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Abstract: Systems of ocean current power generation are generally moored deep in the seabed. The
mooring system is like ropes. The ropes are very long and can provide tension but not compression,
and their dynamic displacement is large and unstable, which is different from traditional structures.
To generate high-efficiency ocean current power generation, it is necessary to design a stable mooring
system. Maintaining the stability and small dynamic displacement of the ocean current invertor is
significantly helpful for the high efficiency of the invertor. In addition, the stability of the mooring
system and a small dynamic tension, high safety factor, and long life of the mooring ropes are
essential. In this study, we investigate the transient behavior of a mooring system composed of an
inverter platform, pontoon, and ropes under initial conditions. An analytical method is proposed.
The transient translational and rotational displacements are composed of 36 independent normalized
fundamental solutions. The composition depends on the initial conditions. Each fundamental
solution is derived by using the Frobenius method. This study proposes the replacement of the
traditional single-rope mode with the double-rope parallel mode, which can maintain a high fracture
strength and low effective spring constant in the rope. It is verified that this design can decrease
instantaneous tension and increase the safety factor of the rope. Additionally, high hydrodynamic
damping coefficients can significantly increase the stability of the mooring system.

Keywords: transient motion; initial condition; double-rope parallel mode; ocean current; mooring
system; stability

1. Introduction

Ocean current power generation is a potential renewable energy technology. Global
ocean currents are rich in energy. The currents have a mean velocity of about 1.2~1.53 m/s
near the surface. The Taiwan Kuroshio current has a potential capacity of over 4 GW [1].
In general, the seabed beneath the current is over 1000 m. Studies on deep mooring
technology have helped to harness that energy [2]. The stability of ocean power generation
systems under coupled typhoon wave currents must be investigated [3]. With respect to
such systems, the development of an ocean current generator, the related design, and the
development of mathematical models and analysis methods are important topics.

In terms of the practical testing of ocean current generators set in the sea, Chen et al. [1]
successfully tested a 50 kW ocean current convertor moored to an 850 m deep seabed
beneath the Taiwan Kuroshio current. At a current speed of 1.0 m/s, the output power of
the system was 26 kW. IHI and NEDO [4] successfully tested a 100 kW convertor moored to
a 100 m deep seabed beneath the Japan Kuroshio current. The current converter generated
about 30 kW under the current speed of 1.0 m/s.

For mathematical models of the mooring systems for ocean current generation, Lin et al. [3]
proposed a mathematical model of a coupled-surface invertor—platform-rope mooring
system under regular waves and ocean currents. The dynamic stability of the in-plane
motion of the mooring system, in four degrees of freedom, was investigated. It was found
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that the effects of some parameters on the dynamical stability of the mooring system were
significant. Lin and Chen [5] proposed the design of a submarine floating platform-towed
parachute—pontoon-traction rope mooring system to prevent damage induced by typhoon
waves. The dynamic stability of the in-plane motion of the mooring system possessed
three degrees of freedom, and the concentrated mode was investigated. The stability and
safety of the proposed design subjected to typhoon waves and currents was verified. Lin
et al. [6] proposed the design of a submarine invertor-surfaced platform—pontoon—traction
rope mooring system. The dynamic stability of the in-plane motion of the mooring sys-
tem possessed five degrees of freedom, and the conditions of a concentrated mode under
regular waves and a steady ocean current were investigated. The stability and safety
of the proposed design subjected to typhoon waves and currents was verified. Only the
hydrodynamic surge forces on the converter and the platform were considered. Lin et al. [7]
presented the design of a submarine invertor-submarine platform-pontoon-traction rope
mooring system to generate power from undergoing typhoon wave impact and currents.
The dynamic stability of the in-plane translational motion of the mooring system possessed
six degrees of freedom, and the concentrated mode under irregular waves and a steady
ocean current was investigated. Irregular waves were simulated on the basis of several
regular waves and were constructed using the Jonswap wave spectrum model. Mean-
while, only the hydrodynamic surge forces on the converter and platform were considered.
Lin et al. [8] presented a mathematical model of the coupled translational-rotational mo-
tions of a mooring system for an ocean energy convertor with 18 degrees of freedom.
The coupled fluid—structure interaction was investigated. The hydrodynamic forces and
moments on the converter and the platform were determined using the computational
fluid dynamic method. Furthermore, the hydrodynamic damping and stiffness parameters
were obtained. However, the hydrodynamic damping of the two pontoons was neglected.
All elements have traditionally been connected by a single rope. The spectral response
and stability of the mooring system with the coupled fluid—structure parameters under the
action of periodic waves were investigated.

The theory and technology of fluid—structure interactions (FSIs) have been widely
applied in many different fields, including marine engineering [9], aerodynamics [10],
acoustics [11], and medicine [12,13].

Anagnostopoulos [9] studied wave—offshore platform interaction. The hydrodynamic
force was simulated using the Morison model.

Lin et al. [12,13] investigated the wave modes of an elastic tube conveying blood. An
analytical solution for the system was presented. The authors discovered the flexural,
Young, and Lamb modes. The energy transmission mechanisms of the three modes through
the blood vessel and blood vessel interactions were studied.

Due to the complexity of the fluid-structure interactions, FSI problems are usually
solved using numerical methods. Belibassakis [14] presented a hydrodynamic analysis of a
floating body using the boundary element method. Tsui et al. [15] investigated fluid—elastic
plate interactions using a finite-volume-based approach. Hasanpour et al. [16] studied
wave—coastal structure interactions using the coupled SPH-FEM model.

There is no discussion in the literature [3,5-8] on the transient responses of moor-
ing systems. Therefore, in this study, the transient motion, stability, and rope tension
of the ocean current power generation mooring system [8] with initial conditions and
hydrodynamic forces and moments are analyzed. This study could be of significant
assistance in maintaining the high efficiency and long lifespan of ocean current power
generation systems.

2. Mathematical Model
2.1. Dynamic Governing Equations
To avoid the wave impact of typhoons, the energy converter and the floating platform

were submerged to a safe depth. Two small floating pontoons are connected to the convertor
and the platform, respectively, using a rope, as shown in Figure 1. In the mooring system,
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the converter is mounted below the surface of the water at some safe depth so that it
will remain undamaged and stably generate electricity under wave impact. In this study,
the mathematical model of the mooring system proposed by Lin et al. was adopted [8].
Furthermore, the transient response of this model was investigated after setting some initial
conditions. The governing equation is in the matrix format, as follows:

d*z dz
Mde+cd—t‘i+sz:o )

T
where Z; = [xld Y1d 21d X2d Y2d Z2d X3d Y3d Z23d X4ad Yad Zad PTx PTy PTz PPx PPy (sz] ,

0 . 0
My, -+ 0 Cii - Cus Kii(t) -+ Kias(t)
. o C= LK) = : : : @)
6 M.n,n Cis1 -+ Cisis Kigi(t) --- Kigas(t)
7777777777777777777777777777777777777 ‘ 4_“__*_]‘!
c v ‘

Five elements: ‘
0: Mooring foundation |
1: Floating platform

2: Ocean turbine ‘
3, 4: Pontoon |
Four ropes: A,B, C and D

seabed

Figure 1. Configuration of the mooring system for the ocean energy convertor.

