Hydraulics Ltd (Williwaw Engineering 
test report) describes PTO testing performed prior the WETS deployment at the 
facilities of Energy Hydraulics Ltd. in New Zealand where the PTO was built. 

• Interconnection of a 20kW Wave Energy Device at the WETS 30m Site describes 
details of the grid interconnection system used for the prototype Azura at the 30m 
WETS site. 

• Low Power Testing of Grid Interconnection System (NWEI test report) describes 
testing of the prototype Azura grid interconnection system prior to Azura deployment. 

• Grid Interconnection Performance Assessment and Final Report (NWEI report) 
provides an assessment of the Azura grid interconnection system after the Azura 
deployment. 

• After Action Report:  AB Mooring Modification (NWEI report) describes the 
modifications to the Azura prototype mooring system that were made on January 8, 
2016. 

• IEC Technical Specification 62600-100, Marine energy – Wave, tidal and other water 
current converters – Part 100:  Electricity producing wave energy converters – Power 
performance assessment describes methods to assess power performance of WECs. 
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3. Timeline 
 
Table 3-1 shows the major events that occurred during the prototype Azura deployment from late 
May 2015 through March 2016.  A corresponding timeline of device configurations together with 
device control methods during the same period are shown in Figure 3-1.   

When the device was deployed in late May 2015, the mooring system was not installed as 
designed because the lengths of the mooring lines were incorrect for the fixed anchor locations.  
These anchor locations were existing from a previous project and were not located where 
expected.  As a result, the “subsurface” float on the south or AB mooring leg was not pulled below 
the surface.  This caused lower than expected mooring pre-tensions and high wave forces on this 
float and the AB mooring leg, which ultimately caused the attachment of this float to fail and this 
float to break free in mid-November 2015.  In early January 2016, the AB subsurface float was re-
installed and modified mooring lines were installed to make the mooring system consistent with the 
original design.  Because the 2015 mooring configuration did affect device performance to some 
extent, data collected after the January 2016 mooring modification has been used for this report 
whenever possible.  Refer to the NWEI report After Action Report: AB Mooring Modification for 
further details regarding this mooring system modification. 

In late November 2015, a hydraulic oil hose connection to one of the main cylinders on board the 
prototype Azura came loose and the leaked hydraulic fluid.  The device was not operational for a 
12 day period until this connection was tightened and hydraulic fluid re-filled.  The device was 
operational for the remainder of the June 2015 through March 2016 period. 

 
Table 3-1  Major events during Azura prototype testing 

Test Date 

Installation of prototype Azura at 30m WETS site May 27-30, 2015 

Device connected to grid and produces power for first time June 1, 2015 

Hawaiian Electric Company (HECO) gives permission to operate June 29, 2015 

Mooring subsurface AB float breaks loose Nov. 16, 2015 

Device stops producing power due to loss of PTO hydraulic fluid Nov. 26, 2015 

Device operation resumes; PTO hose tightened and re-filled with 
hydraulic fluid Dec. 7, 2015 

K-Bay Waverider buoy mooring failure – data recording stops Dec. 21, 2015 

Moorings repaired:  AB float re-installed and AB mooring riser 
shortened to put AB float at proper depth below surface Jan. 8, 2015 

K-Bay Waverider buoy re-deployed – data resumes Jan. 14, 2015 
 

Figure 3-1 shows the device configurations and control methods in place from June 2015 through 
March 2016.  The hydraulic PTO of the prototype Azura can be operated with two different control 
methods: 1) constant settings of hydraulic motor displacement, and 2) proportional-integral (PI) 
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control of the hydraulic motor displacement.  See the test report Dry Testing of the Azura 
PowerPod at Energy Hydraulics Ltd for a detailed description of these two control methods.  The 
constant displacement motor control is a simple control method that is easier to implement in 
computer models of the Azura PTO system than the PI control.  Because the use of prototype 
Azura data to validate computer models of the device has been a high priority, large periods of the 
prototype Azura deployment have been dedicated to collecting data while the device has been 
operated with different constant hydraulic motor displacement settings.  During these time periods, 
six alternate settings of hydraulic motor displacement have been used, with the setting 
automatically changed between the alternate settings every 30 minutes on the even half hour.  
Because PI control has potential to increase device output power relative to constant displacement 
control, experimentation with different PI control settings was also performed during other time 
periods. 

 

 
Figure 3-1 Timeline of device configurations and control modes during prototype Azura testing 

 
 
 
 

 
4. Test Setup 

 
The test setup for Azura prototype testing is described, in detail, in the test plan and also the grid 
interconnection report referenced in Section 2. 
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5. Test Results 
 
The test results presented in this report primarily focus on measurements of device power 
performance and operating characteristics made during January through March 2016 after the 
mooring system was modified.  This data was used to eliminate effects of the 2015 mooring 
installation where one of the “subsurface” mooring floats was on the surface, as described in 
Section 3.  Almost all operation during this time period was with the PTO control in constant 
hydraulic motor displacement mode.  This control method is of most interest for validation of 
computer models for the prototype Azura design.  Sea conditions and availability data for June 
2015 through March 2016 are presented, however, to provide information related to device 
survivability for the entire deployment period.  

