

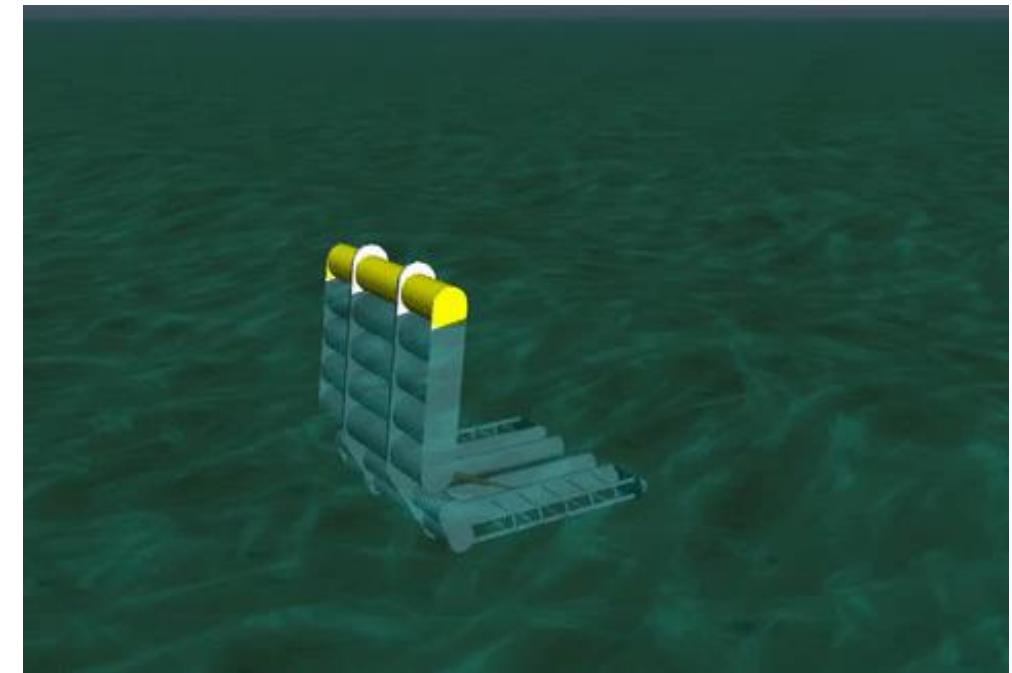
WEC modeling in irregular waves using Sparse Identification of Nonlinear Dynamics (SINDy)

Brittany Lydon, Brian Polagye, and Steve Brunton
University of Washington
Seattle, WA, USA

Oscillating Surge Wave Energy Converter (OSWEC)

Modeling challenges:

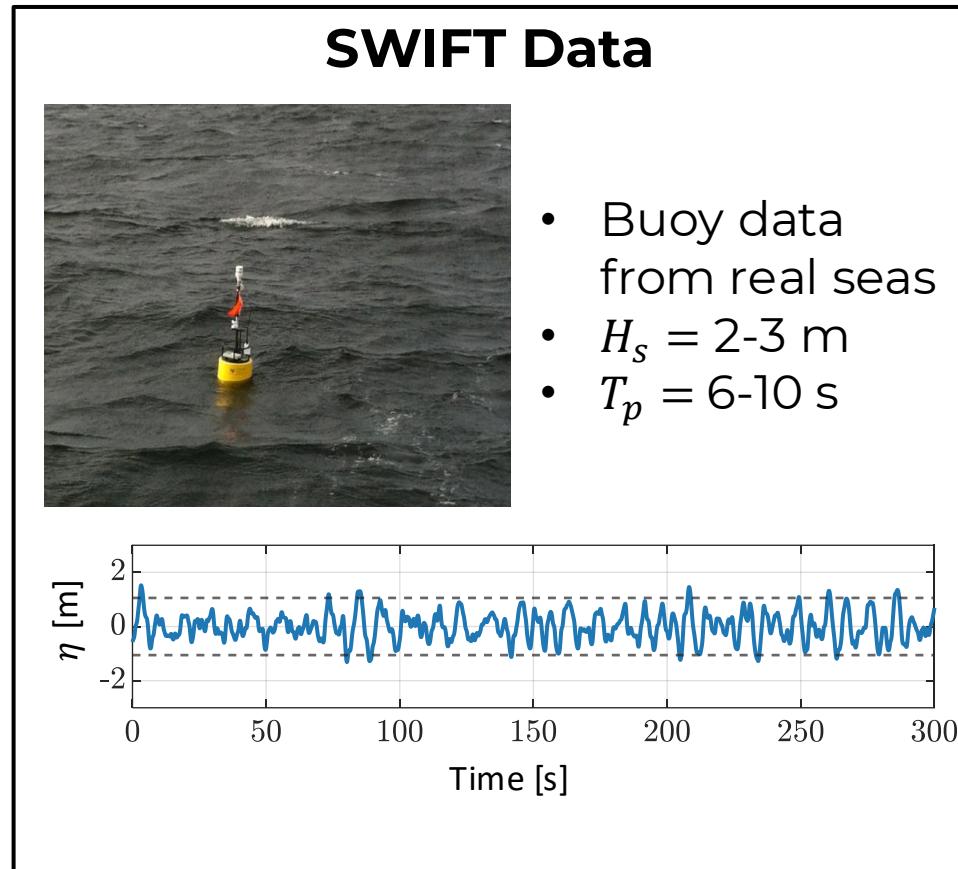
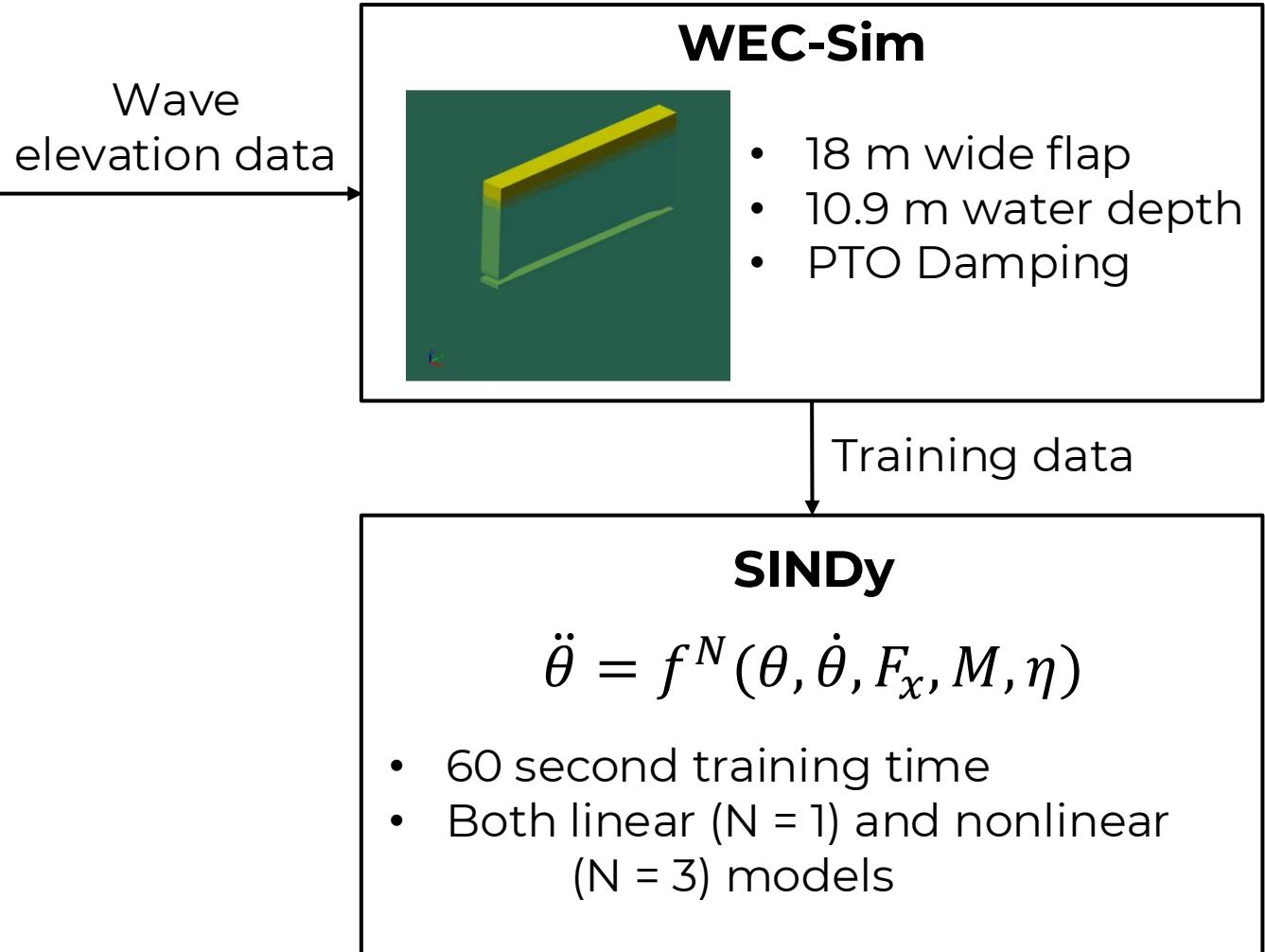
- OSWEC behavior in irregular waves is high-dimensional and complex
 - Changing sea states
 - Non-periodic
 - Stochastic
- Time-domain models have limitations
 - Requires significant computation time
 - Requires knowledge of wave field