The elements of the mass, hydrodynamic damping, and stiffness matrices M, C, and
K are listed in Appendix A, Appendix B, and Appendix C, respectively. Lin et al. [8]
derived the hydrodynamic damping coefficients of the proposed inverter and platform.
However, the hydrodynamic damping in pontoons 3 and 4 was neglected. In this study,
the hydrodynamic heaving damping of pontoons 3 and 4 was considered, and the values
are listed in Appendix B in order to clearly investigate the transient stability of the system.
There are 36 initial conditions, as follows:

The initial translational and rotational displacements:

T
Z;(0) = [X140 Yido Z1do X240 Y240 Z2d0 X3d0 Y3d0 2340 Xado Yado Zado PTx0 PTy0 PT=0 PPx0 PPy PP=0] 3)
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The initial translational and rotational velocities:

dZd(O) . . . . . . . . . . . R . . . . . . T
e {xldo Y1do 2140 X2d0 Y240 2240 X340 Y340 Z3d0 X4d0 Yado Z4d0 Prx0 Pry0 P20 PPx0 Pryo PPz0 4

2.2. Integration of Two Ropes with Different Lengths in Parallel

The larger the effective spring constant K, the greater the tension caused by the
momentary movement, because there is less elastic cushioning. The K value is inversely
proportional to the length but is proportional to the diameter, and the breaking force is
also proportional to the diameter. To reduce the tension generated by the rope, a smaller
diameter can be used, but its breaking force may not be sufficient, so a multi-parallel
multi-section K value design was adopted. When the first rope is broken, the other one is
still safe, making the mooring system better protected. The overall fracture strength and
the flexibility of the integrated rope are high.

For this deep mooring system, the main mooring rope A is very long, and its effective
spring constant is small. Therefore, the buffering effect is significant. However, because the
rope i, i = B, C, or D are too short, their effective spring constants are very large, and the
buffering effect is very low. In this study, it is proposed that the rope i, where I = B, C, or D
consists of the integration of two ropes, ix and i, in parallel. The buffering effect of these
integrated ropes is high, and their fracture strength is great.

2.2.1. Relation between Tension and Elongation

The lengths of ropes 1 and 2 without tension are L;, and L;g, where Lijg > L;,. The
effective spring constants of the two ropes are K-]- = Eiinj/Li]Or i=BCD;j=uap
When the elongation of the integrated rope J; < 0, in stage 0, its tension is zero, i.e., the
integrated effective spring constant K; = Kjp = 0. When the elongation of the integrated
ropeisin theinterval 0 < ; < L;g — Lj, in stage 1, the integrated effective spring constant is
K; = Kj; = Kj,. When the elongation of the integrated rope ¢; is greater than the critical one
i1 = Lig — Liy, in stage 2, the integrated effective spring constant is K; = Kjp = Kiy + K-Ig,
as shown in Figure 2. The critical tension was T;. = Kiq (Jjc1 + d;g), which is lower than the
fracture strength of rope ix. The effective spring constant of rope i is

0, 6; <0
Ki = ¢ Kiy, 0<é <di, i=BCD ©)
Kix + Kip,  bic1 <9
T T
T//mcl
K
Rope ia Rope i
L,
K,
Ki=0
%  Ga &
L Stage 0 stage 1 stage 2
i=B,C,D
(a) (b)

Figure 2. Effective spring constant of the main rope integrated by two parallel smaller ropes with
different lengths. (a) Two integrated ropes in parallel; (b) effective spring constant K; elongation
relation J;.
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The total tension of rope A is

_ 0, oa <0
TA(t) - { KA5A/ 0 < 5A ’ (6)

where the total elongation of rope Ais 64 = é45 + d 44, the static elongationis 645 = Tas/Ka,
and the dynamic elongation is 645 = %fxld + %:yld.
The total tension of rope B is

- 0, 53 <0
Tp(t) =q KBadpa, 0 <dp <dca, @)
Kpa(dc1 +0p) + Kppdpp, OB > Ope

where the total elongation of rope B is 05 = 855 + dpy, the static elongation is 6gs = Tps/Kp,,
and the dynamic elongation is dgq = xlSEB 2 (x4 — x2d)+y1%3yzs (Y14 — Y2d)-
The total tension of rope C is

- 0, 5(: <0
Te(t) =14 Keadcar 0 < dc < ca, 8)
Kca(bcer +0cp) +Kepdep, ¢ > dca

where the total elongation of rope Cis 6c = d¢s + ¢4, the static elongation is §c; = Tcs /K,
and the dynamic elongation is dcy = x34(t) — x14(f).
The total tension of rope D is

o 0, 5D <0
Tp(t) = Kpudp, 0 < dp < dpe1, )
Kpa (Ope1 +0pp) + Kppdpp,  0p > dpe1

where the total elongation of rope D is dp = dps + dpy, the static elongation is ps = Tps/Kpg,
and the dynamic elongation is dpy = x44(t) — x24(¢).

2.2.2. Strain Energy, Effective Spring Constant, and Fracture Strength

The fracture strength of the rope is designated as Tfy,1,i- The fracture strength of rope
i is Tfmct,m. The tension of rope if is Tfmct/iﬁ when rope i« is at the broken point. The rela-
tions among tensions, effective spring constants, and the elongations can be expressed as

Tfmc,i = Tfmc,irx + Tfmc,iﬁ = Yia Tfmc,i + (1 - 'Yia)Tfrac,i (10)

T tracin = Kiabica, T frac,ip = Kip(Jic2 — dic1) (11)

where the fracture strength ratio is v;, = Tfrac,ia/ Ttrac,i- dica is the fracture elongation of
rope ix. ;.1 is the critical elongation of rope ia at which the tension stage 1 transforms into
stage 2.

It is assumed that the fracture strain of rope ix and the strain of rope i when rope i
is broken are, respectively,

€ia = T fracia/ EiaAia, and €ig = T fracip/ EipAip (12)
The lengths of ropes ix and if3 are
Liy = Li, Lip = Lix + 6ic1 (13)
The effective spring constant of ropes ix and i are

K; =EAi/Lj, j=ia, ip (14)
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Based on Equations (11)—(13), one obtains

dico = €jg Ly, (15)

(Sic2 — dic1) = €ip(Li + dic1) (16)
Substituting Equation (15) into Equation (16), one obtains

€in — &ip

1+ €ig Li (17)

dic1 =

Based on {5iC1, Sic2s Yins Tfmc,iocr Tfmc,iﬁ }, the fracture energy is determined to be

1 1= 1— € — g
efraci = 5T frac,indic2 + ETfmc,iﬁ(‘sicz =01 ) = 5 Lprac,iLi |€ip + (eip + 'Yia)% (18)
1

In general, the higher the fracture energy of a rope is, the safer the rope subjected to a
given tension will be.