5.1 Sea conditions June 2015 – March 2016 
The distribution of significant wave heights (Hm0) and energy periods (Te) that the prototype 
Azura operated in from June 2015 through March 2016 are shown in Figure 3-1, based on 
data recorded by the Kaneohe Bay Waverider Buoy that is deployed at the WETS 80 m site, 
which is about one mile northwest of the WETS 30 m site where the prototype Azura is 
deployed.  Spectral data recorded by this buoy was corrected for shoaling using linear wave 
theory to the 30 m depth of the WETS 30m site.  The Hm0 and Te data used for Figure 3-1 
were calculated from the 30 m corrected spectral data.  The sample counts shown in Figure 
3-1 are the number of 30 minute data samples when the Azura was operating (producing 
power to the grid) for at least 20 minutes. 

 

 
Figure 5-1  30 minute sample count June 2015 – March 2016 

 

The maximum wave heights that occurred during the June 2015 – March 2016 period are 
shown in Table 5-1.  The maximum wave heights were determined by analyzing time series 
water surface elevation data recorded by the Waverider buoy at the WETS 80m site.  The 
largest Hm0 for a half hour period was 4.5 m, while the largest single wave height was 7.5 m.  
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Table 5-1  Maximum wave heights at WETS 80m site June 2015 – March 2016 

Date and time (UTC) 
(half-hour period) 

Hm0 (m) Te (s) Maximum wave 
height (m) 

2-23-2016  8:00 4.5 13.6 7.2 
2-23-2016  11:00 4.5 13.2 6.3 
2-22-2016  18:00 4.4 15.0 6.2 
2-23-2016  1:30 4.4 14.7 6.4 
2-23-2016  1:00 4.4 14.7 6.7 
2-23-2016  4:00 4.4 13.7 7.5 
2-23-2016  9:30 4.3 13.4 6.5 
2-23-2016  5:30 4.3 13.4 6.3 

2-23-2016  10:00 4.3 13.1 6.5 
2-22-2016  17:30 4.3 14.4 5.1 

 

 

5.2 Device availability June 2015 – March 2016 
The percent availability of the Azura prototype by month is shown in Figure 5-2.  Availability 
was calculated as the ratio of the number of device operating minutes (when the device was 
producing power to the grid) to the number of minutes in each month.  The major non-
operational periods are listed in Table 5-2.  The only period when the device was not capable 
of operating during the months of June 2015 through March 2016 was the 12 day period in 
late November and early December 2015 after PTO hydraulic fluid was lost due to a loose 
hose connection.  Numerous other short non-operating periods occurred throughout the 
deployment, however, usually for one of the following reasons: 

• Device shut downs after faults were detected by the controller.  Most often, faults were 
caused by momentary losses of grid voltage on shore.  Some faults were also caused 
by controller software errors.  In all cases, the faults needed to be investigated then 
manually reset before device operation resumed. 

• Intentional non-operating periods while no-load device data was collected. 

• Shut downs during at-sea maintenance of the device. 

The non-operational time of the prototype Azura could be reduced by implementing automatic 
reset of the controller after faults occur.  While this would be a normal controller function in a 
production device, it was not considered necessary for this prototype test. 
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Figure 5-2  Prototype Azura availability by month June 2015 – March 2016 

 
Table 5-2  Major prototype Azura non-operational periods June 2015-March 2016 

Month Major non-operating periods 

June 2015 
Numerous shut downs because device not 
continuously operated prior to Hawaiian Electric 
permission to operate on June 29, 2015 

Nov & Dec 2015 No operation for 12 days due to hydraulic oil loss 
caused by loose hose connection. 

Jan 2016 Two day shut down during mooring work. 
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the WETS 80m site.  This is a Datawell DL Waverider buoy that has been deployed by the 
University of Hawaii.  The wave spectra were corrected for shoaling to 30m depth using linear 
wave theory, then the corrected spectra were used to calculate wave energy flux.  The 
representative spectra used to calculate normalized power in each bin per IEC 62600-100 is 
the average of all 30 m corrected spectra recorded for each bin, shifted in magnitude and 
frequency so that the Hm0 and Te of the average spectra are at the center of each bin. 

The standard deviation of capture length, maximum capture length, and minimum capture 
length are also shown in Figure 5-6, Figure 5-7, and Figure 5-8, respectively, per IEC 
62600-100. 