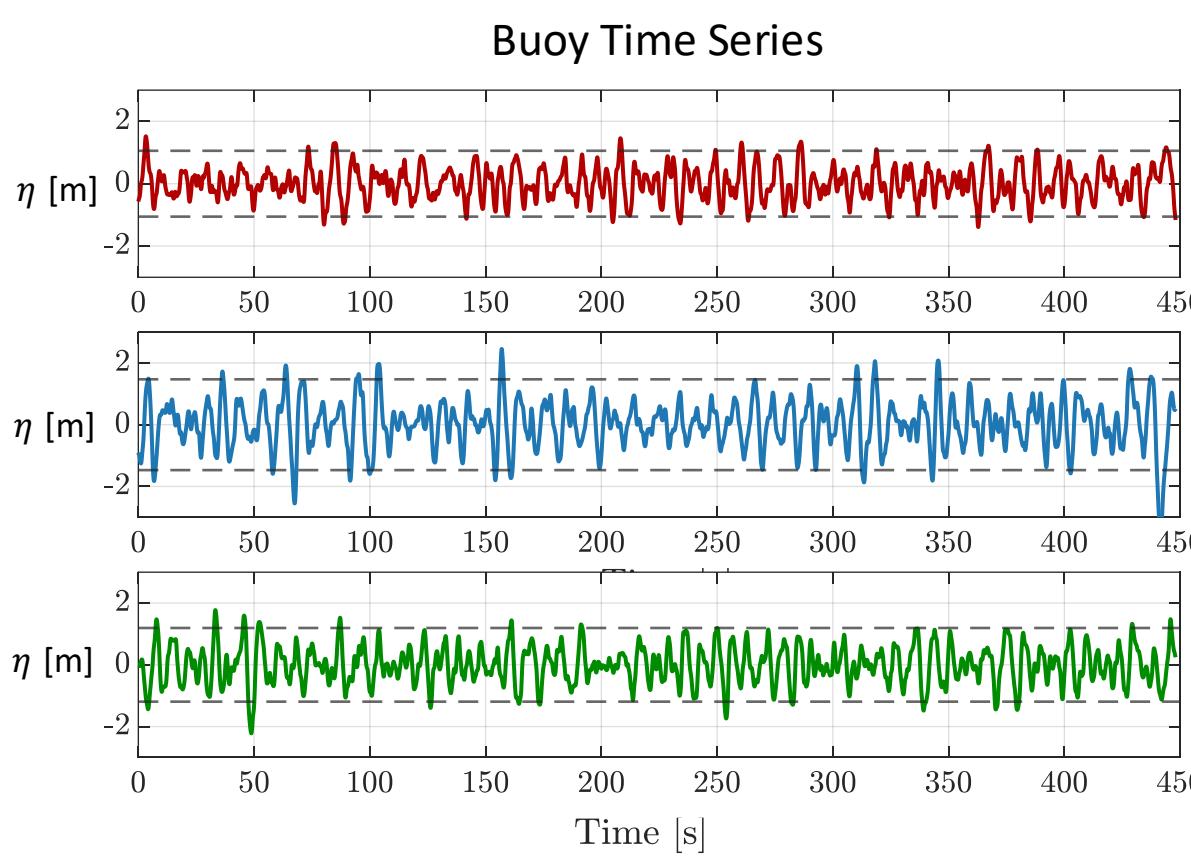
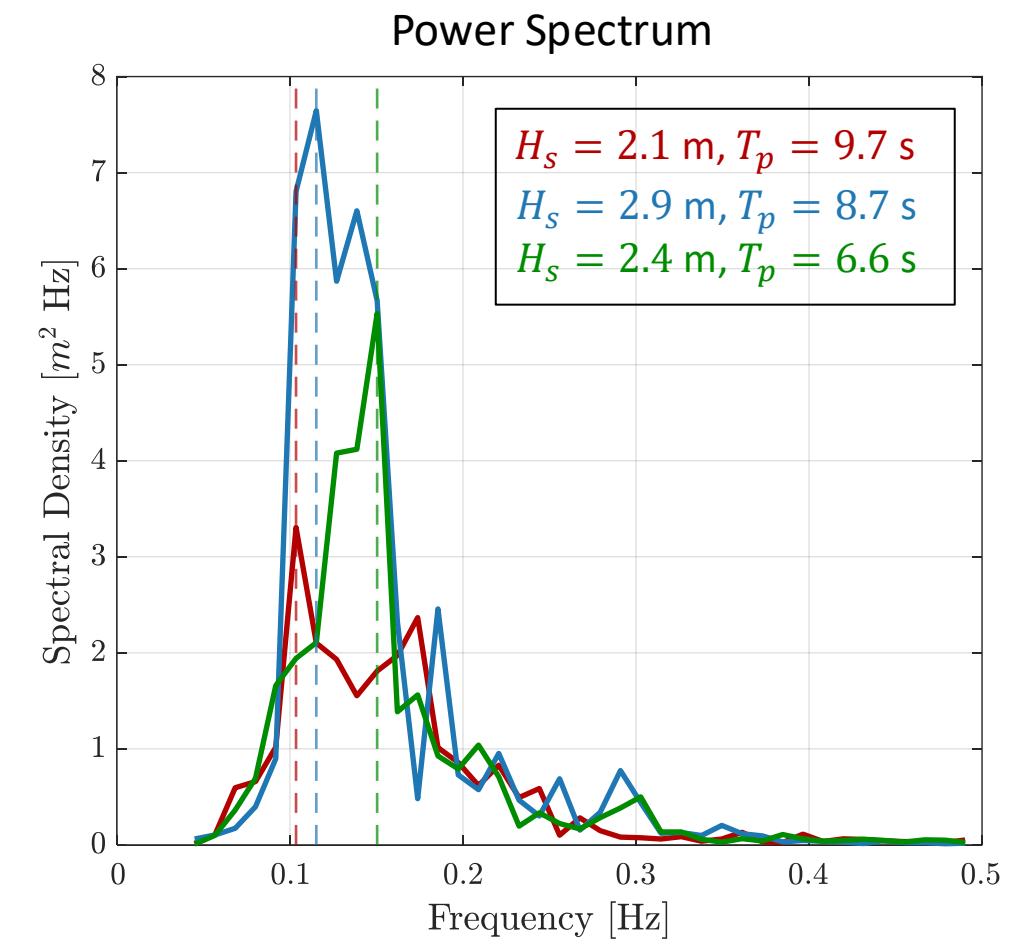
Maine Marine Composites, 2014

Goal: Use **data-driven methods** to build **generalizable** models for OSWEC behavior in **irregular** seas in the **time domain**

