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 A B S T R A C T

Offshore wind and marine hydrokinetic energy are underutilized energy resources. Efficiently exploiting these 
energy resources requires the identification of optimal deployment locations and optimal designs for offshore 
energy harvesting devices. These devices have the potential to be deployed in tandem such that the suite of 
devices consistently saturates a given power transmission system. To better understand the economic viability 
of harvesting marine renewable energy, a portfolio optimization is presented here. Portfolio optimization 
frameworks help to identify optimal deployment maps for energy-harvesting devices in a given domain and 
unify solutions of resource, technical performance, transmission, and cost model sub-problems into a unique 
and comprehensive tool. These frameworks select the energy-harvesting device designs in advance. This work 
proposes a portfolio optimization framework combined with optimal device design, sizing, and selection to 
enable a more realistic energy depiction that is beneficial to stakeholders. By maximizing power sent back 
to shore subject to a constraint on the levelized cost of energy, the algorithm creates an optimal mapping 
of devices that produces the maximum transmittable power and stabilizes portfolio variability in a cost-
effective manner. Any reliably modeled offshore energy-harvesting device can be used within this framework. 
In this work, wind turbines and marine hydrokinetic kites are selected as a case study considering they are 
leading technologies for harvesting their respective energies. Results from this case study demonstrate optimal 
portfolios of devices for a location off the coast of North Carolina and show the utility of fusing device design 
optimization with the portfolio optimization.
1. Introduction

The ongoing energy transition is rapidly expanding, necessitating 
the utilization of different renewable energy sources. In this context, 
marine renewable energy (MRE) resources are presented as promising 
sustainable energy candidates, which remain largely untapped [1]. 
Specifically, offshore wind energy has the potential to provide signifi-
cant amounts of energy should energy-harvesting devices be deployed 
at scale [2]. Ocean current energy also possesses significant energy 
potential, provided energy-harvesting devices are deployed at scale [3]. 
Their energy potential leads to offshore wind and ocean current energy 
being of particular interest in MRE. Worldwide, the Global Wind Energy 
Council anticipates an expansion of 380 GW of wind capacity by 
2032 [4]. Domestically, by 2040 policies in the United States (US) 
anticipate an offshore wind capacity of 42,730 MW, which is a 9% 
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increase from 2022. [5]. Additionally, using ocean current as an energy 
resource has the technical potential to produce 2300 TWh/yr energy 
along the entire US coast [6]. Furthermore, the Gulf Stream between 
Florida and North Carolina (NC) has the potential to produce 49 
TWh/yr of energy, which equates to about 207 million homes [7].

NC in particular is focused on developing legislation and infrastruc-
ture to support utilization of the readily available MRE resources off 
of their coast. In 2021, NC passed legislature committing to reduce 
statewide CO2 emissions by 70% by 2030, and become carbon neutral 
by 2050 [8]. Considering NC’s location, especially with regard to the 
Gulf Stream, it has the potential to utilize offshore energy resources to 
aid in achieving carbon neutrality [9].

Harvesting these offshore energy resources, especially ocean current 
energy, in addition to the wind resource enables maximization of 
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energy output as well as increases the cost-effectiveness of energy 
harvesting [10]. To compete with fossil fuels, coordinating energy 
generation from these resources needs to be cost-effective. Portfolio op-
timizations are a tool that can be used to assess the economic viability 
of a given portfolio (for this work, of energy harvesting devices).

Portfolio optimizations were pioneered in the field of economics 
when Harry Markowitz published his mean-value portfolio (MVP) the-
ory [11]. His work focused on economics and creating a diversified 
financial portfolio with the lowest possible risk [12]. Authors have 
built upon MVP theory and used it to develop portfolio optimiza-
tion models within the renewable energy field. For example, in [13], 
portfolio theory was used to reduce economic risk for a given value 
of economic return for investments into different combinations of 
renewable energy assets. Similarly, in [14], a portfolio optimization 
model was used to investigate investment risks and their relation to 
costs of energy generation when integrating renewable energy into 
the grid. Additionally, in [15], a portfolio optimization was used to 
determine the optimal renewable energy portfolios based on risk and 
profitability under different cost scenarios. A portfolio optimization 
which addressed deep uncertainty in energy costs was used in [16] to 
highlight the utility of incorporating renewable energy into the grid 
and provide energy-management insights. Moving towards offshore 
energy, in [17] a portfolio optimization method was used in order to 
select site locations for energy-harvesting devices while reducing the 
risk of having their production affected by ocean current meander. 
Furthermore, in [18], a portfolio optimization model was developed in 
order to reduce the variability in energy delivered back to shore from 
offshore energy harvesting. From this, it was found that integrating 
multiple energy-harvesting devices leads to economic benefits and less 
variability in energy being harvested for a given site [18]. This was fur-
ther confirmed in [10], where a neural network model was combined 
with a portfolio optimization model that was designed to reduce the 
risk within energy generation portfolio. Additionally, in [19], a port-
folio optimization was used to explore benefits from shared offshore 
energy-harvesting device moorings, and mooring optimization.