 

 
Figure 5-3  30 minute sample counts 

 
 

 
Figure 5-4  Normalized power matrix 
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Figure 5-5  Mean capture length 

 
 

 
Figure 5-6  Standard deviation of capture length 
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Figure 5-7  Maximum capture length 

 

 
Figure 5-8 Minimum capture length 
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mean power matrix (Figure 5-9) are shown in Figure 5-10.  These differences can be 
substantial when the average Te and/or Hm0 in a particular bin differs substantially from the bin 
center.  

 
Figure 5-9  Mean power matrix 

 
 

 
Figure 5-10  Percent difference between normalized power (Figure 5-4) and mean power (Figure 5-9) 
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motor displacement setting affects device output power to some extent (see Section 5.5).  One 
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plans to test this method during the prototype Azura deployment, the 95th percentile power 
matrix shown in Figure 5-11 shows the potential output power that may be possible in each bin 
with an ideal motor displacement setting.  Results are not included in Figure 5-11 for bins that 
have less than three data samples, to avoid low 95th percentile results that may occur when 
sample size is extremely small. 

 

 

 
Figure 5-11  95th percentile power matrix 

 

5.5 Effect of PTO hydraulic motor displacement on output power 
Thirty minute average output power for the prototype Azura is plotted against PTO hydraulic 
motor displacement setting in Figure 5-12.  PTO input power, calculated from the product of 
hydraulic pressure and hydraulic flow, is also shown (in blue) in Figure 5-12.  Data from the 
same January through March 2016 period used for the power performance assessments in 
Sections 5.3 and 5.4 were used for these plots.  The plots are binned by Hm0 and Te in the 
same way as the power performance data.  Only bins with larger Hm0 and smaller Te are 
plotted; these are the conditions where the device produces the most power.  The motor 
displacement setting in the PTO changes the average damping, or the amount of force applied 
to the device float relative to the rotational velocity of the float.  Decreasing motor 
displacement increases average damping, so that the average damping applied to the float is 
highest at the minimum motor displacement of 30 cc/rev. 

In general, Figure 5-12 shows relatively small variations in output power with respect to motor 
displacement in each bin.  A significant trend in both output power and PTO input power can 
be seen with respect to motor displacement, however, in the 3.25m Hm0 and 7.5s Te bin.  This 
is the highest Hm0 bin that has enough data to plot and this result may indicate that in larger, 
short period waves the device benefits from higher damping of the float.  Other output power 
variations that are independent of motor displacement could be caused by differences in wave 
spectral shapes for different 30 minute data samples collected in the same bin.   
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Figure 5-12  Device power versus motor displacement setting January-March 2016 
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assessment of the effectiveness of PI control with different combinations of these parameter 
settings was not possible across a wide range of sea conditions.  Also, much of this PI control 
testing was performed while the AB subsurface mooring float was missing (see Figure 3-1 
timeline).  Since the loss of the AB float may have affected power performance results, this 
makes direct comparison to constant motor displacement results during other time periods 
more difficult.  A very rough comparison can be made between power performance with PI 
control and constant displacement control by simply comparing 95th percentile results.  This 
compares the best output power that was achieved with different settings of the PI control to 
the best achieved with constant displacement. 

The number of thirty minute sample counts accumulated while operating with PI control during 
October 2015 through January 2016 are shown in Figure 5-13.  This represents 625 hours of 
operation.  The corresponding 95th percentile power matrix is in Figure 5-14, which gives an 
indication of the best 30 minute average power that was achieved with PI control.  Results are 
only included for bins that have at least three samples to avoid low 95th percentile results that 
may occur when sample size is extremely small.  These numbers give an indication of how 
well the PI control did with the best settings that were tested.  In Figure 5-15, a percent 
comparison is shown between the Figure 5-14, 95th percentile results for PI control and the 
corresponding Figure 5-11 results for constant displacement control (measured during 
January through March 2016).  Positive percentages in Figure 5-15 indicate that power was 
higher with PI control than constant displacement control in that bin. 

In general, the Figure 5-15 results do not show significant improvements for the PI control 
relative to constant displacement control in any bins.  Because the constant displacement 
control measurements were made after the January 2016 mooring modifications while the PI 
control measurements were made before these modifications (see Section 3), this is only a 
rough comparison.  It is unlikely, however, that device output power changed by more than 
10% as a result of the mooring changes alone, so the Figure 5-15 results probably indicate 
that large improvements in output power did not result from using the PI control. 