Methods: Workflow

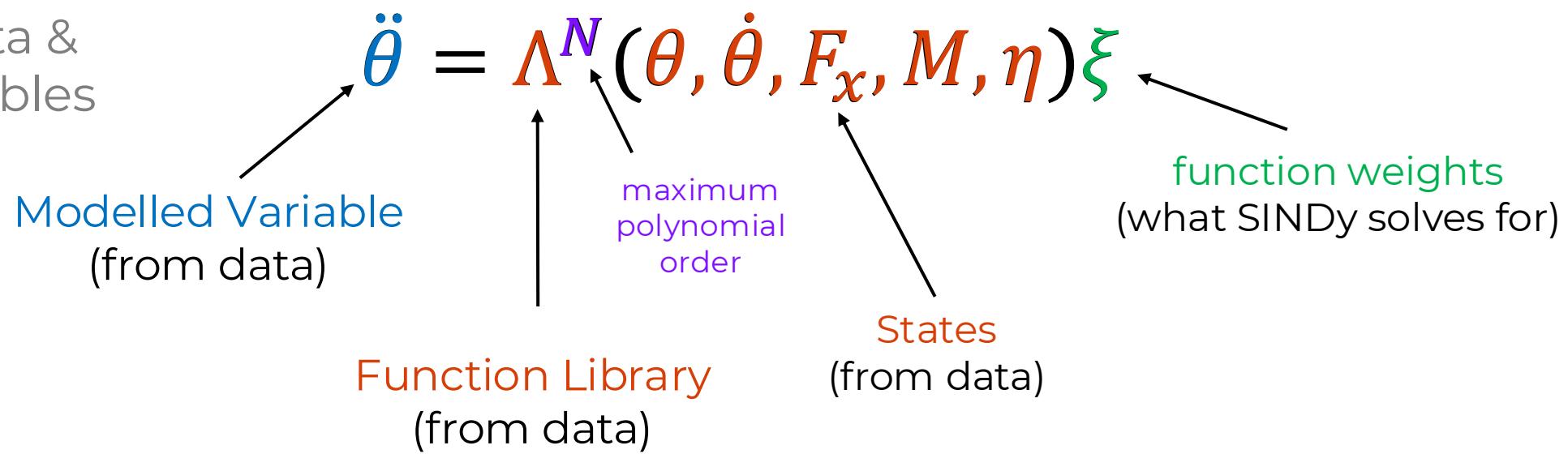


Methods: SWIFT Data



Methods: SINDy workflow

Step 1: Collect data & choose state variables

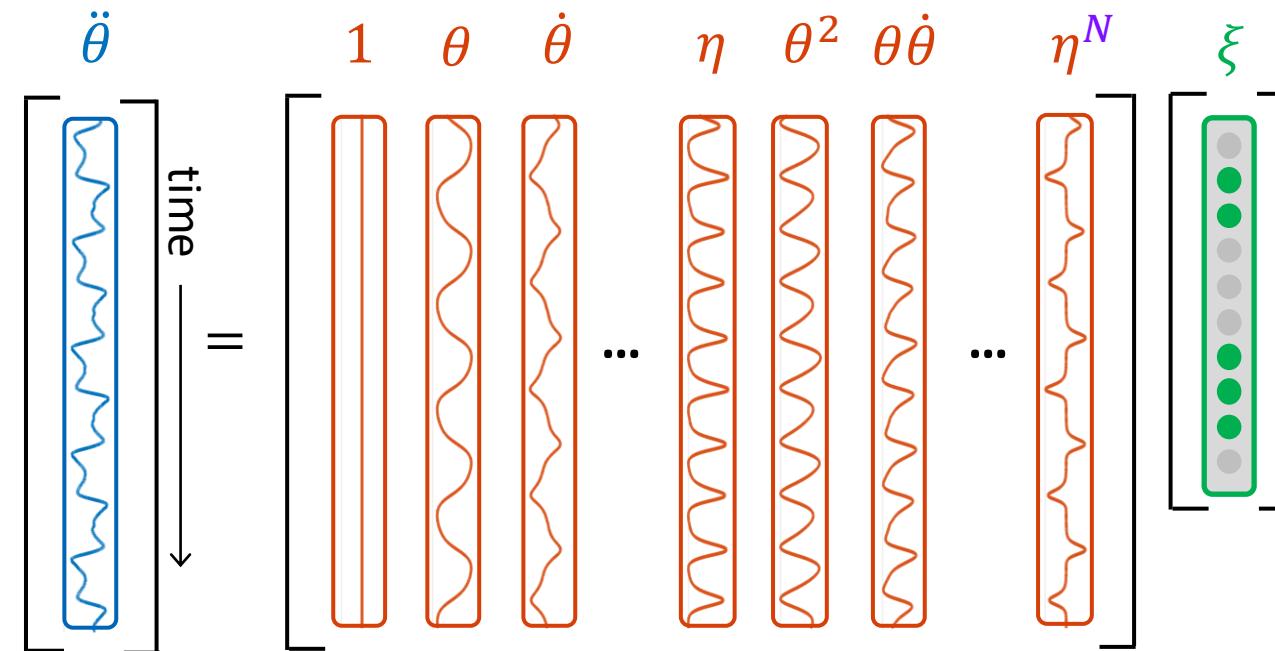


Methods: SINDy workflow

Step 1: Collect data & choose state variables

$$\ddot{\theta} = \Lambda^N(\theta, \dot{\theta}, F_x, M, \eta) \xi$$

Step 2: Build matrix equation



Step 3: Choose parameters, solve for ξ

$$\min_{\xi} \left[\|\ddot{\theta} - \Lambda \xi\|_2 + \lambda \|\xi\|_1 \right]$$

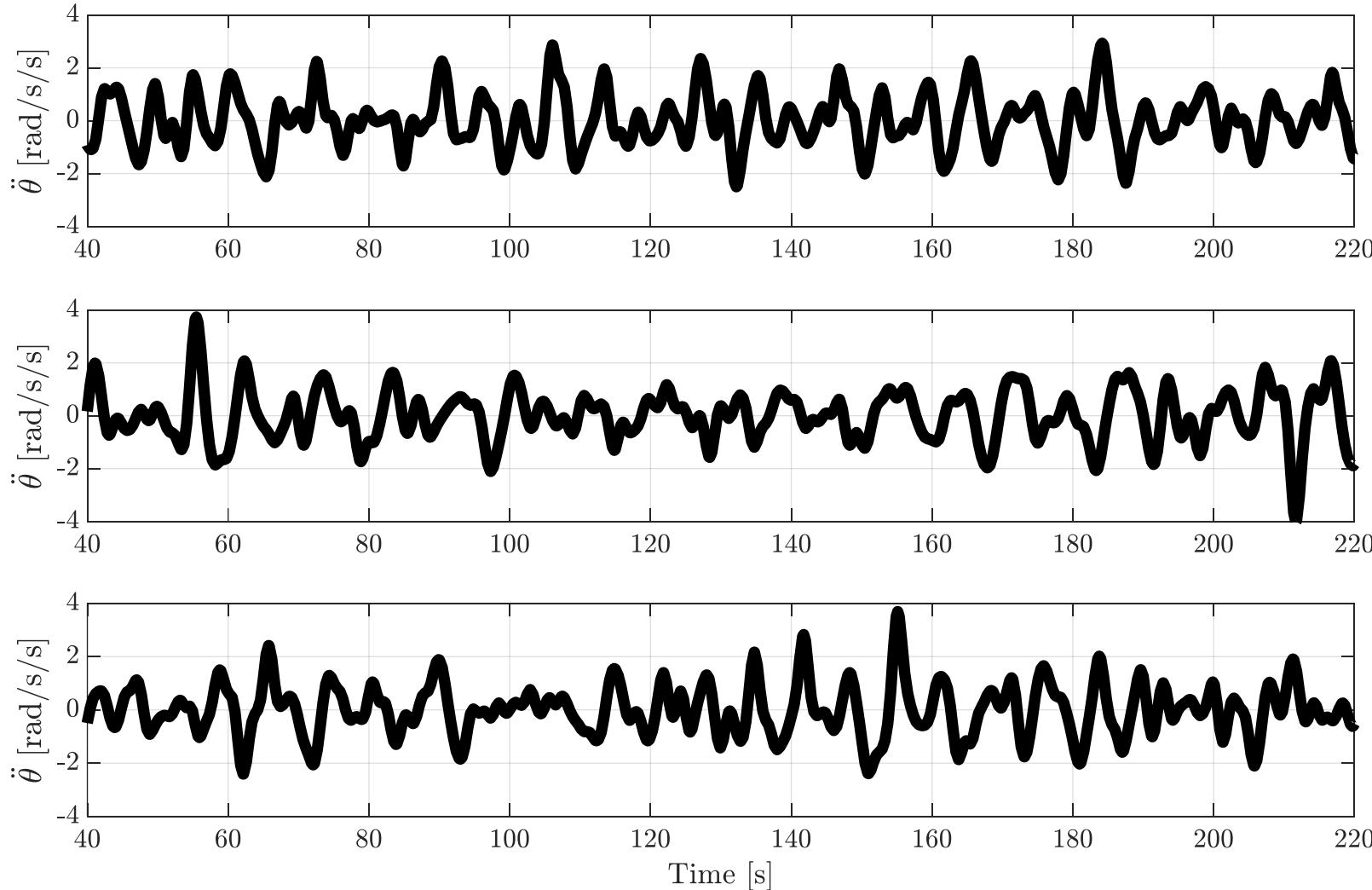
$$H_s = 2.1 \text{ m}, T_p = 9.7 \text{ s}$$