2.3. Examples of Integrated Ropes

Example 1: The properties of a commercial HSPE rope are as follows: Young’s modulus
Epg = 100 GPa, weight per unit length wpg = 16.22 kg/m, diameter Dpg = 154 mm, cross-
sectional area Apg = 0.0186 m?, length Lpg = 300 m, fracture strength T, pg = 759 tons.
The fracture strain eg,c¢pg = TacpE/ EPEAPE = 0.004. The effective spring constant
Kpp = EppApg/Lpr= 632(tons/m).

Assume rope i is made of two parallel smaller ropes, ix and if. Based on the properties
of the commercial HSPE rope, it can be assumed that the fracture strain of rope i is
Efracin = Tfrac’ia / Eiy Aiy = 0.004. The strain of rope i when rope i« is broken but rope if is
safe is Efrac,ip = Tfrac,l‘ﬁ / EigAjg = 0.002. The fracture strength and length of the integrated
rope are considered to be T, ; =750 tons and L; = 300 m, respectively.

Figure 3 demonstrates the effect of the ratio v;, of the fracture strength of the rope ix to
that of the integrated rope on the effective spring constants of the integrated rope {Kj;, Ki» },
the critical elongations {J;.1, dic2 }, the transformed tension Tirans, and the fracture energy of
the integrated rope ef ;. It was found that if the elongation é; < J;;; = 0.597 m, only rope
i will be working, and the effective spring constant K;; increases with fracture strength
ratio ;,. If the elongation d;.1 < 6; < ;. = 1.196 m, ropes ix and i will be simultaneously
subjected to loads. If the elongation §; > J;.,, the rope ix will be broken but not rope ip.
The higher the fracture strength ratio v;,, the larger the fracture energy eg,. ;. If the fracture
strength ratio ;, = 0.8, the fracture energy ef,.; = 403.8 (tons-m). The higher the fracture
strength ratio v;,, the larger the effective spring constant of rope ix. In other words, the
buffering effect decreases with decreasing fracture strength ratio v;,. If the elongation
0j < djc1 = 0.597 m, only rope ix will be working, and the effective spring constant K;; will
be significantly lower than that of the commercial HSPE dyneema, Kpg= 632 (tons/m).
Therefore, a significant application of the buffering effect of impact was achieved by the
integration of parallel ropes.

Example 2: If the length of the commercial HSPE dyneema with T, pg = 759 tons,
Lpg =100 m, its effective spring constant Kpg =1896 (tons/m).
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Fracture strength ratio 3,

Figure 3. The effect of fracture strength ratio on the properties of integrated rope with T, ; = 750 tons
and L; = 300 m.

In Figure 4, it is considered that when rope i« is broken, the fracture strain of rope ix,
€fracin = 0.004, and the strain of rope if3, Efrac,ip= 0.002. The fracture strength and length
of the integrated rope T, ; = 550 tons and L; = 100 m, respectively. Figure 4 shows the
critical elongations d;.1 =0.199 m, J;» =0.399 m, which are less than those in Figure 3.
If the fracture strength ratio ;, = 0.8, the fracture energy eg,; = 98.7 (tons-m), which
is smaller than that in Figure 3 due to the fracture strength and length of the rope. If
the elongation §; < ;.1 = 0.199 m, only rope a will be working, and the effective spring
constant K; will be significantly smaller than that of the commercial HSPE dyneema,
Kpg = 1896 (tons/m). Therefore, the significant application of a buffering effect of impact
was achieved through the integration of parallel ropes. When considering the double-rope
parallel mode, the stiffness coefficients Kj; depend on the dynamic tension of ropes, i.e., the
stiffness coefficients are time-varying, as shown in Equation (2). In this study, the solution
method derived for solving the mooring system with time-varying coefficients will be
presented later.
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Figure 4. Effect of fracture strength ratio on the properties of the integrated rope with T, ; = 550 tons
and L; = 100 m.

3. Solution Method
3.1. Transient Response

The governing Equation (1) in matrix format is composed of 18 second-order ordinary
differential equations, as presented by Lin et al. [8]. Because there are two independent
fundamental solutions for a second-order ordinary differential equation, 36 independent
fundamental solutions exist for Equation (1). The general solution of Equation (1) can be
expressed as the linear combination of 36 independent fundamental solutions:

Via(t)
36 | Via(t)
Zy(t) =) ai| . (19)
i=1 .
Vias(t)

where the independent fundamental solutions, [Vi,l (t) Via(t) Viis (t)] T,i =1,2,...,36,
satisfy the governing Equation (1) and the following normalized condition:

(Vi1 [ Vo] [ V35,1 ] V36,1 ]
Vip Vo V352 V36,2
. . T . . 1 0 0 0
) ’ ’ ’ 0 1 00
LV1,1s LV2,15] LVas,18] V36,18 L o 20)
Vi Vaa V35,1 V36,1 N 0 O - 1 O
1% Vv Vv 14 T
_1'2 ?’2 . ?5'2 ?6'2 00 --- 0 1
i [ V11s | V2,18 | V35,15. V36,15 1o
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Substituting the solution (19) into the initial conditions (3—4), one obtains

Vi1(0) Vi1(0)
2t | Vip(0) | dzy0) & | Via(0)
Zi0)=Yoq| 7| ) ) T @
i=1 : dt i=1 :
Vi18(0) Vi1s(0)
Based on Equation (21) and the normalized condition, one obtains the coefficients g;,
i=1,2,...36.
1
q2
. Z4(0)
L= ldzd(()) (22)
35 dt
436

3.2. Derivation of a Fundamental Solution

If ropes B, C, and/or D are integrated with two more ropes in parallel, their stiffness
spring constant and the elements of the stiffness matrix will vary with time. Therefore, it
is difficult to directly derive the fundamental solutions of Equation (1). A semi-analytical
method is proposed as follows:

The time interval (0, t) is divided into m small subintervals, (to, t1), (t1,t2),- -,
(tm,l, tmy =1t f) . If the number of subinterval m is large enough, the elements of the stiffness
matrix are close to constant in each subinterval. Furthermore, one can derive the indepen-
dent and normalized fundamental solution by using the modified Frobenius method.