Previous literature related to offshore portfolio models did not 
address device design optimization or selection. This necessitates the 
development of a fused portfolio optimization algorithm as a tool to 
enable the optimal integration and deployment of multiple energy-
harvesting devices for a region of interest. Specifically, this work 
builds on the framework developed in [18] by (i) Fusing optimal 
device design, sizing and selection with the portfolio optimization, (ii) 
taking curtailment of energy into account, and (iii) maximizing the 
energy sent back to shore as the objective instead of reducing energy 
variability. Overall, these contributions enable a more realistic energy 
depiction, which benefits stakeholders. To demonstrate the benefits of 
the proposed fused portfolio optimization, a case study is performed 
for a domain off of the coast of NC. For the case study in this work, 
offshore wind turbines were selected as one of two candidate energy-
harvesting devices to input into the portfolio optimization model since 
wind turbines have been proven to be a leading technology in terms 
of harnessing available offshore wind energy [20]. Moreover, NC is 
actively expanding its offshore wind energy harvesting [21]. As men-
tioned above, NC is located near the Gulf Stream, which provides a 
consistent ocean current. For this reason, the second candidate device 
selected for the case study in this work is the marine hydrokinetic 
(MHK) kite.

MHK kites are the leading technology for harvesting tidal and 
ocean current energy, and are currently commercially deployed by 
Minesto [22]. MHK kites use high lift-to-drag wings to fly in specific 
patterns perpendicular to the oncoming flow. As shown in [23], this 
enables kites to reach velocities 5 to 10 times faster than the oncoming 
flow, which allows them to harvest an order of magnitude more energy 
than stationary turbines. Models for grid-scale MHK kites, such as the 
Minesto Dragon Class, are not transparent; detailed information about 
rated flow speeds, ideal operating depths and/or altitudes, rated power, 
2 
mass, or costs associated with the devices are unattainable [24]. The 
lack of transparency with existing models necessitates the development 
of an accurate, open source kite model that can create kite designs for 
a variety of operating sites such that these designs can be input into the 
overall portfolio optimization model. Designs for MHK kites can be gen-
erated site-specifically, [25]. However, this technique has drawbacks. 
At a large scale, designing a kite for each individual location would 
be unrealistic to manufacture based upon impractical tooling costs 
associated with so many different device designs. Instead, addressing 
spatial variation in MRE resources by site can be accomplished by 
creating an optimized suite of kite designs based upon a set number of 
current speeds and deployment depths that may be encountered within 
the selected domain. This suite is then input into the portfolio model.

Overall, this work enables the coordination of energy generation 
from multiple offshore energy sources via a multitude of candidate 
devices. The contributions of this paper are as follows:

i A fused portfolio optimization model, within which device de-
sign, sizing and selection are integrated into an existing portfolio 
optimization model. This model takes in suites of optimally 
designed energy-harvesting devices, decides which device de-
signs are the best fit for the domain of interest, and from 
these, decides the optimal locations and combinations of devices 
such that power delivered to shore from the transmission sys-
tem is maximized for a given levelized cost of energy (LCOE) 
constraint.

ii A transparent MHK kite optimization model
iii Provides a thorough analysis of a real-world case study

The remainder of this work is structured as follows. Section 2 
provides descriptions of the fused portfolio optimization model and 
the design optimization model, as well as in-depth descriptions of 
the candidate technologies considered in the fused portfolio model 
and LCOE. Section 3 provides information and details regarding the 
performed case study. Section 4 provides the results from the case 
study, and a thorough discussion of the results. Section 5 provides the 
conclusions of the case study.