$$H_s = 2.9 \text{ m}, T_p = 8.7 \text{ s}$$

$$H_s = 2.4 \text{ m}, T_p = 6.6 \text{ s}$$

Results: SINDy Model

WEC-Sim

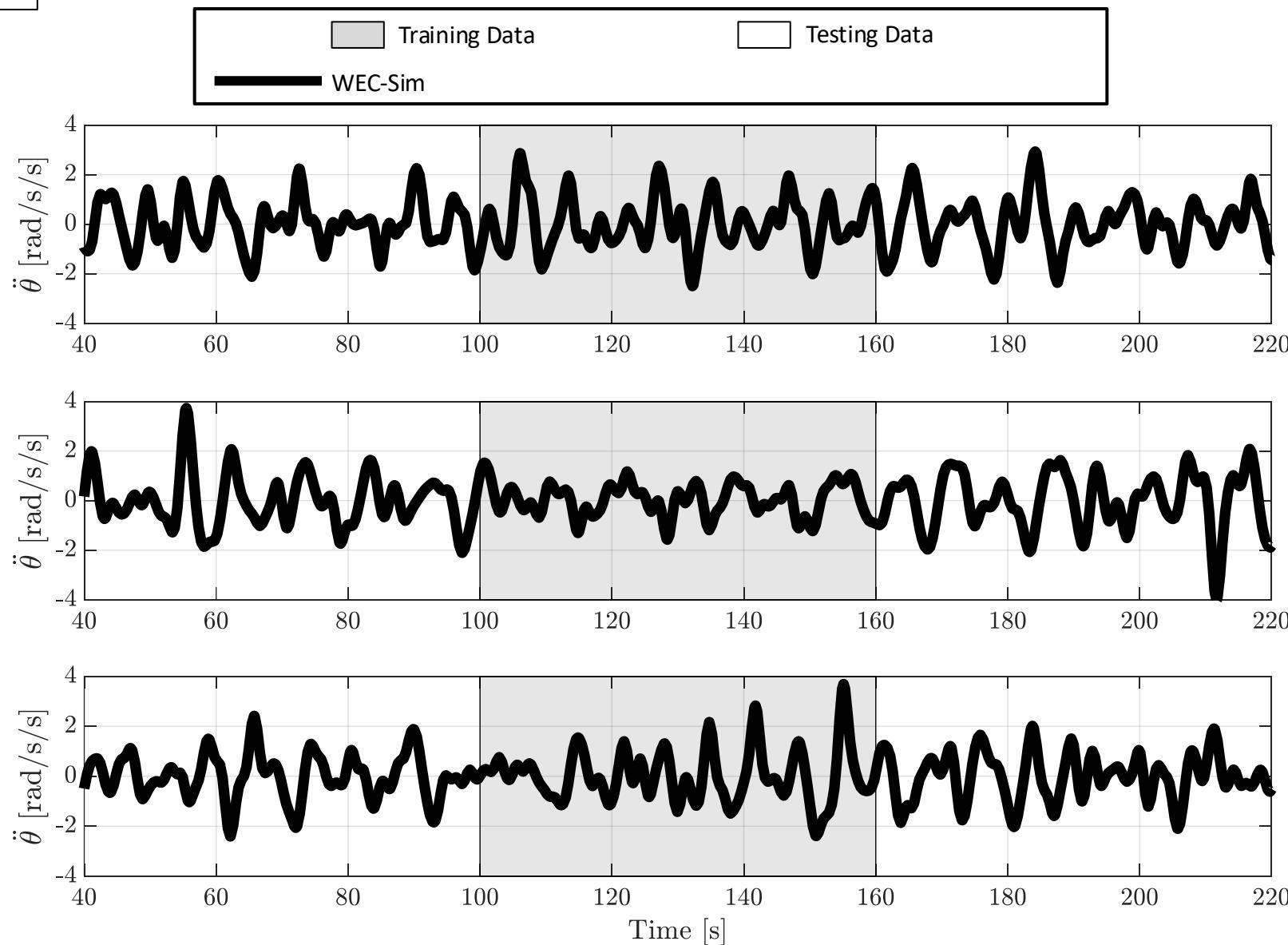


$$H_s = 2.1 \text{ m}, T_p = 9.7 \text{ s}$$

$$H_s = 2.9 \text{ m}, T_p = 8.7 \text{ s}$$

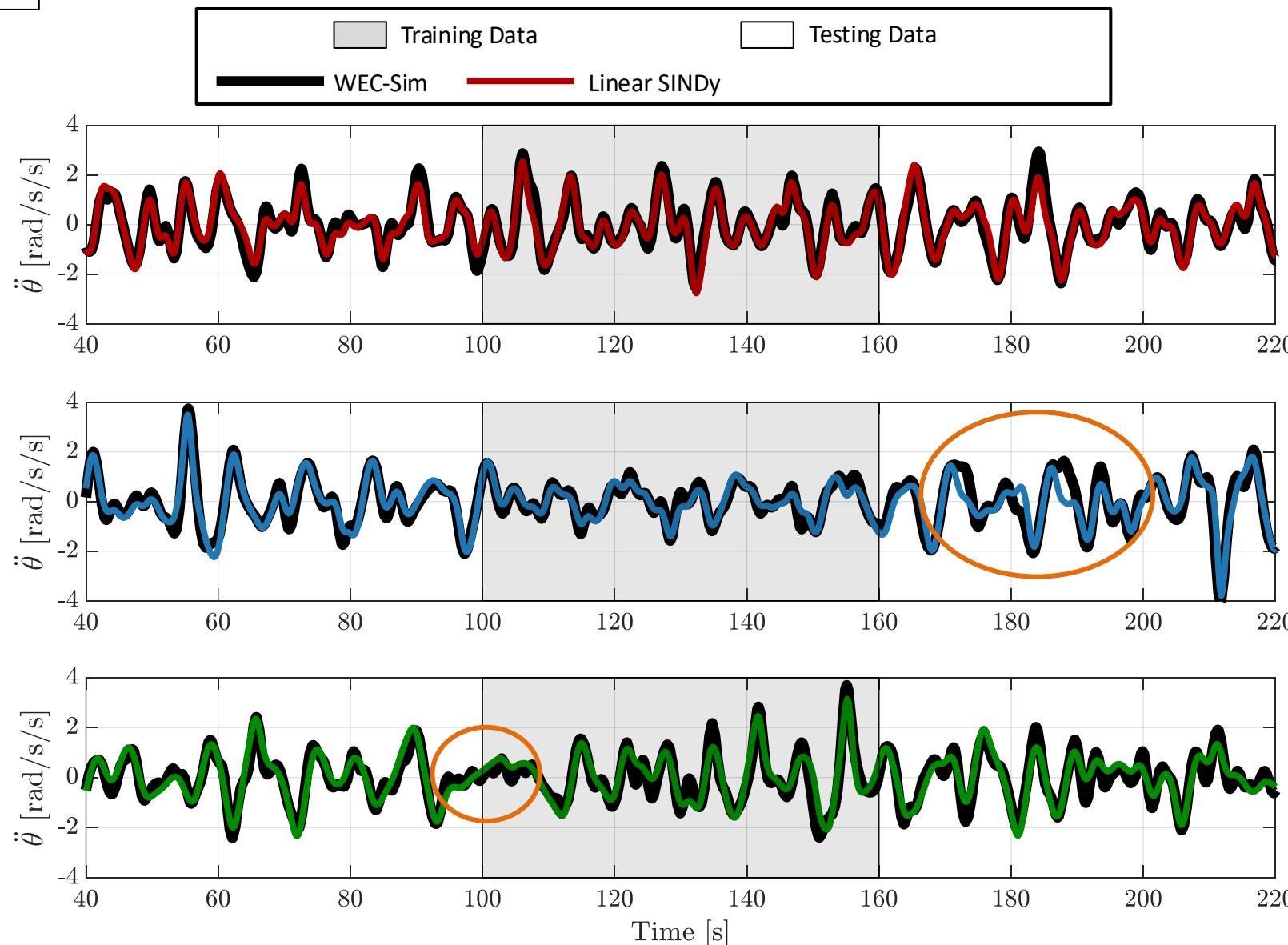
$$H_s = 2.4 \text{ m}, T_p = 6.6 \text{ s}$$

Results: SINDy Model



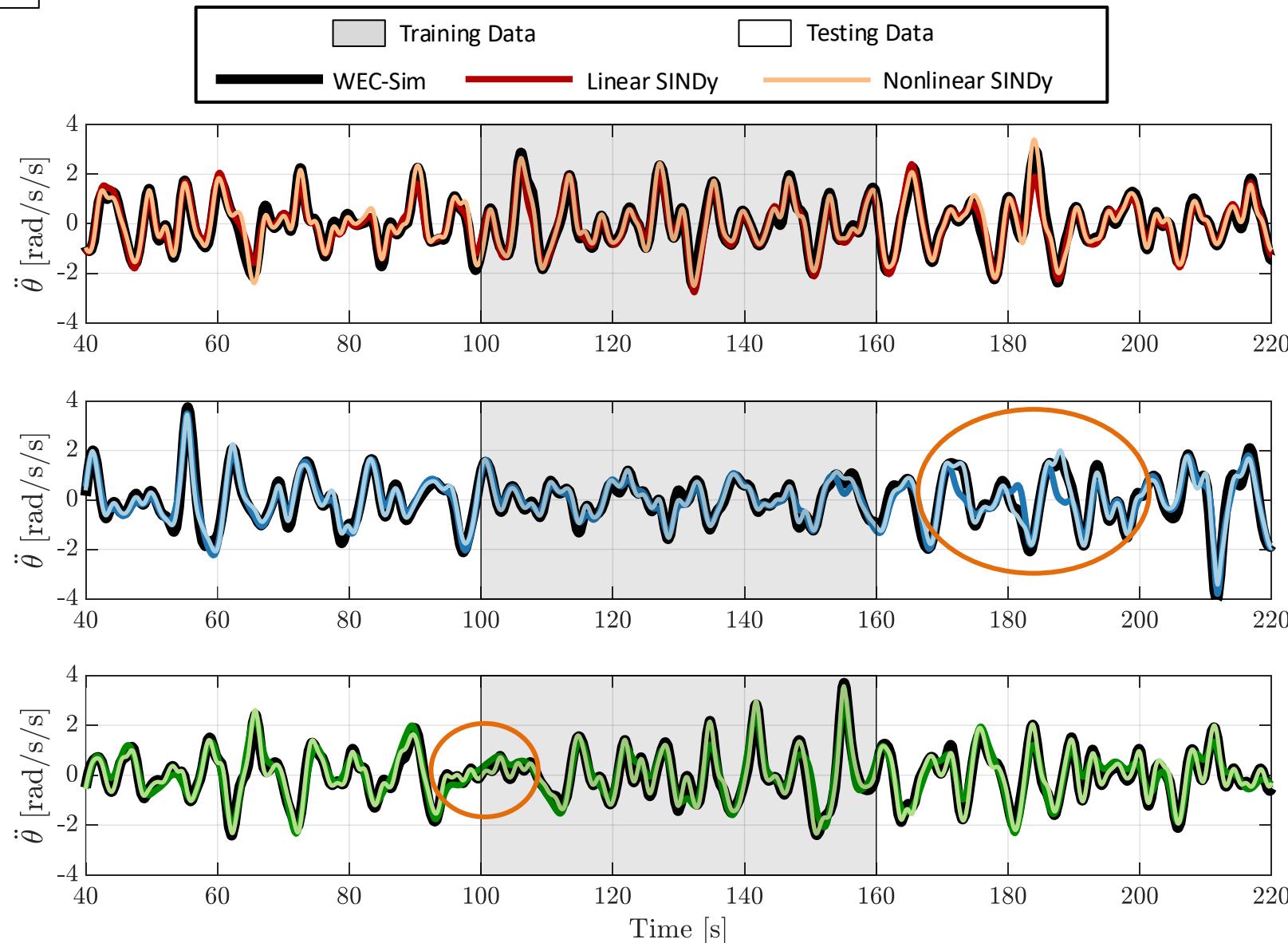
$H_s = 2.1 \text{ m}, T_p = 9.7 \text{ s}$
 $H_s = 2.9 \text{ m}, T_p = 8.7 \text{ s}$
 $H_s = 2.4 \text{ m}, T_p = 6.6 \text{ s}$

Results: SINDy Model



$H_s = 2.1 \text{ m}, T_p = 9.7 \text{ s}$
 $H_s = 2.9 \text{ m}, T_p = 8.7 \text{ s}$
 $H_s = 2.4 \text{ m}, T_p = 6.6 \text{ s}$

