

Applications for a Swivel-based Mooring System that Improves System Reliability for Marine Energy Devices

Caroline Lowcher¹, Michael Smith², Patterson Taylor¹, Devin Hill², Justin Logan², Ulises Guillen²

¹Coastal Studies Institute, East Carolina University, Wanchese, North Carolina, USA

²University of North Carolina at Charlotte, Charlotte, North Carolina, USA

A slip ring-swivel system that addresses axial loading on and rotation of electric/power cables and fluid hoses and has broad applications to marine energy devices.

INTRODUCTION

Motivation:

- Ocean testing trials have demonstrated challenges with damage to ME cables (Fig. 1) which can cause the ME device to fail.
- Two major modes of failure are high axial loads from varying sea states and line twisting due to the ME device motion.

Fig. 1: Damaged wave energy converter (WEC) cable from twisting of the mooring line.

Conceptual Design & Prototype:

- We are developing a slip ring-swivel system which passes fluid filled hoses and power/communication cables (Fig. 2).
- Three major elements of the slip ring-swivel system are the slip ring (rotational motion - electrical), rotary union (rotational motion - fluid), and spring/damper (axial loading).

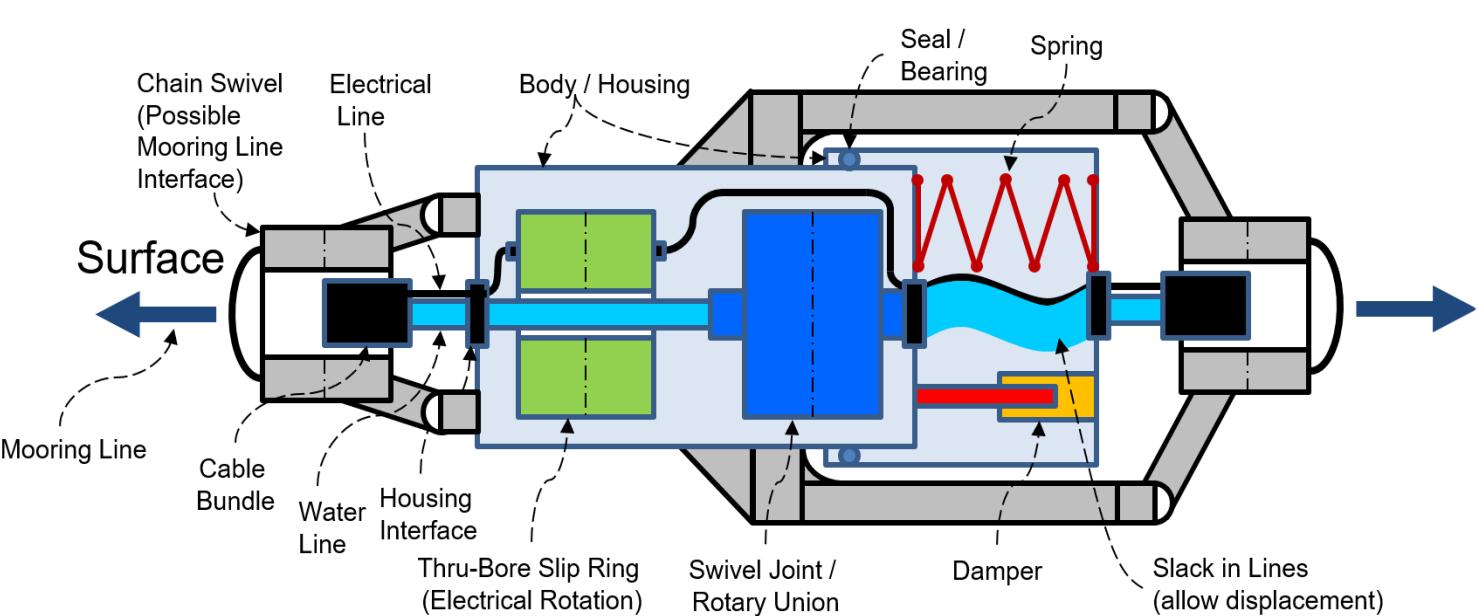


Fig. 2: Slip ring-swivel system preliminary design.