 

 
Figure 5-13  Thirty minute sample count with PI control 
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Figure 5-14  95th percentile power with PI control 

 

 
Figure 5-15  Percent increase in 95th percentile output power with PI control 

 

5.7 PTO Efficiency 
Plots of PTO efficiency with respect to device output power are shown in Figure 5-17 for three 
different motor displacement settings.  The same data used for the January through March 
2015 power performance assessments described in Section 5.3 were used for this analysis.  
PTO efficiency was calculated as follows: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  
𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜

𝑝𝑝𝑃𝑃𝑃𝑃𝑂𝑂 ∗ 𝑄𝑄𝑃𝑃𝑃𝑃𝑃𝑃
 

Where Pout is the electrical output power measured on board the device, pPTO is the hydraulic 
pressure at the PTO input (PT04-PT03), and QPTO is the hydraulic flow.  See Figure 5-16 for a 

654
999

713
1123
1540
1753
2014

89
310
622
1048
1397
1815
2044

85
198
502
958
1038

260
467
758

1098

340
493
482

324
377
623
917
899

313
371

Te Bin Center (s)

H
m

0 
B

in
 C

en
te

r (
m

)

95th Percentile Device Dc Output Power with PI Control (W)
Cumulative data, months of Oct 2015 - Jan 2016; 30 min periods with > 20 min operation and PI control included

1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5 17.5 18.5
0.75
1.25
1.75
2.25
2.75
3.25
3.75
4.25
4.75
5.25
5.75
6.25
6.75
7.25
7.75

-40%
-33%

-34%
-17%
-10%
-9%
-7%

-46%
-24%
-3%

-15%
13%
5%

-37%
-41%
-8%
-2%
-9%

-2%
-2%

-10%

1%

-19%
-14%
-49%

-6%
-26%
-16%
-6%

-25%

37%
-17%

Te Bin Center (s)

H
m

0 
B

in
 C

en
te

r (
m

)

Percent increase in 95th percentile power PI control relative to CD control

1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5 17.5 18.5
0.75
1.25
1.75
2.25
2.75
3.25
3.75
4.25

4.75
5.25
5.75
6.25
6.75
7.25
7.75



  Williwaw Engineering  

 
Test Report: Ocean Testing of the Prototype Azura Wave Energy Converter Jun 2015–Mar 2016 
Prepared for DOE and only to be distributed at the discretion of DOE in accordance with their agreement with NWEI  15 

diagram of the PTO hydraulics that shows the locations of pressure and flow sensors.  This 
efficiency measurement does not include losses in the hydraulic cylinders or rectifiers.  The 
cylinder and rectifier losses are expected to be small fraction of total PTO losses but sensors 
were not available to quantify these losses.  

 
Figure 5-16  Simplified diagram of prototype Azura PTO hydraulic system 

 

As shown in Figure 5-17, PTO efficiency was highest when the lowest motor displacement 
setting of 30 cc/rev was used.  This trends was expected.  Lower motor displacement 
generally causes the PTO to operate at higher hydraulic pressure and lower hydraulic flow.  
Most hydraulic losses are lower at reduced flow.  Also, when operating at higher pressure the 
hydraulic accumulator is more often above its pre-charge pressure.  This keeps the hydraulic 
motor running continuously, smooths output power, and improves motor efficiency.   
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Figure 5-17  PTO efficiency versus output power 

 

5.8 Device response with respect to wave frequency 
Responses of the device with respect to wave frequency (or period) were determined using 
spectral analysis of time series data recorded on board the device and wave elevation data 
recorded by the Waverider buoy at the 80m site.  Response amplitude operators (RAOs) were 
calculated to show the motion responses of the device, while relative capture width (RCW) 
was calculated to show the output power response of the device.  In the case of the RAO 
calculations, in addition to estimating the amplitude responses with respect to Waverider wave 
measurements, assessments of the device phase responses were also made with respect to 
wave elevation at the device calculated from hull water pressure sensor data.  These RAO 
and RCW measurements have been especially useful for validating computer simulation 
models of the prototype Azura. 

5.8.1 Response Amplitude Operators 

Device motion data recorded by an NREL dynamic motion sensor that measures heave 
displacement, roll, and pitch along with data from an NWEI float angle sensor was used to 
calculate Response Amplitude Operators (RAOs) for heave, roll, pitch, and float angle.  
RAOs are transfer functions between the device motion spectra and wave spectra that show 
the motion response of the device with respect to wave frequency.     

Two different methods were used to calculate RAOs from experimental data.  The first 
method used water surface elevation measurements made with the Kaneohe Bay Waverider 
buoy that is located at the 80 m WETS site.  RAO magnitude was calculated using the 
following equation, where the RAO is defined as the modulus of H(ω): 
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|𝐻𝐻(𝜔𝜔)|2 =
𝑆𝑆𝑦𝑦𝑦𝑦(𝜔𝜔)
𝑆𝑆𝑥𝑥𝑥𝑥(𝜔𝜔)

 

Where Sxx(ω) is the wave spectrum measured with the Waverider buoy and Syy(ω) is the 
measured response spectrum of device motion measured with either the NREL motion 
sensor or the NWEI float angle sensor.  Fast Fourier transforms (FFTs) of the wave 
elevation and motion data were used to calculate Sxx(ω) and Syy(ω), respectively. 