Results: SINDy Model



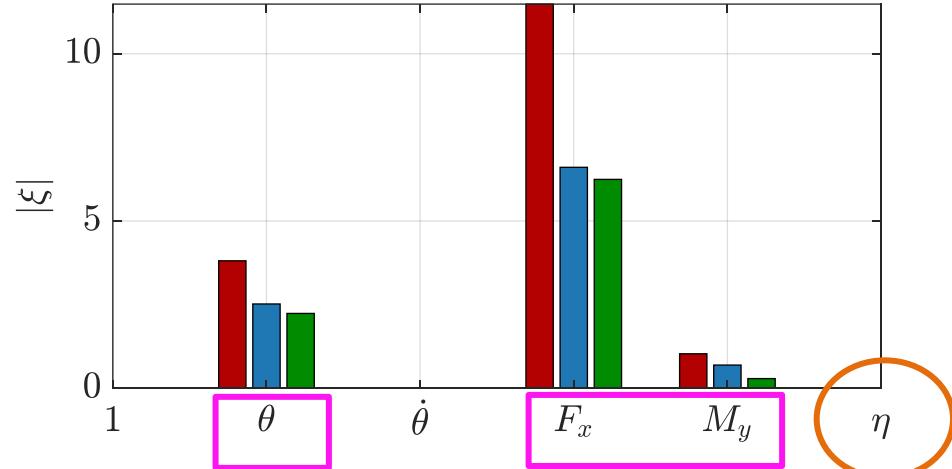
$H_s = 2.1 \text{ m}, T_p = 9.7 \text{ s}$
 $H_s = 2.9 \text{ m}, T_p = 8.7 \text{ s}$
 $H_s = 2.4 \text{ m}, T_p = 6.6 \text{ s}$

Results: SINDy Model

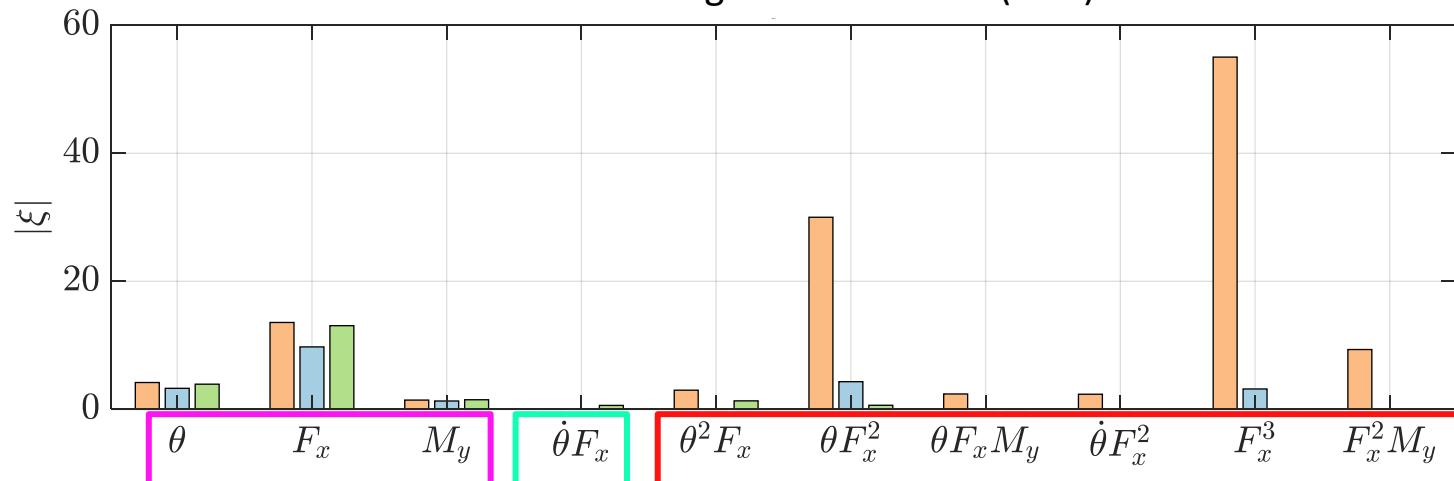
$$\ddot{\theta}_{SINDy} = \Lambda^N(\theta, \dot{\theta}, F_x, M, \eta) \xi$$

$$\varepsilon = \frac{\|\ddot{\theta} - \ddot{\theta}_{SINDy}\|_2}{\|\ddot{\theta}\|_2} \Big|_{30 \text{ s}}$$

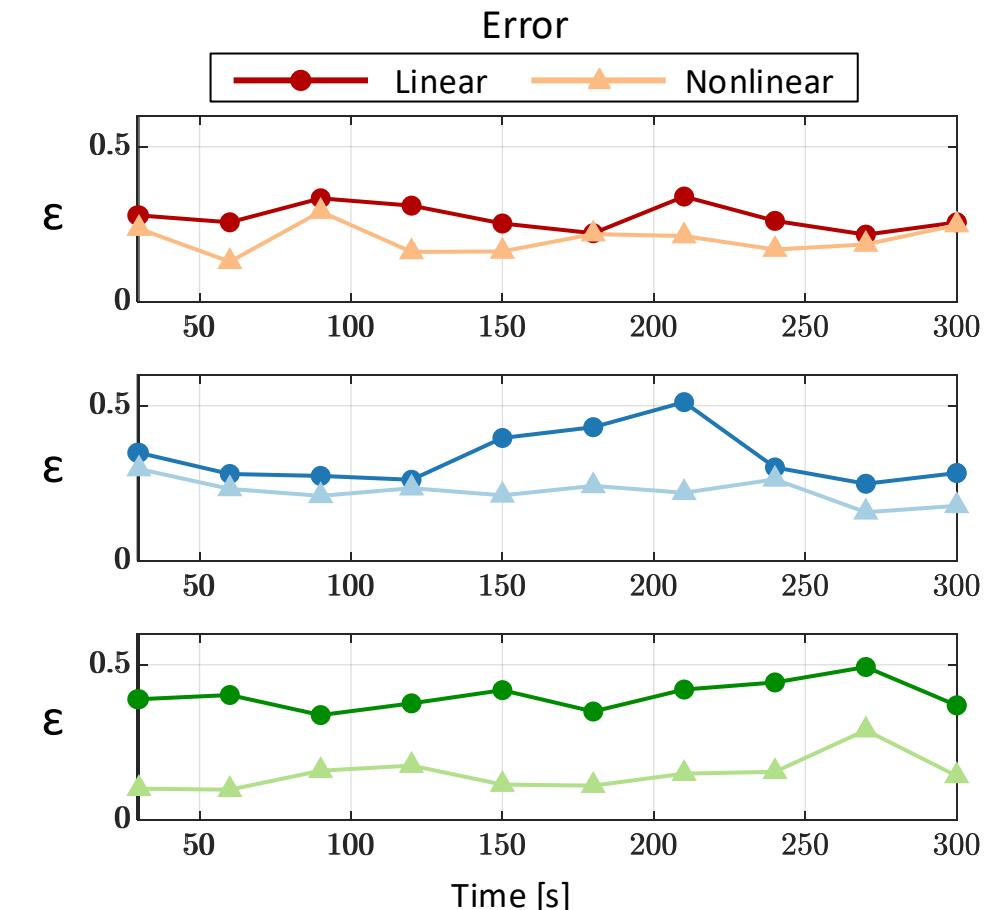
Function Weights – Linear (N=1)



Function Weights – Nonlinear (N=3)