NC's MARINE ENERGY RESOURCE

Wave Energy Resource:

- Wave periods are generally between 4-10 s, while significant wave heights are largely 0-2 m (Fig. 3).
- NC's wave energy resource has led to developing the Jennette's Pier Wave Energy Test Center for ocean testing.

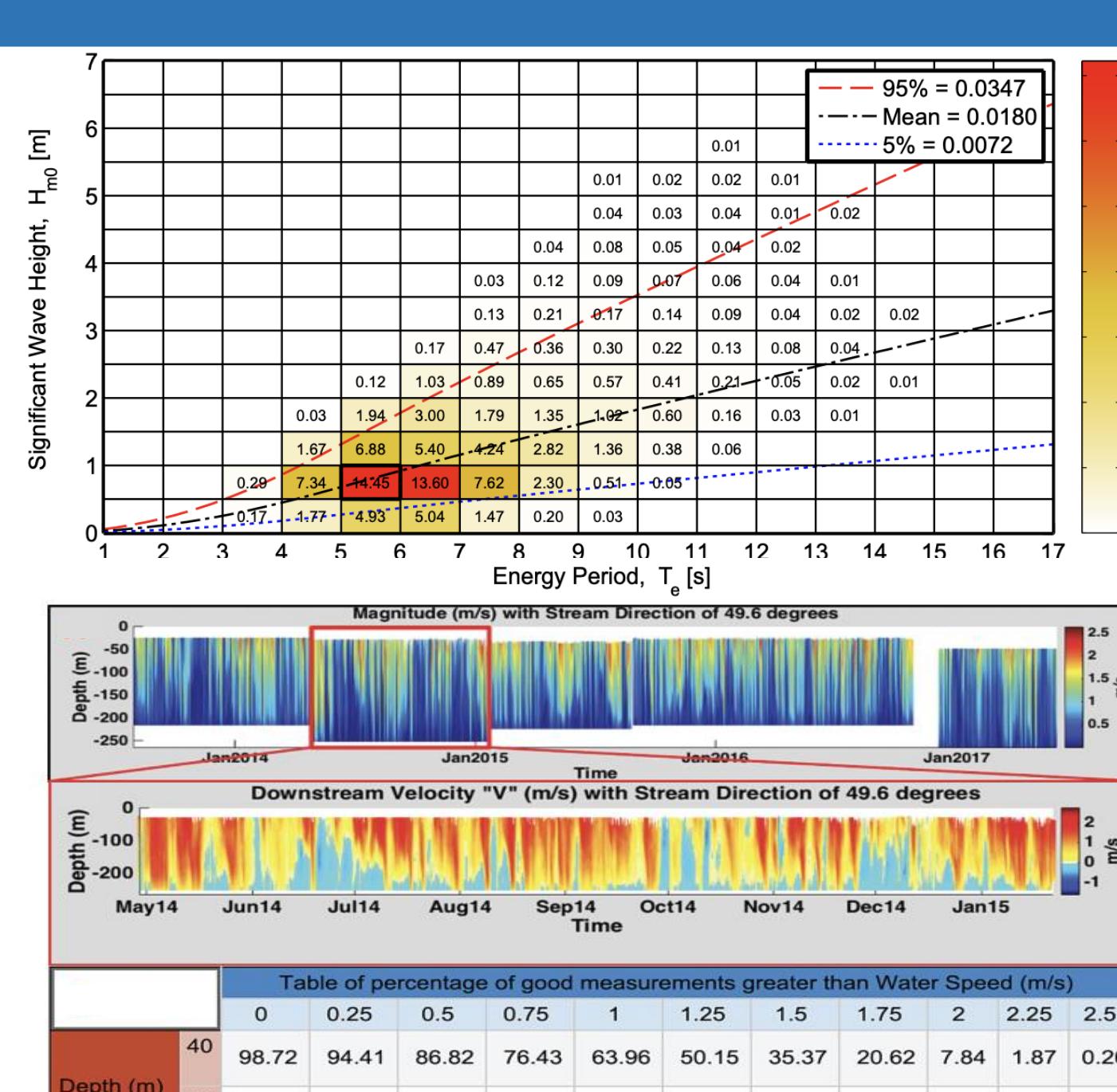


Fig. 3: Joint probability distribution of sea state at Jennette's Pier based on NREL's wave hindcast. Figure is from [1].

Current Energy Resource:

- NC's proximity to the Gulf Stream results in flows that reach 2.5 m/s (Fig. 4).
- These high speeds extend down hundreds of meters, but the lateral position of the Gulf Stream varies in time.