The second method used data from a water pressure sensor located on the prototype Azura 
hull below the water surface to reconstruct water surface elevation data at the device using 
linear wave theory.  Complex RAOs were calculated from this data as follows: 

𝐻𝐻(𝜔𝜔) =
𝑆𝑆𝑥𝑥𝑥𝑥(𝜔𝜔)
𝑆𝑆𝑥𝑥𝑥𝑥(𝜔𝜔) 

Where H(ω) is the complex RAO that includes both magnitude and phase information, 
Sxy(ω) is the cross-spectrum of wave elevation and device response, and Sxx(ω) is the wave 
spectrum measured with the Waverider buoy. 

The water surface elevation time series at the device was calculated from water pressure 
and heave data as follows:  

𝜂𝜂 = �
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝜌𝜌𝜌𝜌
+ ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 � /�

cosh (𝑘𝑘(ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + ℎ + 𝑧𝑧))
cosh (𝑘𝑘ℎ) � 

Where η is the water surface elevation, h is depth (30m), z is nominal pressure sensor depth 
(6m), heave is the heave displacement measured by the NREL motion sensor, and k is the 
average value of wavenumber calculated from the 30 minute energy period Te using linear 
wave theory.  

While wave elevation calculated from the water pressure sensor data is expected to be less 
accurate than the Waverider data, since it is measured at the device it can be used to 
calculate valuable RAO phase information that is useful for validating computer model 
results. 

RAO magnitudes calculated using both methods described above and RAO phases 
calculated using the water pressure data are presented in Figure 5-18 through Figure 5-21, 
respectively, for hull heave displacement, float angle, hull pitch, and hull roll.  These results 
were generated by calculating RAO results for numerous 30 minute data periods then 
averaging these together to provide smoothing.  The following criteria were used to select 
the 30 minute data periods that were used for the analysis from all of the January-March 
2016 prototype Azura data (all data periods meeting these criteria were used): 

• Te<8s and 1.6m<Hm0<2.4m (short period, medium size waves). 

• Operation with constant hydraulic motor displacement control 

• Motor displacement equal to 30, 35, 65, or 80 cc/rev 

• Float on down-wave side of hull (float angle < 180°) for entire 30 minute period 

• Mean wave direction within 15° of device heading 
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Figure 5-18  Hull heave RAO results January-March with Te<8s and 1.6m<Hm0<2.4m 

 
Figure 5-19  Float angle RAO results January-March with Te<8s and 1.6m<Hm0<2.4m 
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Figure 5-20  Hull pitch RAO results January-March with Te<8s and 1.6m<Hm0<2.4m 

 
Figure 5-21  Hull roll RAO results January-March with Te<8s and 1.6m<Hm0<2.4m 
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Table 5-3  Natural periods of prototype Azura float and hull 

Body Natural 
period Notes 

Float 3 s 

The uncoupled rotational natural period (pitch) of the 
float about its axle   

T=Period (sec) 
pitch

pitch

C
AMk

T
+

=
2

2π  

M=Mass of float (kg) 
k=Radius of gyration (m)  
Apitch = Added moment in pitch mode (kg m2) 
Cpitch  = Pitch restoration term (kg m2/s2 ; function of the 
distribution of water plane area and distance between 
center of gravity and center of buoyancy) 

Hull 14 s 

The uncoupled heaving natural period of the hull 

heave

heave

C
AM

T
+

= π2  

T=Period (sec) 
M=Mass of float (kg) 
Aheave = Added mass of hull in heave (kg) 
Cheave = ρgA  (kg/s2), where ρ is the density, g is the 
acceleration due to gravity and A is the area of water 
plane. 

Hull and float , 
coupled through 
PTO at axle, 
with viscous 
damping 
coefficients 
included 

6 s 

Using HINMREC’s WEC-Sim numerical model, cases 
were carried out in regular waves with constant height 
and varying periods.  Results of power output were used 
to estimate the resonance period. 

Natural period estimates made by HINMREC staff 

 

Several trends can be seen in the RAO results shown in Figure 5-18 through Figure 5-21: 

• Hull heave noticeably increased at wave periods longer than about 6 seconds. 

• The greatest float angle movement occurred at periods of 4-5 seconds; above 6 
seconds there was much less float movement. 

• Both the pitch and roll motions of the hull were low at all wave periods, less than 3 
degrees/m and 1.5 degrees/m respectively. 

The trends in hull heave and float angle movement are consistent with the natural periods of 
the prototype Azura float and hull.  See Table 5-3 for estimates of these natural periods, 
provided by HINMREC.  The natural period of the float is 3 s, so the greatest float angle 
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movements are expected at 3 s and longer periods.  Movement of the float relative to the 
hull at longer wave periods is reduced by hull motion.  The natural period of the hull alone is 
14 s, however, when the device is operating the float is coupled to the hull and hull motions 
can be more closely estimated using the 6 s natural period of the hull and float coupled 
together. At wave periods longer than 6 s, the float and hull no longer act like two 
independent bodies and increasing hull heave motion and decreasing relative motion 
between the float and hull is expected.  Float angle motion is therefore expected to be 
greatest in the 3 s to 6 s range, while hull heave motion is expected to increase at wave 
periods above six seconds, consistent with the hull heave and float angle RAO results 
shown in Figure 5-18 and Figure 5-19, respectively.  