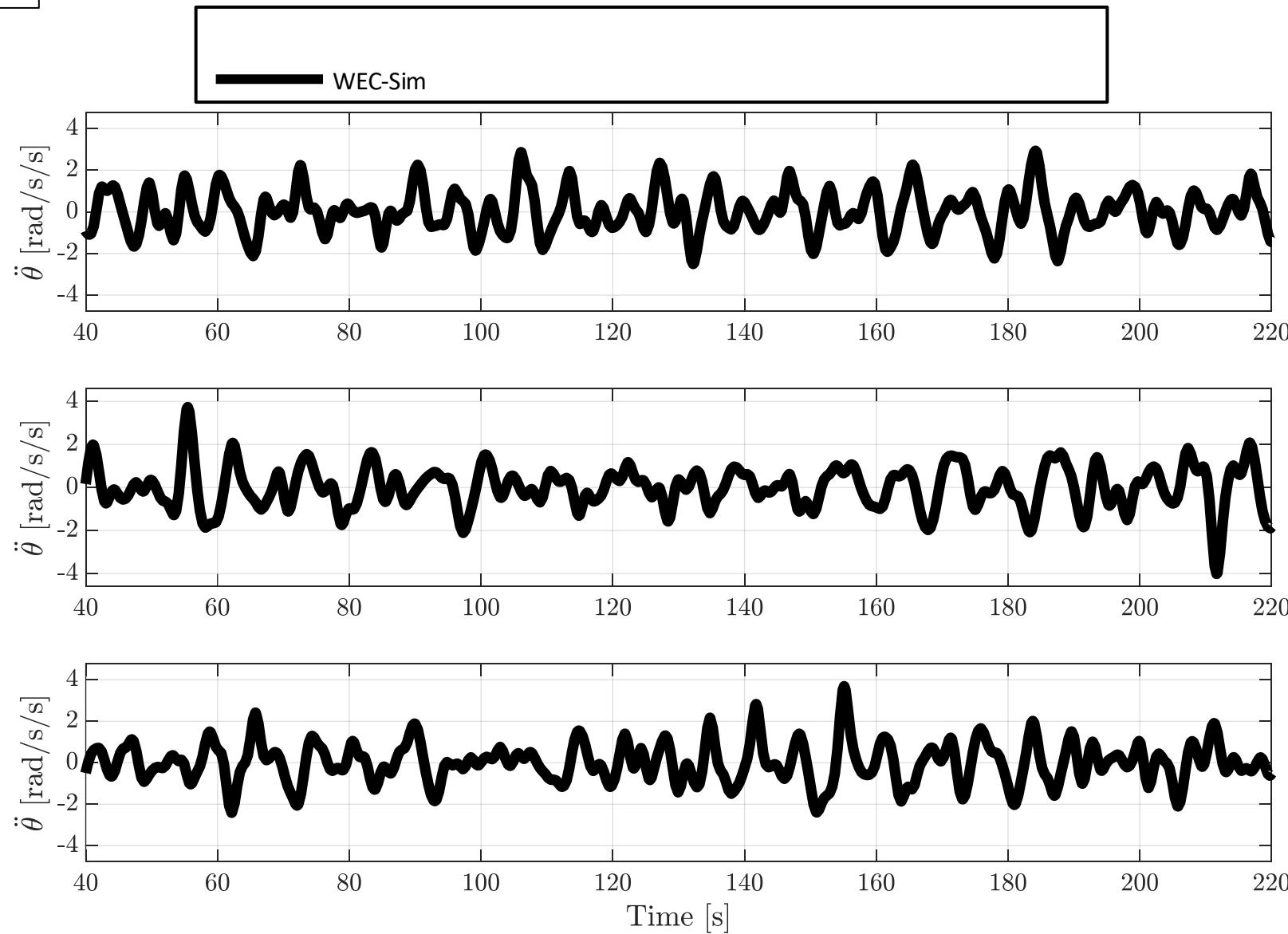


Error



$H_s = 2.1 \text{ m}, T_p = 9.7 \text{ s}$
 $H_s = 2.9 \text{ m}, T_p = 8.7 \text{ s}$
 $H_s = 2.4 \text{ m}, T_p = 6.6 \text{ s}$

Results: Generalization

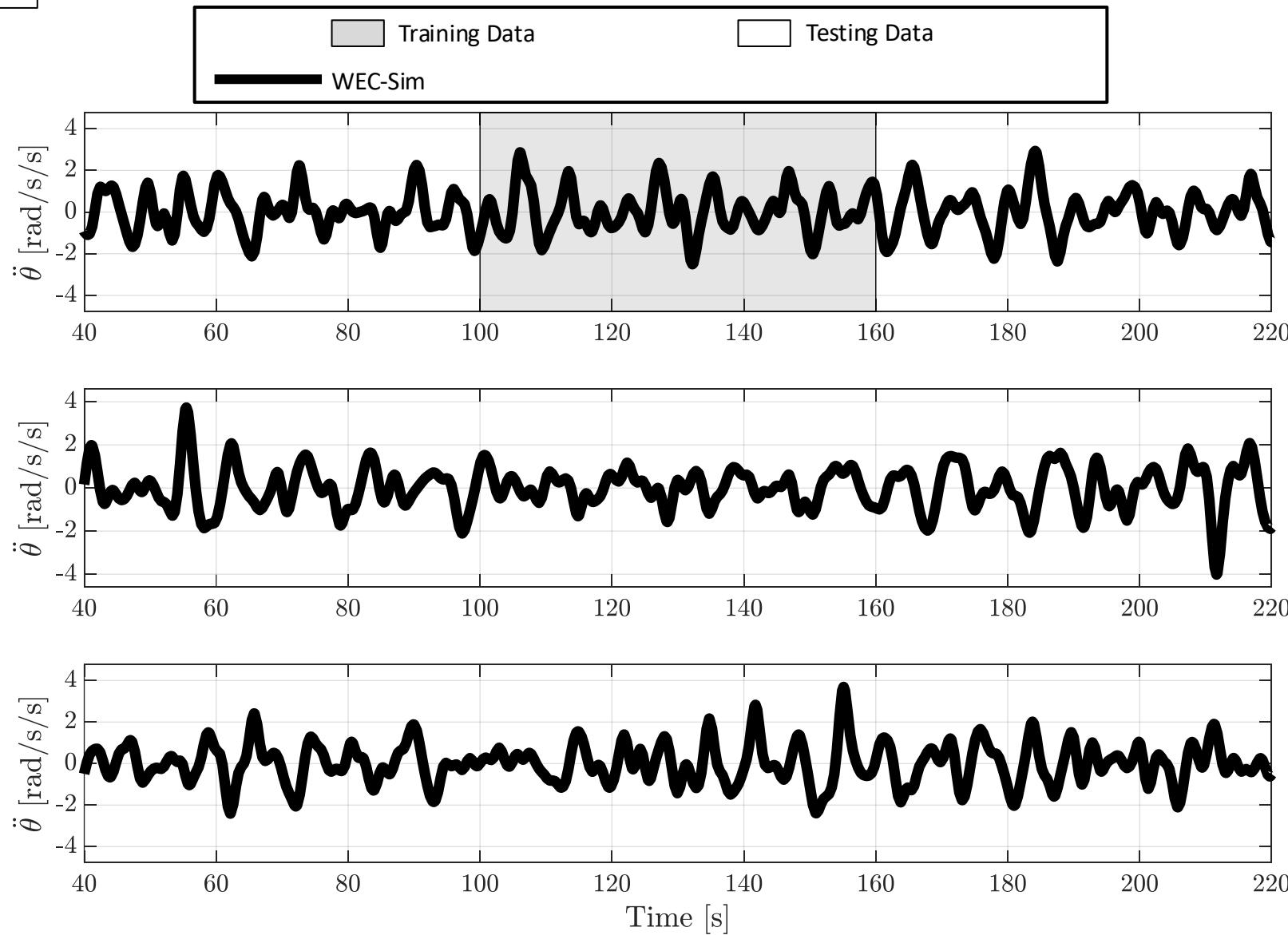


$$H_s = 2.1 \text{ m}, T_p = 9.7 \text{ s}$$

$$H_s = 2.9 \text{ m}, T_p = 8.7 \text{ s}$$

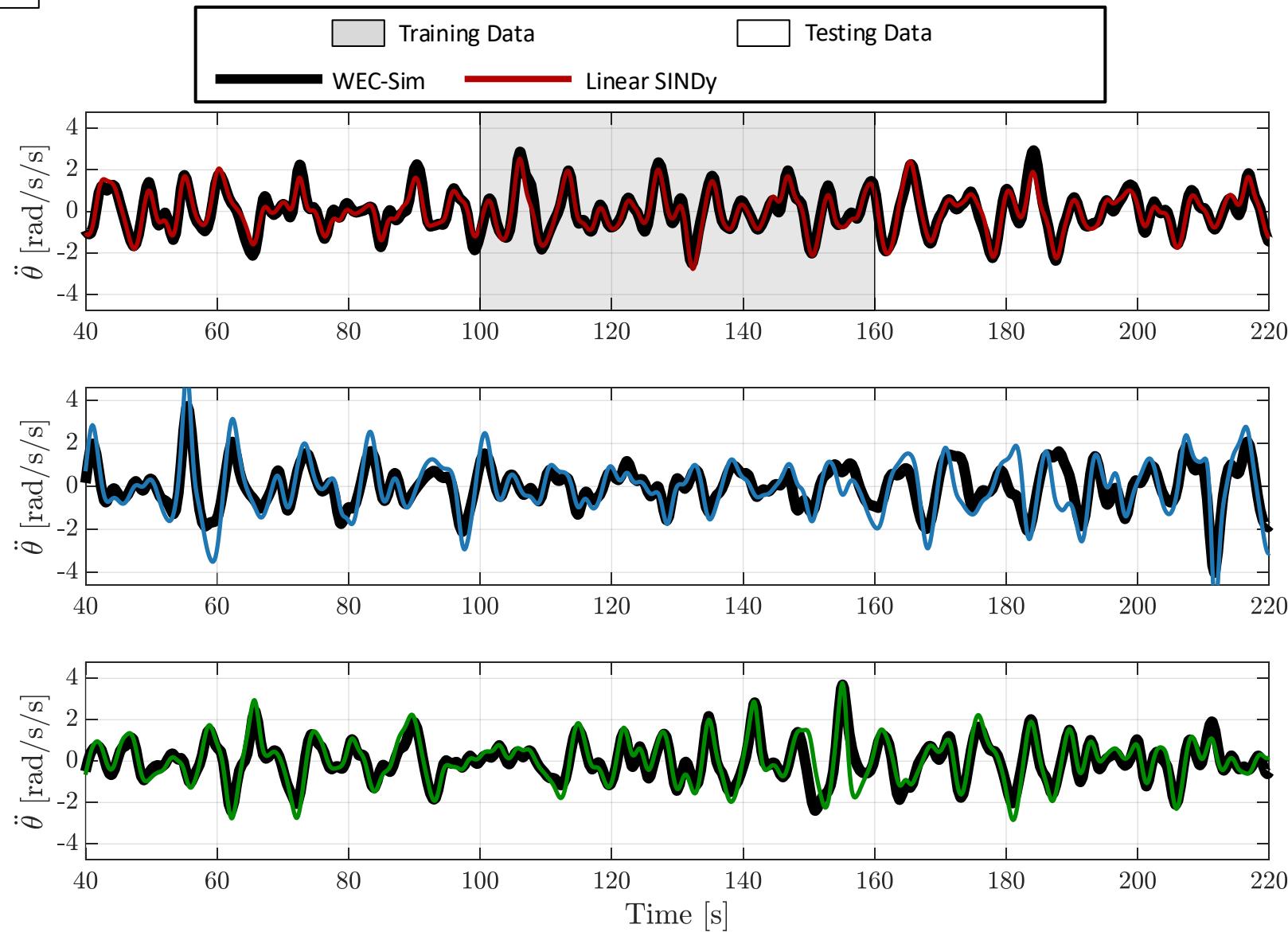
$$H_s = 2.4 \text{ m}, T_p = 6.6 \text{ s}$$