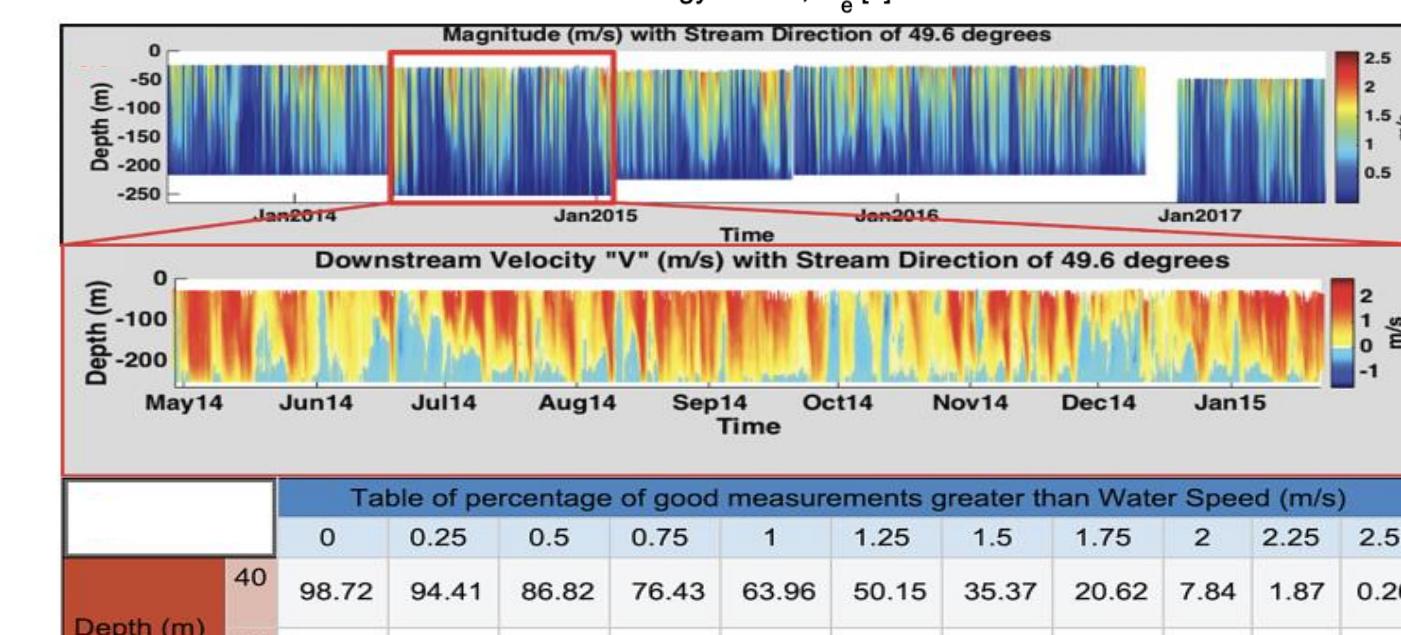
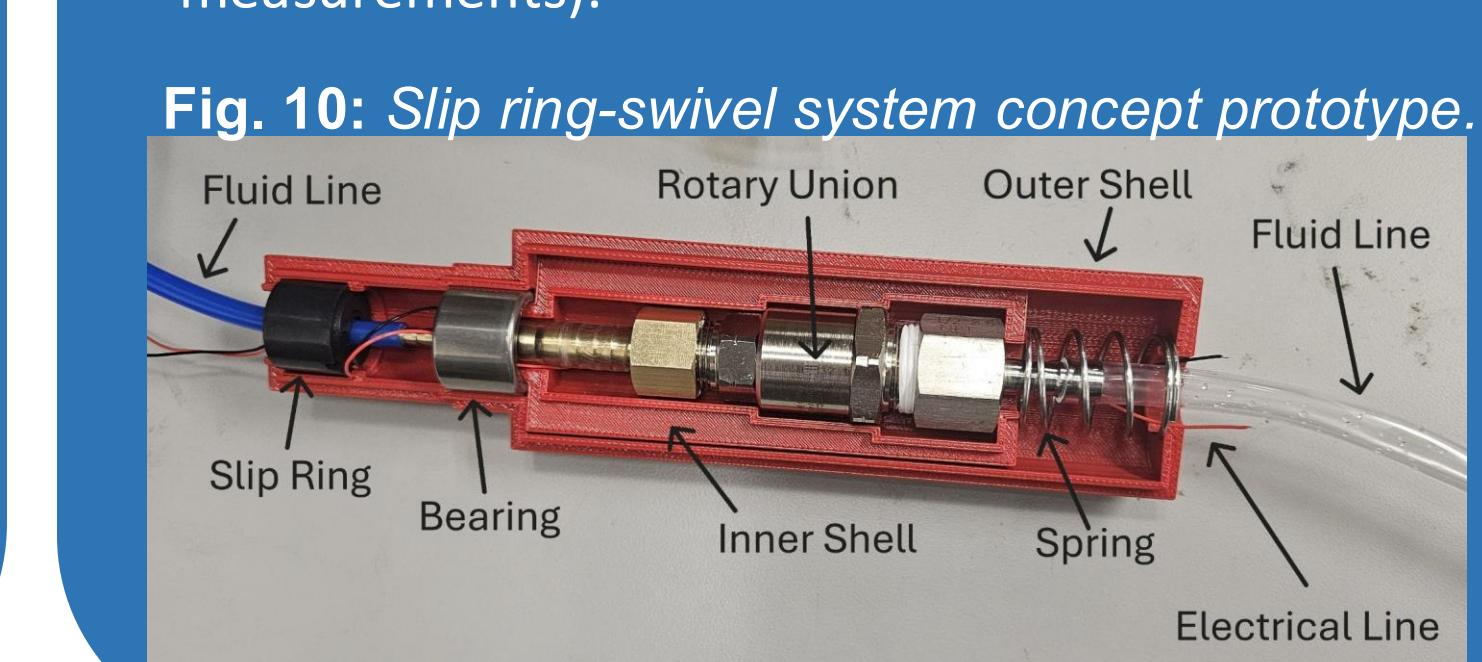


Fig. 4: In-situ measurements of ocean velocity with percent occurrence of speed bins. Figure is from [2].

TECHNICAL CHALLENGES

- Marine environments are dynamic and corrosive making ocean technology survivability a challenge.
- Cyclical loading causes fatigue while storms can produce inhospitable sea states. The slip ring-swivel system must operate or withstand limit states associated with such phenomena.
- Seawater corrosion can cause technology failures and impact its integrity over time. Additionally, material selection must not incur galvanic corrosion.
- Biofouling can grow on ocean technologies which can render functionality and performance.