 

5.8.2 Relative capture width 

PTO input power measurements made on board the prototype Azura together with time 
series wave elevation measurements made by the Kaneohe Bay Waverider buoy were used 
to calculate Relative Capture Width (RCW) of the device with respect to wave frequency.  
The RCW was calculated from the power and wave spectra for each 30 minute data period 
as follows:  

𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔) =
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 �𝑃𝑃(𝜔𝜔)

𝐽𝐽(𝜔𝜔)�

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ
   

Where P(ω) is the PTO input power spectra of the device and J(ω) is the wave energy flux 
spectra.  The Azura PTO input power spectra were calculated for multiple 30 minute data 
periods as follows: 

𝑃𝑃(𝜔𝜔) = 2 𝑑𝑑𝑑𝑑2

𝑇𝑇
∗  fft�cylinder pressure�  ∗ conj(fft(cylinder flow)) 

Where cylinder flow and pressure are alternating hydraulic pressure and flow at the PTO 
input.  While cylinder pressure was directly measured by pressure sensors PT01, PT02, 
PT07, and PT08 (see Figure 5-16 for sensor locations), cylinder flow was calculated from 
the rectified flow measurement using the sign of cylinder pressure.  PTO input power was 
used because calculation of RCW with respect to wave frequency requires a power 
measurement that alternates with wave frequency.  The calculation can’t be directly done 
with PTO output power because the wave frequency information is lost due to PTO 
rectification and power smoothing.   

The wave energy flux spectra were calculated as follows: 

𝐽𝐽(𝜔𝜔) = 𝜌𝜌 𝑔𝑔 𝐶𝐶𝑔𝑔(𝜔𝜔) 𝑆𝑆(𝜔𝜔) 

Where ρ is water density, g is acceleration of gravity, Cg(𝜔𝜔) are wave group velocities at 
frequencies of the wave spectra, and S(ω) is the wave spectra calculated by taking the FFT 
of time series wave elevation data recorded by the Waverider buoy. 

The same January through March 2016 data set used for RAO calculations described in the 
preceding section were used for the RCW calculations.  Like the RAO calculations, RCW 
was calculated separately for multiple 30 minute data periods then all results averaged to 
smooth the data.  Data used for the RCW analysis was selected from the full January 
through March 2016 data set using the same method used for the RAO calculations; all 30 
minute data periods with constant displacement motor control, Te<8s and 1.6m<Hm0<2.4m, 
and down-wave float angles were included.  In the case of the RCW analysis, data with 
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mean wave headings of both <15° or >45° relative to device heading were processed 
separately for comparison.  The results of this analysis are shown in Figure 5-22, together 
with a plot of the Kaneohe Bay annual wave flux distribution.  This annual wave energy flux 
distribution was calculated by first averaging two years of Waverider buoy spectral data, 
then calculating the corresponding average wave energy flux and normalizing.  This annual 
distribution was used to provide a comparison between the wave climate at the WETS test 
site and the relative capture width with respect to wave frequency or wave period of the 
prototype Azura. 

 
Figure 5-22  RCW results January-March with Te<8s and 1.6m<Hm0<2.4m 

 

The RCW results in Figure 5-22 show that the device is most effective at producing power 
from waves with about 4 second periods or less, and does not produce significant power 
from wave periods greater than about 6-7 seconds.  This is consistent with both the natural 
periods of the device, shown in Table 5-3, and the float angle RAO results shown in Figure 
5-19, which show little float angle motion at the longer wave periods.  As discussed in the 
previous section, at wave periods longer than the 6 s natural period of the hull coupled to 
the float, the float and hull no longer act like two independent bodies.  Increasing hull heave 
motion, decreasing relative motion between the float and hull, and decreasing power 
production occur.  Since the bulk of wave energy at the test site occurs at wave periods 
longer than 6-7 seconds, this poor long period response limits the energy production of the 
prototype device at the WETS site.  This is an expected result, however, because the 
prototype Azura is a small-scale prototype device that, due to its short resonant periods, 
was not expected to be well tuned to the wave periods at WETS.  A larger full scale device 
with longer resonant periods would be better tuned to the ocean conditions at the site.   
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The RCW results in Figure 5-22 also show that the device response has a small amount of 
directional sensitivity.  More output power is produced when the mean wave heading is less 
than 15 degrees from device heading than when the mean wave heading is more than 45 
degrees from device heading.  The RCW curves are very roughly 10% higher across most of 
the frequency spectra when the device is lined up with the waves than when the waves 
approach at larger angles.  