In the small subinterval (f,_j,t.), the 36 independent fundamental solutions of
Equation (1) are expressed in the form of

Vi i
Vis o | @jo; )
Pl T -, j=12...,36 (23)
i=0 .
Viis @j18,i

For V1,1: w10 = 1,01 = 0

For Vo1t @10 = @211 =0,

For Vk,l: Rk,l,(] = Ek,l,l = O, k= 2, 3, S 1 ]

For VZ,ZZ 00 = 1,&p1 = 0

For Vk,Z: Ek,Z,O = Ek,z,l = 0, k= 1, 3, 4, oo, (24)
For Vk,k: &pro = Lwggr = 0,k=1,2,...,n

FOI‘V]',](Z Rj,k,O = Ej,k,l =0,j= 1,2,...,k—1,k+1,k+2,...,n

For Kk,’rl+k: Wikl = L &kysko = 0,k=1,2, ..., n

For Vj,n—',—k: E]}”-‘rklo = Rj,n+k,1 =0,j=12, ..., k—1,k+1,k+2,...,n
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Based on Equations (23) and (24), the local fundamental solutions satisfy the following
normalized condition:

Vil [Vae] Vizn1]  [Vian]]

Vo Voo Voon-1 Voon

: : : : 10 0 0

:V"’l: :V"'Z: :V"’Z"_l: :Vn,Zn: 01 00

71,1 Vl,z 71,2;171 Vion B L (25)
7 7 — - Oo0 --- 10

Vau Vo [ V22u Vaon 00 .. 0 1
L _Vn,l_ _Vn,Z_ _Vn,Zn—l_ _Vn,Zn_ di=t, 4

Substituting (23) into (1), and according to Equation (24), the recurrence Formula (17)
is obtained.

18 18
i — —1 i T ..
Otj,g,i+2 - (i+2)(i+1)Mgg Sgl (Z + 1)0(1,5,1+1Cgs + SE,] OC],s,lKgs ’ (26)
i=0,1,...,j=1,2...,3,9=1,2,...,18

The coefficients of the fundamental solutions (23) can be determined via this Formula (26).
In the subdomain (¢,_1, t.), each global fundamental solution can be linearly composed
of the 36 local independent fundamental solutions (23).

Vj,l Ya,l

Vj,2 36 Va,Z .
: =) Xjae| . j=1,2,...,36 27)
: a=1 .

% \%4

j18 te(tf‘,l,te) a,18 te(tefllté’)

The continuity conditions are as follows:

Via Vo Vi Vaa

: 36 vV V. 36 AV

2 a,2 j2 a2 .

: =Y Xja| . S =Y Xja| . ,i=1,2,...,36 (28)

a=1 : . a=1 .

Vi Vv 7 =

JA8d =y, | a18 t—¢, 4 V],18 t=t, 1 Vaisl .

e ’ t=t, 1

Based on the continuity conditions (28), the coefficients of Equation (27) can be determined:

Vi Vo] [Vasi 1 [ Vaea |
Vip Vap Vas 0, V36,2
X11e X2,1,e o X351e  X361e : : o : :
X12e  X22e "t X352e  X362e ' ’ ' '
' ’ ) i . V1,18 V2,18 Vs5,18]  [V36,18 29)
| Via Vi V351 V36,1
X135e X22n-1e " X3535le X3635e Vi Voo V350 V362
X136e  X22nme "' X3536e  X3636ed te(r, 1) . . .
| LV118]  LV21s. Va5l LVaeasl |, |

According to Equations (23), (27), and (29), all of the global fundamental solutions are
determined. Furthermore, substituting these back into Equation (19) and the initial
conditions (3—4) and (22), the transient translational and angular displacements of platform 1,
inverter 2, and pontoons 3 and 4 are determined.
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4. Numerical Results and Discussion
4.1. Effects of Initial Displacements, Effective Spring Constant, and Double-Rope Parallel Mode
Firstly, in Figure 5, the transient response of the mooring system with the initial

conditions (30) is presented. The initial translational and rotational displacements are
as follows:

T
Zjly= [ X1d0 Y1d0 21d0 X240 Y240 2240 X340 Y340 Z340 X4d0 Y4d0 Z4d0 PTx0 PTyo PTz0 PPx0 PPy0 PPz0 ] (30)
= [ 7.192 —0.013 3.6 18 0 3.6 7198 36 018 36 000000 0 ]T(m; rad)

Total Tension (tons)

=~

<

(=}
|

Dynamic displacements (m)
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Figure 5. Transient response of mooring system with Lc = Lp = 100m, K¢y = Kpy = 1889 (tons/m).
(a) Total tension of ropes (I). (b) Total tension of ropes (II). (c) Displacements of pontoons, turbine,
and platform. (d) Angular displacements of turbine and platform.
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These are mainly the initial displacements in the x-direction of platform 1, inverter 2,
and pontoons 3 and 4, deviating from the neutral position. The initial (angular) velocities
are zero as follows:

Z, ’ — [ X140 Y140 2140 X240 Y40 2240 X340 Y340 2340 X4d0 Yago 24d0 PTx0 Pry0 PT20 PPx0 PPy0 PP20 } 31)
=[0 0]
On the basis of these initial conditions, the dynamic behavior of the system can be ob-
served to revert back to the neutral position in order to investigate the stability of the
mooring system.
The parameters of the system are listed in Table 1. The ropes A, B, C, and D are made
of the same HSPE, the fracture strength of which is T, = 759 tons. The hydrodynamic
damping coefficients of platform 1, inverter 2, and pontoons 3 and 4 are listed in Appendix B.
The hydrodynamic damping coefficients C3 3 = 5756(N-s/m), C44 = 1.465 x 10°(N-s/m),
C77 = C10,10 = 300(N-s/m).
Table 1. The parameters of the system.
Parameter Dimension Parameter Dimension
depth of seabed Hp,y 1000 m length of rope C, L¢ 100 m
horizontal distance between the
length of rope D, Lp 100 m inverter and platform L 300 m
mass moment of inertia of 8.940 x 1010/
inclined angle of rope A, 64 300 the convertor 2.712 x 1010/
about the x, , -axis, Iry/Iry/Ir, 8.940 x 1010(kg-m2)
cross-sectional area of surfaced cylinder mass 3.0 x 108/5.0 x 106/
of pontoon 3. A 4m? moment of inertia of the platform ’ 3.0 x 108 (i( -m?)
p s 1BX about the x, y, z-axis, Ipy/Ipy/Ip, ’ &
cross-sectional area of surfaced cylinder 2 distance from the gravity of
of pontoon 4, Apr 4m invertor to rope B, D, Rrg/RTp 16.5/12.82m
Young’s modulus Epg 100 GPa, current velocity V 1.6 m/s
weight per unit 16.22 kg/m mass of the platform M; 300 tons
length wpg
HSPE rope - -
diameter Dpg 154 mm mass of the invertor M, 538 tons
cross-sectional area Apg 0.0186 m?2 mass of the pontoon 3, M3 250 tons
fracture strength T, 759 tons mass of the pontoon 4, My 250 tons
distance from the gravity of platform to static tension of ropes A, B, C, D,
5/5.8/2.5 78.07/67.53/5/5 t
ropes A, B, C, Rpa/Rpp/Rpc /58/2.5m Tas/Trs/Tes/ Tps / /5/5 tons
. . net buoyance of invertor and
static drag of the invertor Fpr 67.53 tons platform Fanr/Fans 533/320.77 tons

