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Oscillating Surge Wave Energy Converter (OSWEC)

Modeling challenges:

« OSWEC behavior in irregular waves is
high-dimensional and complex
« Changing sea states 'ﬁ'ﬁ.
« Non-periodic
« Stochastic

« Time-domain models have limitations
 Requires significant computation time
 Requires knowledge of wave field

Maine Marine Composites, 2014

Goal: Use data-driven methods to build generalizable models
for OSWEC behavior in irregular seas in the time domain

(@



Methods: Workflow

SWIFT Data

 Buoy data

e H,=2-3m
- T,=6-10s

from real seas

Wave
elevation data

250

150 200

Time [s]

0 30 100

300

Thomson, Jim. "Wave breaking dissipation observed with “SWIFT" drifters." Journal of

Atmospheric and Oceanic Technology 29.12 (2012): 1866-1882.

WEC-Sim

/ « 18 m wide flap

* 10.9 m water depth
« PTO Damping

Training data

A 4

SINDy
0 =f"(0,0,F,M,n)

60 second training time
Both linear (N =1) and nonlinear
(N =3) models

<



Methods: SWIFT Data

Power Spectrum

Buoy Time Series
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Methods: SINDy workflow

Step 1: Collect data & \(H 9 Fx M 7'])'5

choose state variables / \
. function weights
Modelled Variable gff;gﬂg (what SINDy solves for)
(from data) order
States
Function Library (from data)
(from data)



Methods: SINDy workflow

Step 1: Collect data & n — AN :
choose state variables 6 = A (9’ 9' FX’ M' 77)5
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Results: SINDy Model
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Hy =21m,T, =9.7s
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Results: SINDy Model
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Hy =21m,T, =9.7s
Hy =29m,T, =87s
Hy =24m, T, =6.6s
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Results: SINDy Model

[ ] Training Data

e \\/EC-Simn == | inear SINDy

[ ] Testing Data

Nonlinear SINDy

Nl

o

40

60 80 100 120 140

160 180

200

220

T I I

fiyor

| | | |

60 80 100 120 140

60 80 100 120 140
Time [s]

160 180



30s

300

Hy=21m,T, =97 R Its: SINDyY Model ;
.= 21m T, =97 esults: ode 16 = o
o o SINDy
Hy =29m,T, =87s £ = ” ”
Hy=24m,T, =6.6s . N : 6
— 2
Osinpy = A (0,6,E,M,n)¢
Function Weights — Linear (N=1)
10| | | | | Error
—@— Linear Nonlinear
o5f | | | |
V)
5t € 0\./”\.\.\"/‘\.\”//\
0 1 | ] | I
Il. 50 100 150 200 250
O I- / T T T T T
1 9 0 Fx My ’ 0.5;\0—0—4//‘/\”\’/;
E
Function Weights — Nonlinear (N=3)
60 I T I T I - T I T T I 0 . . . . .
(] 50 100 150 200 250
40
< _ E
20 B 0" 1 | 1 | I
50 100 150 200 250
0 [lmrl HHH e [ 11— ITIE 11 11 1] H | Time [S]
0 F, M, éFx 0°F, 0F§ 0F, M, ész FI3 Fg?My @




Hy=21m,T, =975
Hy=29m,T, =87s
Hy=24m,T, =665

0 [rad/s/s] 6 [rad/s/s)

0 [rad/s/s]

Results: Generalization
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Conclusions

SINDy can create models for OSWEC acceleration
IN irregular waves

— Without using incident wave field

— Both linear and nonlinear models capture dynamics well
— Variety of sea states

Composition of nonlinear models is mostly cubic

Linear models could be slightly more
generalizable than nonlinear models



Future work: Experimental Comparison

SWEL Wave Tank at NREL
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Results: Generalization

Nonlinear

Hy =21m, T, =9.7s
Hy =29m,T, =87s
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=X Nonlinear kinematics in regular waves
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Methods: Workflow
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elevation
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Sparse ldentification of Nonlinear Dynamics
(SINDy)

Main idea: Generate parsimonious nonlinear reduced
order models using only data
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