 

5.9 Time series data plots for typical device operation 
Sample time series plots for typical prototype Azura operation are included in Appendix I.  
These plots present 10 Hz data recorded by the NWEI controller for float angle, hydraulic 
flow, hydraulic pressure, motor speed, and output power.  Four sets of plots are included, 
two sets for high output power conditions with both 30 cc/rev and 80 cc/rev motor 
displacement, and two sets for medium output power at same the two motor displacements. 
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5.10 Other measurements 
5.10.1 Average float angle 

Thirty minute averages of data from the two prototype Azura float angle sensors are plotted 
in Figure 5-23 together with 30 minute average device output power for the period June 
2015 through March 2016.  Float angle sensor 1 is a 0-360 degree sensor that reads zero 
when the float is in a horizontal position on the south side of the hull (normally the down-
wave or trailing side of the hull) and reads 90 degrees when the float is oriented vertically 
(hanging straight down).  Float angle sensor 2 is a 0-180 degree sensor that reads zero 
when horizontal on either side of the hull and 90 degrees straight down.  These 30 minute 
average plots show the ballasting level of the prototype Azura hull and show the time 
periods where the float was on the north side of the hull.  The ballasting goal during the 
Azura deployment was to operate the device with an average float angle of zero.  See 
Figure 5-24 for the relationship between the equilibrium hull position and average float 
angle.  The hull equilibrium position changes by about 0.1 meters for every four degree 
change in average float angle.  The prototype Azura hull ballast can be adjusted by adding 
or releasing air from the hull.   

 
Figure 5-23  Thirty minute average float angle plots June 2015 – March 2016 

 

When initially deployed at the end of May 2015, the Azura average float angle was about six 
degrees, indicating that the hull was ballasted about 0.15 m high.  The hull slowly settled in 
the water over the next 5 months, until in November 2015 the average float angle was about 
-12 degrees, indicating that the hull was ballasted about 0.3 m low by that time.  This may 
have been caused by the foam-filled center ballast tanks soaking up a small amount of 
water during this time period.  In November 2015, air was added to re-ballast the hull.  Since 
that time, the average float angle has stayed between about zero and three degrees, 
indicating that the hull is no longer settling in the water.  A small increase in average float 
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angle occurred when the AB mooring float was re-installed in January 2016, due to the 
change in hull level caused by the presence of this float. 

 
Figure 5-24  Relationship between hull and float equilibrium conditions 

 

The 30 minute average float angle 1 data also shows when the float has moved from one 
side of the hull to the other.  The device was deployed in May 2015 with the float on the 
south side of the hull, which is indicated by a -90 to 90 degree average float angle.  Since 
then, during numerous short time periods while the device has been producing higher 
power, the float has flipped to the north or up-wave side of the hull.  In extremely energetic 
seas, indicated by high output power, the float repeatedly has flipped from one side of the 
hull to the other.  Since the prototype Azura is designed for the float to rotate 360 degrees 
and the PTO operates equally well with the float to either side of the hull, float rotation does 
not affect performance or survivability of the device.   

5.10.2 Temperatures 

Temperature measurements were logged for a few components and enclosures on board 
the device by the NWEI cRIO controller and also a WebRelay temperature and humidity 
sensor.  The maximum temperatures that were recorded by these sensors throughout the 
deployment period are shown in Table 5-4. Also included in Table 5-4 are air temperature, 
water temperature, and wind speed measurements made at these times by the National 
Data Buoy Center (NDBC) station at Mokuoloe, HI, about 3 miles from the test site.  

None of the maximum temperatures recorded were above the expected temperature ranges 
for these components or enclosures.  The cRIO controller is the NWEI controller that records 
data and controls the PTO.  This controller is rated for operation in ambient temperatures as 
high as 70 °C with the controller chassis itself capable of much higher temperatures.  The 
maximum recorded temperature of ambient air inside the cRIO enclosure was 40 °C and the 
corresponding maximum chassis temperature was 56 °C, well within the device ratings.  The 
interior temperature of the device drybox, which houses the instrumentation power supply 
for the device, did not exceed 32 °C which was approximately equal to the temperature of 
the surrounding air and sea water when the measurement was made.  The maximum 
controller and drybox temperatures occurred when output power of the device was relatively 
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low but outside air and water temperatures were high; heat losses by other components in 
the PowerPod did not significantly affect these temperatures.  The maximum generator and 
transformer winding temperatures of 76 °C and 65 °C, however, did occur during a period 
with high device output power.  These devices are both built with windings that are rated to 
at least 180 °C, so these temperatures are well within the capability of these components. 