The maximum power coefficient of cost performance (CP) of the proposed turbine is
0.43 at a tip-speed ratio (TSR) = 3.5. When the current velocity V = 1.6 m/s, the total output
power of the two turbines is close to 400 kW [8]. Obviously, the current profile changes
with respect to time and depth. Due to the complexity of the presented theorem, and for the
sake of clarity of the presented theory, a uniform current velocity was considered. Ropes
A, B, C, and D are made of a single HSPE rope, the material and diameter of which are
the same as those listed in Table 1. Based on the formula K; = EA./L, the effective spring
constant K ; =105.3 (tons/m), Kggy =631.3 (tons/m), K¢y = Kpy; =1889 (tons/m). The
effective spring constants of ropes B, C, and D are significantly higher than that of rope A,
because the lengths of B, C and D are very short and the diameter and fracture strength
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of ropes A, B, C, and D are the same. The transient responses are determined and shown
in Figure 5a—d.

Figure 5a,b show that, initially, the transient tensions of ropes A and B, T4 and T, are
very high. Furthermore, these tensions gradually converge to low values. However, the
tension of rope C, T¢, increases gradually. This is because the effective spring constants
of ropes B, C, and D are high, and their buffet effects are weak. It is demonstrated in
Figure 5c that the displacements of the invertor and the pontoon 4 in the x-direction decay.
The displacements of the platform and pontoon 3 in the x-direction oscillate and finally
converge to about 1 m. It is demonstrated in Figure 5d that the yaw and roll angles of the
invertor are close to zero. The pitch angle of the invertor is smaller than one degree at a
time of 40 s. The pitch, yaw, and roll angles of the platform are higher than those of the
invertor. Therefore, it is verified that, because the effective spring constants of ropes C and
D are very high, their buffering feature is weak, and their instability will be easily obtained.

In order to overcome this disadvantage, ropes C and D are made of the same HSPE
material as the other ropes, but with smaller diameters so that their effective spring con-
stants will become significantly lower, while the fracture strength will decrease. In Figure 6,
the effect of lowering the diameters of ropes C and D on the transient response of the
mooring system is investigated. Ropes A and B are made of a single HSPE rope, de-
scribed in Table 1. Their cross-sectional area was A4 = Ag = 0.0186 m2. Their effec-
tive spring constants are the same as those in Figure 5. Ropes C and D are made of
a single HSPE rope, the same as ropes A and B. However, their cross-sectional area
was Ac = Ap =0.004 m2. Based on the linear elastic theory, the effective spring con-
stant is reduced to K¢y = Kp; = 412.2 (tons/m). Their fracture strengths decrease to
Tfracj = (Aj/ Ai) Tfraci = 162.54 tons; i = A, B, j = C, D. Figure 6a shows that the tension
of rope C converges to a lower value due to the lowering of the effective spring constants
of ropes C and D. The maximum momentary tension of rope B is Tp,, = 464 tons. The
maximum momentary tension of rope C is Tcyq = 125.8 tons, which is close to the fracture
strength Ty, c =162.54 tons. Figure 6b shows that the transient displacements are stable
and converge to the same value, as shown in Figure 5c. Therefore, it was verified that the
lower the effective spring constants of ropes C and D are, the greater the stability of the
mooring system. However, this design decreases the safety factor of the rope.

Total Tension (tons)
Dynamic displacements (m)

_IOIIIIIIIIIIIIIIIIIIII

0 10 20 30 40 0 10 20 30 40
Time (sec) Time (sec)

@) (b)
Figure 6. Transient response of mooring system with Lc = Lp = 100 m, K¢y = Kpy = 412.2 (tons/m),

Ttrac,c = Tfrac,p = 162.54 tons. (a) Total tension of ropes. (b) Displacements of pontoons, turbine,
and platform.
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Total Tension (tons)

In order to overcome the above disadvantage of low fracture strength, ropes
C and D were designed in the double-rope parallel mode presented in Sections 2.2
and 2.3. This design results in the integrated rope possessing the features of a low
effective spring constant and high fracture strength. The effective spring constants are
K a4 =105.3 (tons/m),Kp; =631.3 (tons/m). The parameters of the integrated ropes C, D
are Kjspge1 = F]-ﬂ = 689.7 (tons/m), Tj. =, 137 tons, Kj stpee2 =1394 (tons/m), j = C, D. The
fracture strengths of ropes Tfrac,a = Trac,g = 759 tons, Tfrge,c = Tfrac,p =550 tons. It can
be seen in Figure 7a that the maximum momentary tension of rope B is Tgy, = 465 tons,
which is close to that of Figure 6. It can be seen from Figure 7b that the displacements are
stable and convergent. It was verified that the double-rope parallel mode is helpful for
achieving system stability and high fracture strength.

Dynamic displacements (m)

_lo T T T T I T T T T I T T T T ] T T T T I

0 10 20 30 40
Time (sec)

Tune (sec)

(a) (b)

Figure 7. Transient response of mooring system with Lc = Lp = 100 m, Ttrac,c = Tfrac,p = 550 tons.

(a) Total tension of ropes. (b) Displacements of pontoons, turbine, and platform.

4.2. Effects of the Length of Rope and Hydrodynamic Heaving Damping
4.2.1. Transient Response and Improvement of Stability and Safety, Lc =100 m, Lp =110 m

The effect of variations in the length of ropes C and D on the transient response was
investigated, and the results are shown in Figure 8. Except for Lc = 100 m,Lp = 110 m,
the other parameters are the same as those used in Figure 6. The effective spring constants
K44 =105.3 (tons/m), Kg; =631.3 (tons/m), Kc; =412.2 (tons/m),Kp; = 403.4 (tons/m).
The fracture strengths of ropes A, B, Tfc 4 = Thac,p = 756 (tons). The fracture strengths
of ropes C, D, Tguec = Thae,p = 162.54 tons. The hydrodynamic damping coefficients
C33 =5756 (N-s/m), C44 = 1.465 x 106 (N-s/m), C77 = Cip10 = 300 (N-s/m). It can be
seen from Figure 8a that the tension of rope B is the greatest among ropes A, B, C, and D.
The maximum momentary tension of rope B is Tpy,,, = 617 tons, which is significantly larger
than the T4y = 464 tons shown in Figure 6, with Lc = Lp = 100 m. It can be concluded that
the effect of the lengths of ropes C and D on the maximum tension of rope B is significant.
Figure 8b shows that the angular and translational displacements of the invertor are small.
However, the swaying displacement z1; of the platform increases significantly.
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Figure 8. Transient response of mooring system with smaller diameters of ropes C, D [Lc = 100 m,
Lp =110 m, Tpye,c = Tfrae,p = 162.54 tons]. (a) Total tension of ropes. (b) Displacements of pontoons,
turbine, and platform.