Results: Generalization



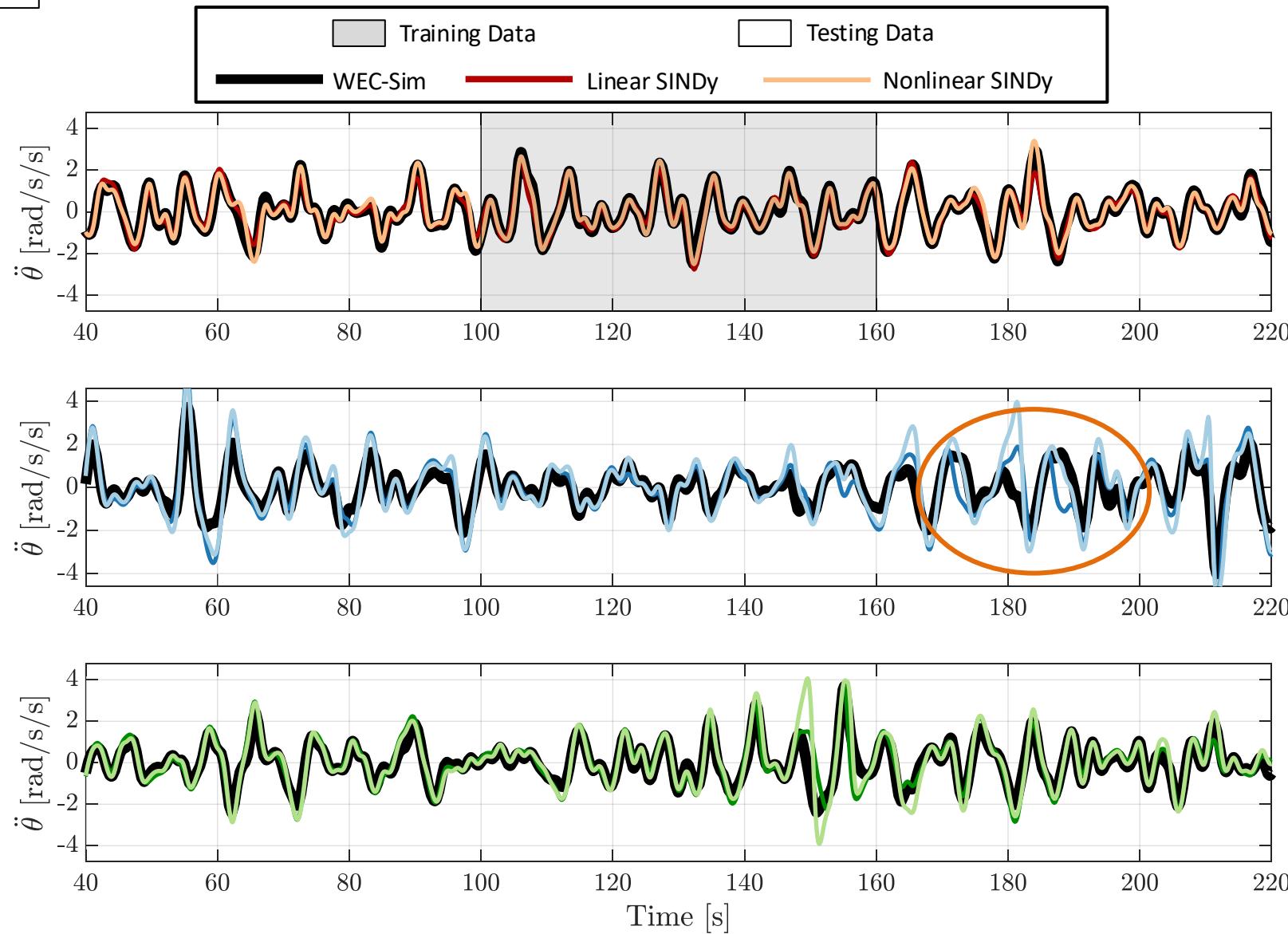
$H_s = 2.1 \text{ m}, T_p = 9.7 \text{ s}$
 $H_s = 2.9 \text{ m}, T_p = 8.7 \text{ s}$
 $H_s = 2.4 \text{ m}, T_p = 6.6 \text{ s}$

Results: Generalization



$H_s = 2.1 \text{ m}, T_p = 9.7 \text{ s}$
 $H_s = 2.9 \text{ m}, T_p = 8.7 \text{ s}$
 $H_s = 2.4 \text{ m}, T_p = 6.6 \text{ s}$

Results: Generalization



Conclusions

- SINDy can create models for OSWEC acceleration in irregular waves
 - Without using incident wave field
 - Both linear and nonlinear models capture dynamics well
 - Variety of sea states
- Composition of nonlinear models is mostly cubic
- Linear models could be slightly more generalizable than nonlinear models

Future work: Experimental Comparison

Experimental Device

SWEL Wave Tank at NREL

Acknowledgements

Advisors: Dr. Brian Polagye and Dr. Steve Brunton

Colleagues at MREL

Funding

- Naval Facilities Engineering Command (NAVFAC)
- National Science Foundation Graduate Research Fellowship Program

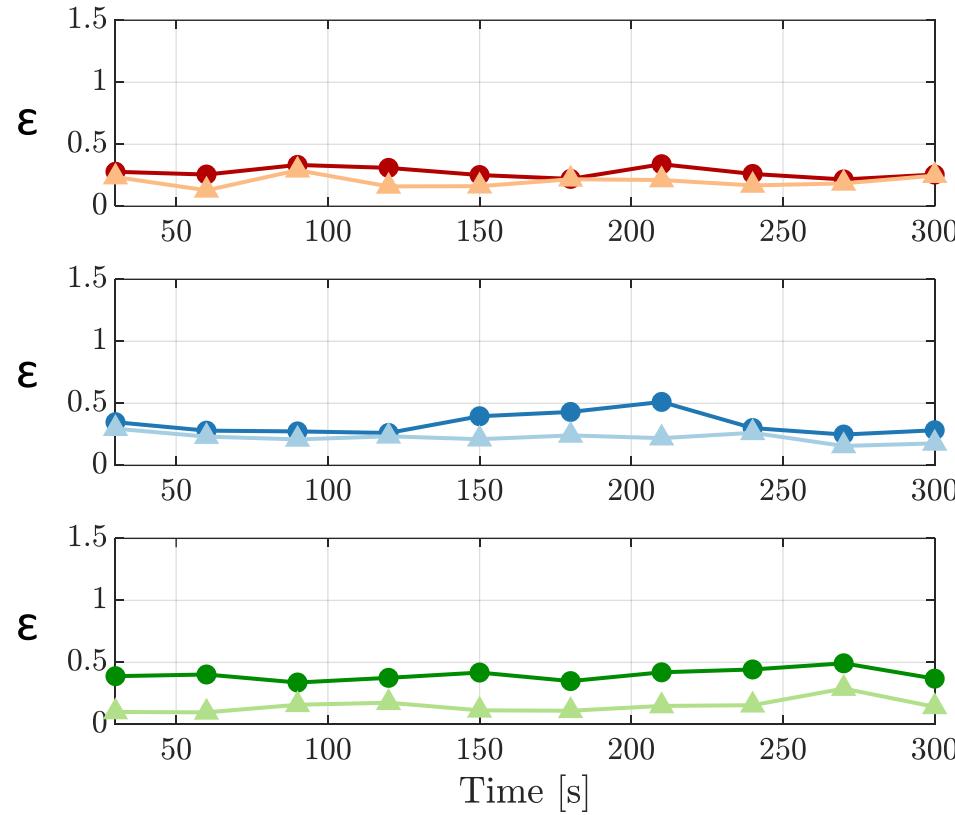
BrittLyd@uw.edu
pmec.us

$H_s = 2.1 \text{ m}, T_p = 9.7 \text{ s}$
$H_s = 2.9 \text{ m}, T_p = 8.7 \text{ s}$
$H_s = 2.4 \text{ m}, T_p = 6.6 \text{ s}$