 
Table 5-4  Maximum temperature measurements June 2015 – March 2016 

  Maximum 
Temp 
(°C) 

Date 
Time 
(UTC) 

Air 
Temp 

°C 

Water 
Temp 

°C 

Wind 
Speed 
(m/s) 

Output 
Power 

(W) 

cRIO controller 
chassis 56 9/2/2015 

10:40 33 30 1 410 

cRIO controller 
enclosure* 43 9/3/2015 

1:00 30 30 3 425 

Drybox* 32 9/11/2015 
1:00 33 30 3 150 

Generator 
windings 76 12/20/2015 

11:30 24 24 11 1958 

Transformer 
windings 65 12/20/2015 

11:30 24 24 11 1958 

* Temperatures only recorded once per day by WebRelay X-300 at 1:00 UTC 
 

5.10.3 Drybox and NWEI cRIO controller enclosure humidity 

The humidity of both the drybox and the NWEI cRIO controller enclosure on board the 
device are plotted for the entire June 2015 through March 2016 deployment period in Figure 
5-25.  These measurements were logged by WebRelay X-300 humidity sensors installed 
inside these enclosures.  The cRIO controller enclosure is located inside the main cavity of 
the PowerPod, while the drybox is a welded protrusion on the PowerPod that is sealed from 
the rest of the PowerPod cavity.  Sensitive electronics are housed inside each enclosure so 
low humidity is important.  Prior to the prototype Azura deployment, desiccant was placed 
inside both enclosures and the inside of the PowerPod was also purged with nitrogen.  The 
humidity measurements in Figure 5-25 indicate that both enclosures maintained much lower 
humidity than outside air, however, the drybox maintained lower humidity than the controller 
enclosure.  Most likely this is because the drybox is well sealed from the remainder of the 
PowerPod cavity, while the controller enclosure does not have air-tight sealing from 
surrounding air inside the PowerPod. 
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Figure 5-25  cRIO and drybox enclosure humidity measurements June 2015 – March 2016 
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6.  Conclusions  
 
These tests successfully demonstrated ten months of reliable prototype Azura operation at the 
WETS 30 m site.  Specific conclusions that can be drawn from the results are as follows: 

• The device survived sea conditions with Hm0 as high as 4.5 m and individual waves as high 
as 7.5 m during the test period 

• High availability was demonstrated for the device during the test period, with over 98% 
availability during several months.  The device was capable of operation throughout the ten 
month period, with the exception of one 12 day period after a hydraulic hose became loose. 

• Power performance of the device was measured with constant motor displacement 
operation.  The results show 30 minute normalized power as high as 2240 W.  Output 
power always increased with decreasing Te for the same Hm0, with the highest power for a 
given Hm0 always occurring in the minimum Te bins. 

• While the full range of PTO hydraulic motor displacement settings were tested over a long 
period of time, the results show that motor displacement only had a small effect on device 
output power. 

• Output power of the device was not substantially higher when PI control of PTO hydraulic 
motor displacement was used than when constant motor displacements were used. 

• PTO efficiency was approximately 65% to 70% at higher (greater than 1500 W) output 
power. 

• RAO results show that hull motion noticeably increased at wave periods longer than about 
6 s, and the greatest float angle movement occurred at 4 s to 5 s wave periods.  These 
results are consistent with the natural periods of the hull and float; increased hull motion is 
expected at periods longer than the coupled hull-float resonant period of 6 s, and the 
greatest float motion is expected at periods between the float resonant period of 3 s and 
the coupled hull-float resonant period of 6 s.  The RAO results also show that there is very 
low pitch and roll motion of the hull across the full range of wave periods. 

• RCW results show that the prototype device is most effective at producing power from 
wave periods of four seconds or less in the spectra, and does not produce significant power 
for wave periods longer than six or seven seconds.  This is consistent with the natural 
periods of the device; the greatest power production is expected at longer periods than the 
float natural period (3 s) and shorter periods than the coupled hull-float natural period (6 s).  
Since the bulk of the wave energy at the test site occurs at wave periods longer than six or 
seven seconds, this poor long period response greatly limited power production for this 
prototype at the WETS site.  This is an expected result, however, because the prototype 
Azura is a small-scale prototype device that, due to its short resonant periods, was not 
expected to be well tuned to the wave periods at WETS.  A larger full scale device with 
longer resonant periods would be better tuned to the ocean conditions at the site.   
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Appendix I 

Sample Time Series Plots for Typical Operation
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February 17, 2016 at 5:30 
Average output power = 1850 W, Motor Displacement = 30 cc/rev 

Hm0 = 3.4 m, Te = 7.6 s  
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February 17, 2016 at 8:30 
Average output power = 1660 W, Motor Displacement = 80 cc/rev 

Hm0 = 3.6 m, Te = 7.9 s  
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February 26, 2016 at 12:00 

Average output power = 540 W, Motor Displacement = 30 cc/rev 
Hm0 = 3.0 m, Te = 12.5 s  
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February 26, 2016 at 8:30 
Average output power = 560 W, Motor Displacement = 80 cc/rev 

Hm0 = 3.1 m, Te = 13.0 s  
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Float angle sensor 1
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Hydraulic pressure (PT05)
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