It can be concluded by comparing Figures 6 and 8 that the effect of the lengths of ropes
C and D on the transient response is significant.

In order to overcome the above disadvantages of the low fracture strength of ropes
C, and D, the doubled-rope parallel mode derived in Sections 2.2 and 2.3 is proposed.
This design results in a low effective spring constant and high fracture strength of the
integrated rope. In Figure 9, the effective spring constant of rope A K43 =105.3 (tons/m).
The parameters of the integrated ropes B, C, and D are Kp stoge1 = Kg, = 205 (tons/m),
Tpe =299 tons, Kp sager =376.2 (tons/m), K¢ stager = Ky =344.8 (tons/m), T =136 tons,
KC,stageZ = 1048 (tons/m), KD,smgel = Kp, =131.5 (tons/m), Tp. =137 tons, KD,Smgez =940
(tons/m), and the fracture strengths of ropes A, B, Tguc 4 = Tac,p = 750 tons. The fracture
strengths of ropes C, D, Thac,c = Tfrac,0 = 550 tons. The other parameters are the same as
those in Figure 8. It can be observed from Figure 9a that the maximum momentary tension
values of ropes A, B are T g5, = 455 tons and Ty, = 444 tons. It can be seen from Figure 9b
that the heaving displacement of platform 1, invertor 2, and pontoons 3 and 4 converge to
near zero. The swaying displacement z;; of the platform oscillates.

In Figure 10, the effect of larger hydrodynamic heaving damping coefficients on
the transient response is demonstrated. In this case, the damping coefficients of all
of the elements increased to be C33 = 1.15 x 10° (N-s/m), Cg4 = 2.96 x 10® (N-s/m),
C77 = Cio,00 =6 % 10* (N-s/m). The other parameters are the same as those in Figure 9. It
was found that the swaying displacement z1; of the platform significantly decreased. The
mooring system therefore became more stable.
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Figure 9. Transient response of mooring system with the double-rope parallel modes B, C, D
(Lc =100 m, Lp =110 m, T 4 = Tpraep = 750 tons, Tpye ¢ = Thge,p = 550 tons). (a) Total tension of
ropes. (b) Displacements of pontoons, turbine, and platform.
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Figure 10. Transient response of mooring system with the double-rope parallel modes B, C, D, and
larger heaving hydrodynamic damping. (a) Total tension of ropes. (b) Displacements of pontoons,
turbine, and platform.

4.2.2. Transient Response and Improvement of Stability and Safety, Lc =110 m, Lp = 100 m

In Figure 11, the effect of the lengths of ropes C and D on the transient response
of the mooring system is depicted. Except for Lc = 110 m,Lp = 100 m, the other
parameters are the same as those used in Figure 6. The effective spring constants
Kp4 = 105.3 (tons/m), Kgz = 631.3 (tons/m),Kc; = 406.9(tons/m),Kp,; =412.2 (tons/m).
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The fracture strengths of ropes A, B, T4 = Tuc,p = 750 tons. The fracture strengths of
ropes C, D, Tpue,c = Tae,p = 162.5 tons. It can be observed from Figure 8a that the tension
of rope A is the greatest among ropes A, B, C, and D. The maximum momentary tensions of
ropes A and B are T 45, =461 tons and Tpy,y = 294 tons, respectively, which is significantly
lower than the Tp,,, = 464 tons shown in Figure 6, with Lc = Lp = 100 m. It can be
concluded that the effect of the lengths of ropes C and D on the maximum tensions of ropes
A and B is significant. However, it is shown in Figure 8b that the heaving displacements
of the invertor and pontoon 4 are significantly increased. Finally, the invertor is lifted to
the water surface. The swaying displacement of the platform increases significantly. This
means that the mooring system is unstable.

Total Tension (tons)
1
Dynamic displacements (m)
)
@
|

(]

IIII|IIII|lIII

_40 T T T T I T T T T l T T T T | T T T T |
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Figure 11. Transient response of mooring system with Lc = 110 m, Lp = 100 m. (a) Total tension of
ropes. (b) Displacements of pontoons, turbines, and platform.

In order to overcome the above disadvantages of the low fracture strength of the rope,
the double-rope parallel mode was proposed. The effective spring constant of rope A
K44 =105.3 (tons/m). The parameters of the integrated ropes B, C, and D are K stgqe1 =
Kp, =205 (tons/m), T, =299 tons, Kp stager = 376.2 (tons/m), K¢ stage1 = Kcg = 313.5 (tons/m),
Tee = 137 tons, Kc stager = 940 (tons/m), Kp stager = Kps = 344.8 (tons/m), Tp, = 136 tons,
Kp,stagex = 1048 (tons/m). The fracture strengths of ropes A, B, Tfuc 4 = Tfiae,p = 756 tons. The
fracture strengths of ropes C, D, Tfuc,c = Tfae,p = 550 tons. The hydrodynamic heaving damp-
ing coefficients are increased as follows: C33 = 1.15 x 10°(N-s/m), Cyq =296 x 103(N-s/m),
Cy7 = Cip10 = 6 X 10*(N-s/m). The other parameters are the same as those in Figure 11.
Figure 12a shows that the tensions of ropes are significantly decreased. Figure 12b demon-
strates that the heaving displacements x,;, x44 are almost fixed. The swaying displacement
z14 of the platform is close to zero. This means that increasing the hydrodynamic damping
is greatly helpful for the stability of the system.
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Figure 12. Transient response of mooring system with integrated rope and larger heaving damping.
(a) Total tension of ropes. (b) Displacements of pontoons, turbine, and platform.