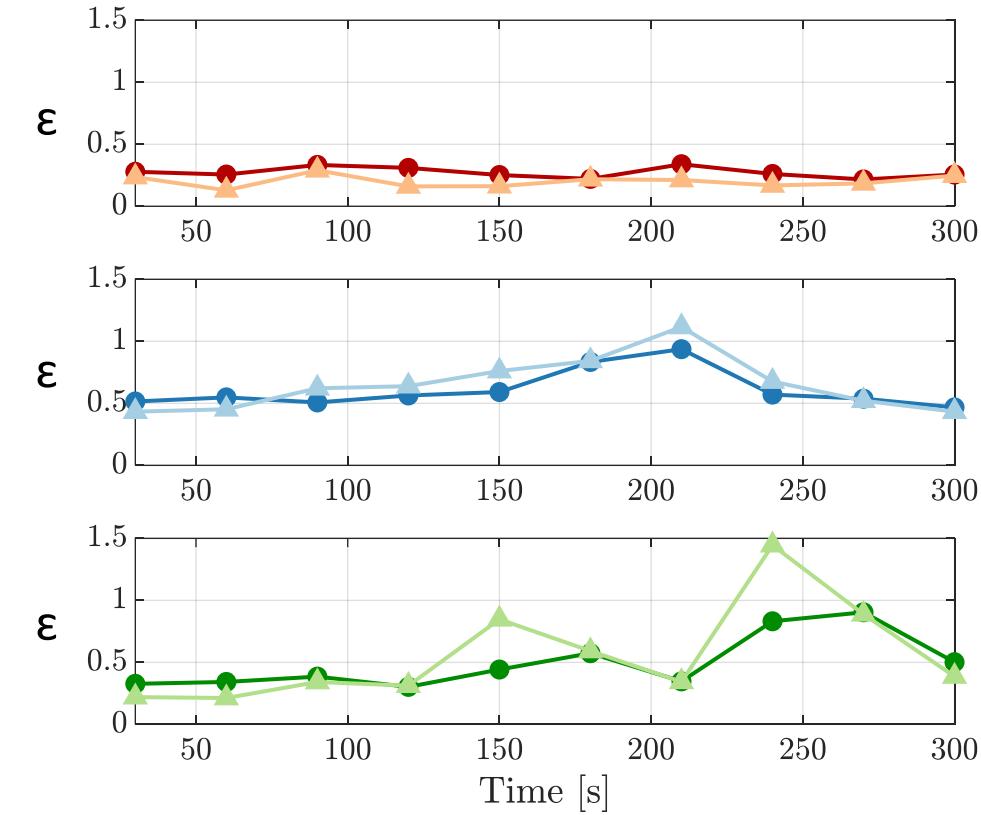
Results: Generalization

—●— Linear —▲— Nonlinear

Using Coefficients from Same Model

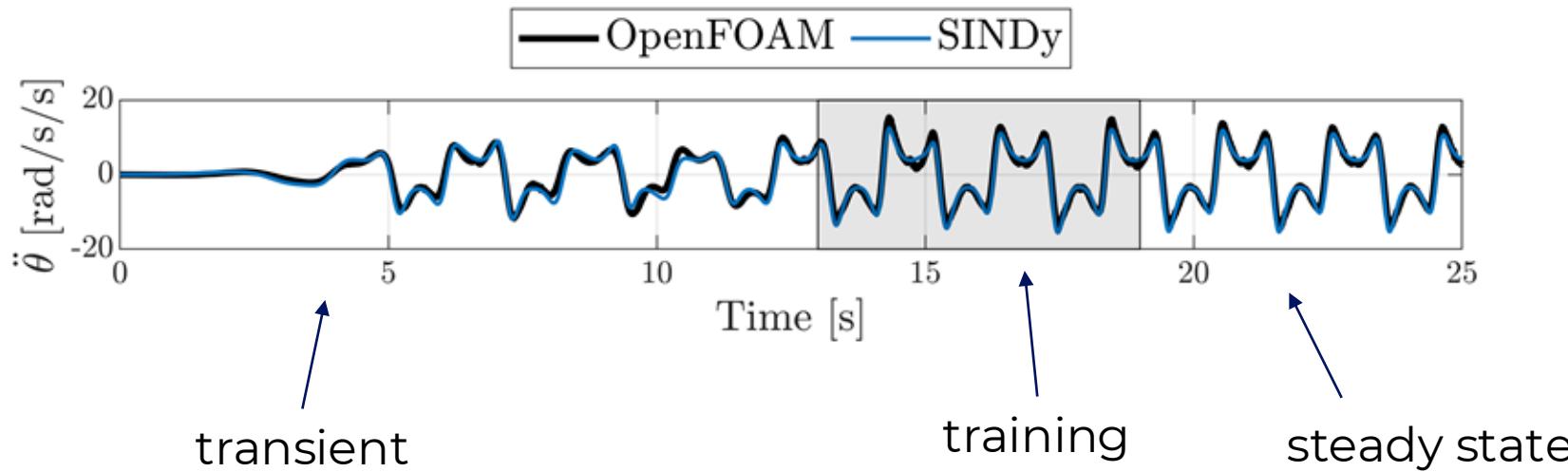
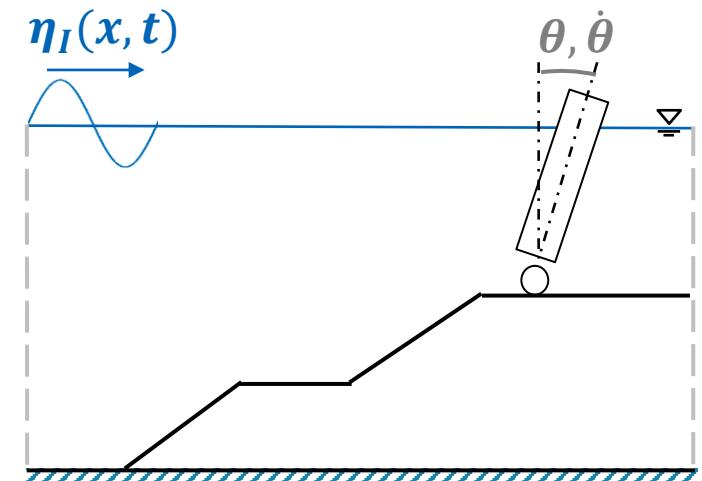


Using Coefficients from First Model



Ex: Nonlinear kinematics in regular waves

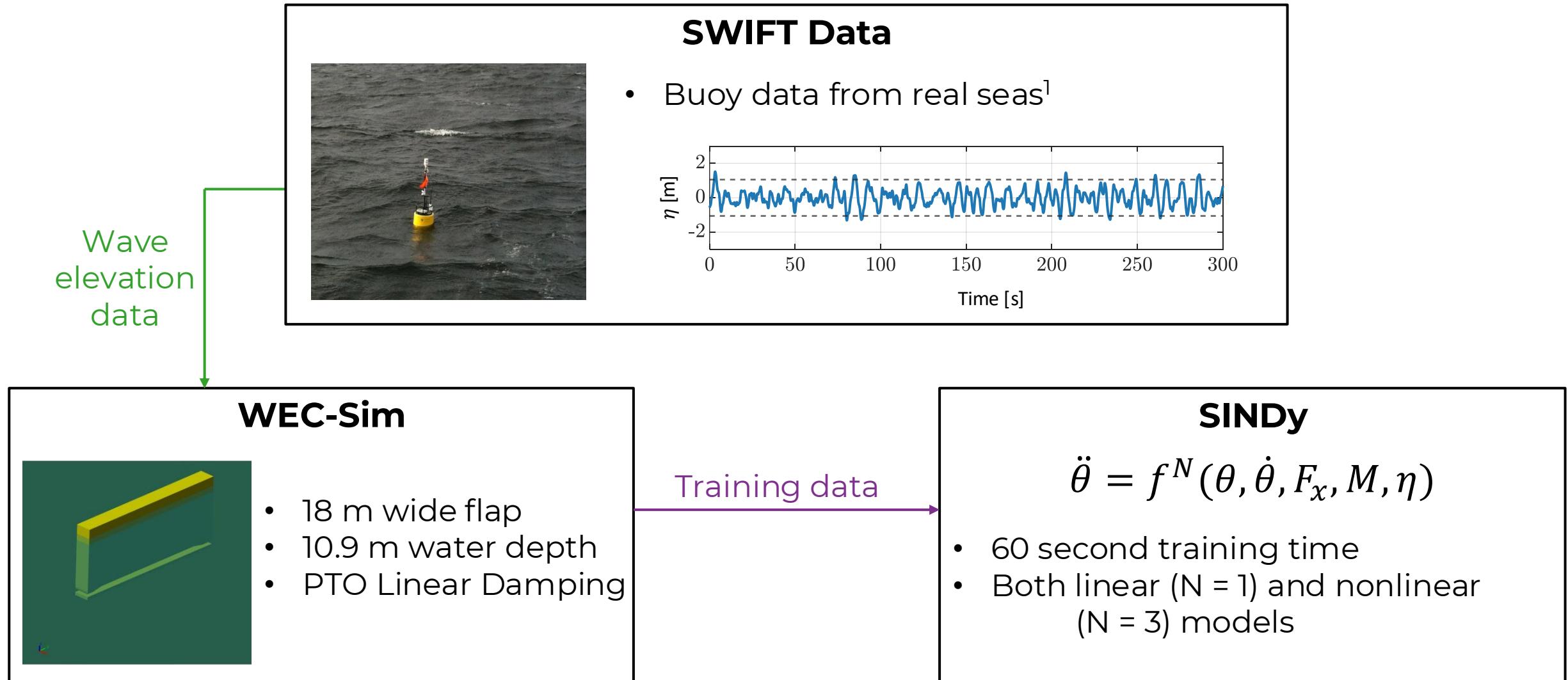
$$\ddot{\theta} = -8.7\theta + 1.8\dot{\theta} + 4.3\theta^3 - 8.2\theta^2\dot{\theta} - 2.4\theta\dot{\theta}^2$$



Based on experiments run at Queen's University, Schmitt & Elsaesser, 2015

Lydon, Brittany, Brian Polagye, and Steven Brunton. **"Nonlinear WEC modeling using Sparse Identification of Nonlinear Dynamics (SINDy)."** Proceedings of the European Wave and Tidal Energy Conference. Vol. 15. 2023.

Methods: Workflow



¹Thomson, Jim. "Wave breaking dissipation observed with "SWIFT" drifters." Journal of Atmospheric and Oceanic Technology 29.12 (2012): 1866-1882.

Sparse Identification of Nonlinear Dynamics (SINDy)

Main idea: Generate parsimonious nonlinear reduced order models using only data