FAILURE MODE AND EFFECTS ANALYSIS

Item/Function	Potential Failure Mode	Potential Effects of Failure	Severity (1-10)	Potential Causes	Occurrence (1-10)	Current Controls	Detection (1-10)	RPN (SxD)	Recommended Actions	Severity	Occurrence	Detection
Rotary Union	Leaking water	Water contacting electrical components, corrod ing and shorting connection and housing.	3	Seal wear, improper assembly	3	Visual inspection, pressure test, high quality hardware	3	27	Create routine testing schedule, add pressure sensor	1	Any faults should appear obvious in routine testing.	
Slip Ring	Short-circuit	Failure to transmit power, shorting to enclosure and could introduce electrical shock to WEC	4	Worn brushes, improper assembly	3	Visual inspection of brushes, using multimeter to check for continuity across device	2	24	Create routine testing schedule, Add insulation around electrical device from enclosure	2	Fault in component could result in permanent damage to component.	
Internal fluid hoses	Leaking water	Water contacting electrical components, corrod ing and shorting connection and housing.	3	Improper assembly, damage to line, in-line manufacturer defects	1	Visual inspection of connections that should obviously reveal faults.	1	3	Create routine testing schedule	3	Component is from a reputable source, and made from quality materials. Faults may not occur under expected conditions.	
NPT Bushings - Rotary Union	Leaking water	Water contacting electrical components, corrod ing and shorting connection and housing.	3	Manufacturer defects, improper installation, not tight enough, insufficient thread sealant	3	Inspection while transmitting fluid should reveal any defects.	1	9	Create routine testing schedule, research marine grade thread sealing methods	2	Fault in component could result in permanent damage to component.	
Sealing interface between individual enclosure pieces	Leaking salt water into enclosure	Corrosive salt water could damage polymeric hoses and wire shielding, causing shorting to enclosure and electrical shorts from salt ring if it is not water resistant. Defects could also introduce aquatic life and other biofouling into enclosure if leakage occurs.	4	Improper installation, improper sealant, medium for conditions	1	Seal should be replaced after any disassembly	5	20	Create routine testing schedule, research gasket material	3	Component is from a reputable source, and made from quality materials. Individual component is not known.	
Enclosure corrosion	Leaking salt water into enclosure or enclosure breaking away from securing fixtures	Corrosive salt water could damage polymeric hoses and wire shielding, causing shorting to enclosure and electrical shorts from salt ring if it is not water resistant. Defects could also introduce aquatic life and other biofouling into enclosure if leakage occurs.	4	Insufficient enclosure material corrosion resistance	3	Visual inspection of enclosure for signs of corrosion from salt water. Visual inspection of enclosure, depending on the rate at which corrosion occurs, could indicate if material corrodes. Defects could also have to be determined from visual inspection alone - destructive testing may be required.	4	48	Create routine testing/inspection schedule	4	Fault in component could result in permanent damage to all components and enclosure.	
										5	Quality of source and component is not known.	
											Component should require extensive routine testing, testing may be difficult to detect.	

NEXT STEPS

- Develop functional prototype that demonstrates axial loading and rotation.
- Conduct dry testing of functional prototype.
- Integrate a sensor package for health monitoring (e.g., axial loading, rotation, and flow rate measurements).

Acknowledgements: This study was supported by the NC Renewable Ocean Energy Program and the UNC Charlotte Office of Undergraduate Research (OUR).

References: [1] Dallman, Ann, and Neary, Vincent. 2015. "Characterization of U.S. Wave Energy Converter (WEC) test sites: a catalogue of met-ocean data (Second edition)". United States. <https://doi.org/10.2172/1963664>. [2] Muglia M, Seim H, Taylor P. Gulf Stream Marine Hydrokinetic Energy Off Cape Hatteras, North Carolina. Marine Technology Society Journal. 2020 November 01; 54(6):24-36. DOI: 10.4031/MTSJ.54.6.4. [3] <https://oceanobservatories.org/pioneer-array-relocation/>. [4] <https://www.boem.gov/renewable-energy/state-activities/north-carolina-activities>. [5] <https://www.hotels-insolites.com/en/frying-pan-tower.hotel>.