4.3. Effect of Initial Velocities

The new initial conditions are considered as follows:

T
Zjliy = [ X1d0 Y1d0 21d0 X240 Y240 2240 X340 Y340 Z340 X4d0 Y4d0 Z4d0 PTx0 PTyo PTz0 PPx0 PPy0 PPz0 ] (32)
= [0.05, 1.888, —0.003, 0.36, 1.884, —0.001, 0.36, 1.8, 0.36, 1.8, 0.36, O, - -, O]T(m; rad),

Zd‘ = { X1d0 Y1do 2140 X240 Y240 2240 X340 Y340 2340 X4d0 Yado Z4d0 PTx0 PTy0 PT20 PPx0 PPy0 PPz0 } (33)

— [ 0.05(m/s), 0, 0, 0.05(m/s), 0, ---, 0]"

t=0

where the initial (angular) displacements are close to zero. The initial velocities in the x-
direction of platform 1 and invertor 2 are 0.05 (m/s). The hydrodynamic heaving damping
coefficients C3 3 = 5756 (N-s/m), C4 4 = 1.465 X 10° (N-s/m), C77 = Ci0,10 = 300 (N-s/m),
which is significantly lower than those in Figure 12. In Figure 13, the transient response
with Lc = Lp = 100 m and the different initial conditions described the above cases are
presented. The effective spring constant of rope A K44 = 105.3 (tons/m). The parameters
of the integrated ropes B, C, and D are Kpstgge1 = Kg, = 205 (tons/m), T, = 299 tons,
Kpstagez = 376.2 (tons/m), K staer = Kjo = 344.8 (tons/m), Tjc = 136 tons, Kjsaeer =
1048 (tons/m). j = C, D. The fracture strengths of ropes A, B, Tfuc 4 = Tfiae,p = 756 tons. The
fracture strengths of ropes C, D, Thac,c = Tfrac,p = 550 tons. The other parameters are the
same as those employed in Figure 12. It can be seen from Figure 13a that the tensions are
significantly lower than the fracture strengths. It is demonstrated in Figure 13b that the
mooring system is stable.
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Figure 13. Transient response of mooring system with different initial conditions. (a) Total tension of
ropes. (b) Displacement of pontoons, turbines, and platform.

5. Conclusions

In this paper, the transient response of the transient translational-rotational motions
of the mooring system was investigated for the ocean energy converter presented by Lin
et al. [8] under a number of initial conditions. The normal power generation of the proposed
turbine was 400 kW at a current velocity V = 1.6 m/s. Its maximum power coefficient of CP
was 0.43. A semi-analytical method was presented for the system. The double-rope parallel
mode was proposed. This mode was demonstrated to be able to effectively increase the
buffering feature and fracture strength. The translational and rotational displacements of
the mooring system will be significantly decreased with enough buffering features and
hydrodynamic damping. Moreover, the effects of several parameters on the transient
performance of the mooring system were investigated, and conclusions can be drawn
as follows:

1.  The lower the effective spring constants of the ropes are, the higher the buffering
feature of the mooring system will be.

2. The higher the effective spring constants of the ropes are, the higher the momentary
tension of the ropes will be.

3.  Intraditional setups, the lower the effective spring constants of single-rope mode are,
the lower the fracture strength of the rope will be. This disadvantage can be overcome
by using the double-rope parallel mode.

4. The effect of the lengths of ropes C and D on the transient response is significant.

5. The larger the hydrodynamic damping coefficients are, the stabler the mooring system
will be.
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Nomenclature

Apx: Apr cross-sectional area of surfaced cylinder of pontoons 3 and 4, respectively
Apy, Aty damping area of platform and convertor under current, respectively

C matrix of damping

Cpry,Cpry  damping coefficient of floating platform and convertor

E; Young’s modulus of rope i,i = A, B,C, D

€frac fracture energy of rope

Fp buoyance

frys: frys the drag of the floating platform and the convertor under steady current
Hpeq depth of seabed

Itj, Ip; mass moment of inertia of the convertor and the platform about the j-axis.
g gravity

K matrix of stiffness

Kig effective spring constant of rope i, E;A;/L;

L length of rope i,i=A, B, C, D

Lg, horizontal distance between the convertor and platform, L% —(Lc—L D)2
M matrix of mass

M; mass of element i

Mefy,i effective mass of rope A in the i-direction

My hydrodynamic moment of convertor or platform about the i-axis
ﬁ coordinate

T; tension force of rope i

t time variable

Vv ocean current velocity

Wi weight of component i

WpE weight per unit length of HSPE

Xi, Vi, Zi displacements of component i

€ strain

P density of sea water

P angular displacement of convertor or platform about the j-axis
0; angles of rope i

0; elongation of rope i

Subscript:

0~4 mooring foundation, floating platform, convertor, and two pontoons, respectively
A,B,C,D Ropes A, B, C, and D, respectively

crit critical

in, ifp component «, 3 of ropei=A, B, C,and D

frac fracture

s, d static and dynamic, respectively

PE PE dyneema rope

P platform

T convertor
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Appendix A. Elements of the Mass Matrix M = [M; ;] .. .

The translational inertia coefficients of platform 1:

M, = (Ml +Meff,x), My;j=0,j#1  Myp= (Ml + Meff,y)/ My;=0,j#2

. 40AL 4 sin 0
Mas = (Ml + Meff/Z)' M3j=0,j#3;  Mefsr= %
4pAL 5 cos Oy
Mepry=—"2 "+ Meprz=0

The translational inertia coefficients of invertor 2:

M4, 4= M2, M4,j =0, j #4;
M5,5 = M2, M5,j =0, j # 5 M6,6 = M2, M6,j =0, j # 6;

The translational inertia coefficients of pontoon 3:

M7,7 = M3, M7,j =0, j #7; M8,8 = M3,M8,j =0, j #8;
M9,9 = M3, M9,j =0, j #9;

The translational inertia coefficients of pontoon 4:

M10,10 = M4, M10,j =0, j # 10;
M11,11 = M4, M11,j =0, j # 11; M12,12 = M4, M12,j =0, j # 12

The rotational inertia coefficients of invertor 2:

M13,13 = ITx, M13,j =0, j #13;  M14,14 = ITy, M14,j =0, j # 14;
M15,15 = ITz, M15,j =0, j # 15;

The rotational inertia coefficients of platform 1:

M16,16 = IPx, M16,j =0, j #16;  M17,17 = IPy, M17,j =0, j # 17;
M18,18 = Pz, M18,j =0, j # 18.

Appendix B. Elements of the Hydrodynamic Damping Matrix C = [C,-,j] 1818

The translational hydrodynamic damping coefficients of platform 1:
Cy1 = 5800(N-s/m), Cj13 = 3.065 x 10%(N-s), C,j=0,j#118

Cy1 = 1214(N-s/m), Cpo = 7684(N-s/m) Cp3 = 108.5(N-s/m),
Coj6 = 7.375 x 104(N-s),  Cpg =7.374 x 104(N-s) Cp; =0, j #1,2,3,16,18;

Cs3 =5756(N-s/m)  Cz16 = —3.1174 x 10*(N-s), Cs; =0, j # 3,16;
The translational hydrodynamic damping coefficients of invertor 2:
Cya = 1465 x 10°(N-s/m), Cy; =0, j #4;
Csq = 2.085 x 10°(N-s/m), Css =9.802 x 10°(N-s/m), Cse = 1.256 x 10°(N-s/m), Cs; =0, j #4,5,6;
Cop =7 % 10°(N-s/m), GCo; =0, j#6;

The rotational hydrodynamic damping coefficients of invertor 2:

0
C13,6 = —4.440 x 106(N-S) C13,13 = — a"?Tx = 13150(N—m—s), C13,]' = 0, ] 75 6, 13,‘
Pox

Ciga = 2837 x 10%(N-m-s), Ciyj =0, j # 14
C15,4 =7.453 x 106 (N—S), C15,15 = 2.804 x 107(N-m—s) C15’]- _ 0, ] 7& 4’ 15’

The rotational hydrodynamic damping coefficients of platform 1:

C16,3 = 8.671 x 104(N-S), Cl6,16 = 1076(N-m-s), C16,]' =0, ] 7%— 3,16;
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Cig1 = 8.654 x 10*(N-s) Cig1s = 5.951 x 10*(N-m-s), Cig; =0, j #1,18;
Other coefficients:
Cij=0i=7~1217j=1~18;

The above coefficients were presented by Lin et al. [8]. The hydrodynamic damping of
pontoons 3 and 4 was neglected. In this study, for dynamic stability, the hydrodynamic
heaving damping of pontoons 3 and 4 was considered as follows:

C3,3 =5756 or 1.15 x 106N —s/m, C4,4 =1.465 x 106 or 2.93 x 108N —s/m,
C7,7 =C10,10 = 300 or 6 x 104N —s/m

Appendix C. Elements of the Stiffness Matrix K = K; ;]
The translational stiffness coefficients of platform 1:

18x18

K1 L= — ch + TAs Ccos 9,43 + sin QASKAdxls _ TBS COs 935 —sin GBSKBd (Xzs — xls)
! La La Lg Lg
_ T 0 _
Kl,Z - _ (sin GASKAd& —sin eBSKBd (yZS yls) ) , K1,4 _ ( Bs COS UBs _ sin eBsKBd (XZS x15> >
La Lp Lp Lp
K1,5 = —sin QBSKBdi(yZS _ ]/15)/ K1,7 = ch,

Lp
Kj,18 = 6508.5N Klj =0, #+1,2,4,5,7,18;

TAS sin GAS + TBS sin 935
La Lp

2

X X1s — X
K21 = I(Adj COSGAS - KBdMCOSQBS -
La Ly

— - Tgs sin 6
Kop = (KAdyls cos 045 — Kgdw cos 935>, Koq = <1<delsx25 cos g + BssmBS),
A B

Lp Lp
_ Yi1s — Y25 o
K2,5 = KBdLi COos 935, K2,16 = 2072N,
B

K>3 = 2043.5N, Ky;j=0,j#1,24,5/16,18;
_ TAs TBS TCs _ TBs _ TCs _
K3,3 = < I + LB + I ’ K3,6 = LB ’ K3,9 = LC ’ K3,16 = —6547N

K3,]' = 0, ] 7é 3, 6, 9, 16,

The translational stiffness coefficients of invertor 2:

Tps cos 6 _ B
Kai = (BCLOSB + sin 05K d(szxﬂ> Ky — sin 0, KBdM,
B B B

—sin QBsKBd(xzsL_Bxls)) Kys5 = —sin GBsKBd(yzsL_Byls), K410 = —Kpy,

Ky5 =15 % 10°N K4,]- =0,j#1,2,4,5,10,15;
K51 = (KgdxlsLszs Ccos 93>, Ks, = (KdelsLB]/Zs Ccos 93), K54 = — (KdelsLszs Ccos 93),

Ks5 = — (Kgdy“LyZS cos 93), Ks 13 = 2.349 x 10°N
B

Ks15 = 5.850 x 10°N  Ks; =0, j # 1,2,4,5,13,15;
T Tgs T T
Koz = _Lij;’ Ko = (LBBS + ;;), Ke12 = —%,
Ke13 = —5.880 x 10°N  Kg; =0, j #3,6,12,13;
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The translational stiffness coefficients of pontoon 3:
K71 = —Kca, K77 = (Kca+ Apapg), K7;=0,j#1,7
Tcs —Tcs :
Kgg = , Kgr= , Kgi=0, 2,8;
88 = o 82= T 8 j#
—Tcs Tcs :
Kos = , Kogg=—", Kg;=0, 3,9
93 I 99 = To 9,/ j#
The translational stiffness coefficients of pontoon 4:
K104 = —Kpy, Kion0 = ( Kpa + Ap1eg), Ki0j =0, j #4,10;
—Tp Tp .
K5 = >, Kpn=-, Kuj=0,j#511;
Lp Lp
-T T .
Kig = —2, K==, Kij=0,j#6,12;
Lp Lp
The rotational stiffness coefficients of invertor 2:
—TgsR TgsR d
Kizp = —22TBY 0 Kype = “PTBY 0 Kyp gy = <TBS cos OpsRrpx — me>,
Lp Lp d¢2x
d
T _ 4866 x 109(N-m), Kiz; =0, j #3,6,13;
aq’Zx
TpsR —TpsR
Ky = 7DSL Y Kygpp = 71); DY Kigqs = —9.537 x 10°(N-m)
D D

Kig1a = TpsRrpy, Ki4j =0, j #6,12,13,14

—TpsRrp; cosbp TpsRrp; cos Op

K15,1 = L—, K15,4 = I , K15,13 = —5.022 x 104(N—m)
B B

amTz amTZ
Kis,15 = TpsR1p, cos O0p —

= 8.472 x 10°(N-m), Ki5; =0, j#1,4,13,15;

a(PZZ ’ a(PZZ
The rotational stiffness coefficients of platform 1:
TgsR TssR —TgsR 0
Kie3 = BSL PBx ASL PAx, Kie6 = %, Ki16,16 = Tas €080 45sRpay + Tps cos OpsRppy — ampx’
B A B P1x
ampx o 5 o . .
—1.038 x 10°(N-m), Kys; =0, j #3,6,16;
a(Plx
TasRpay = TcsRpc —TcsRpc
Kizs = SL Y + SL Y, Kizg= # Ki717 = Tas cos 0 4sRpay + TesRpey
A C C
K17,]‘ = 0, ] 75 3, 9, 17,‘
_ TascospsRpa,  TpscosbpsRpp, _ —TcsRpe; _ TpscosOpsRpp;
Kig1 = T T , Kigp = 1. Kigs = e —
A B c B
TcsRpp omp
Kigs = SLiczr Kig,18 = Tasc0s 0 a5Rpa; + Tps cos OpsRpp; + TesRpe, — a(Plzf
zZ

asz
091,

=1.010 x 10°(N-m), Kiz; =0, j #1,2,4,5,18
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