2. Fused portfolio optimization model

The fused portfolio optimization in this work is designed to take in 
data from an environment, candidate energy-harvesting device models, 
a transmission model, and cost models, and output the optimal de-
ployment configuration of energy-harvesting devices within a given do-
main. This framework takes optimal device design, sizing, and selection 
into account. This framework is shown in Fig.  1.

2.1. Model input data

This subsection discusses the input data for the portfolio optimiza-
tion model including the environmental data used, the covered domain, 
and how costs will be quantified. The transmission costs are discussed 
in Section 3.

The wind speed data considered in this work comes from the NREL 
Wind Toolkit [26]. The ocean current data comes from the Hybrid 
Coordinate Ocean Model (HYCOM) for ocean current data [27]. Data 
from the years 2009–2013 was used for this work due. Newer datasets 
were not used due to the lack of availability of easily accessible ocean 
current data for the domain.

The domain for the fused portfolio optimization can be made as 
large or small as desired, provided energy resource data is readily 
available. This model considers the site-dependency of transmission 
system costs and the impact of site-dependency of the costs and power 
outputs of energy-harvesting devices due to the available energy re-
source. To account for these site dependencies, LCOE, in dollars per 
megawatt hour, is considered. LCOE is a measure of the lifetime costs 
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Fig. 1. Overall framework of the portfolio optimization model that shows how the environmental data, energy-harvesting device costs, and energy-harvesting 
device models interact with the portfolio optimization model.
of a system divided by the lifetime energy production of the system, 
and is commonly used for economic analysis for marine energy con-
verters [28]. For example, in [29], LCOE is used for design analysis of 
various devices. Additionally, in [30] LCOE is used to determine the 
economic feasibilities of offshore energy harvesting deployments.

The lifetime costs of the system are split into capital expendi-
tures and operational expenditures. Capital expenditures include device 
design, manufacturing, and deployment, and are typically one-time 
costs for the system. Conversely, operational expenditures cover yearly 
expenses such as maintenance and leasing costs. These will be defined 
for each candidate device and the transmission system in Section 3.

2.2. Candidate technologies

Coordination of energy generation methods through a portfolio 
optimization requires reliable models of energy-harvesting devices and 
transmission systems. For energy-harvesting devices, the discussion in 
this paper focuses on models for wind turbines and MHK kites. This 
subsection will provide insight into these wind and kite system models.

2.2.1. Wind turbine modeling
Since wind turbines are an established technology, wind turbine 

models are readily available. This work uses reliable wind turbine 
models from the NREL 2023 Annual Technology Baseline (ATB) [31]. 
Models for 8 MW turbines (typical 2021 design) and 12, 15 and 18 MW 
turbines which are esimated to represent offshore wind deployments in 
2030 considering respectively a conservative, moderate and advanced 
development of the offshore wind energy sector. These wind turbines 
are shown in Fig.  2 along with their associated rotor diameters and hub 
heights. To solve for the power the wind turbines produce at a given 
wind speed, power is solved for based on the wind speed at a given site 
based on the power curves shown in Fig.  3 which follow the power law 
shown in Eq.  (1). Here, 𝜌 is the air density, 𝐴 is the swept area of the 
wind turbine blades, 𝐶𝑝 is the coefficient of power of the turbine, and 
𝑣𝑤 is the wind speed at the hub height of the turbine. Note that the 
𝐶𝑝s for each wind turbine at various wind speeds are given along with 
their designs in [31].

𝑃 = 1
2
𝜌𝐴𝐶𝑝𝑣

3
𝑤 (1)

2.2.2. Marine hydrokinetic kite modeling and design suite optimization
MHK kites (kites) are one of the candidate devices included in 

the portfolio optimization. Kites were selected for this case study 
because they are a leading technology for harvesting ocean current 
energy [32]. As discussed in Section 1, a kite’s high lift-to-drag ratio 
allows it to ‘‘fly’’ underwater at speeds significantly in excess of the 
prevailing flow speed, which through the cubic relationship between 
flight speed and power easily leads to an order of magnitude increase 
3 
Table 1
Kite decision variables.
 Variable Meaning Units 
 𝑠 Wingspan m  
 𝐴𝑅 Aspect ratio –  
 𝐷 Fuselage diameter m  
 𝐿 Fuselage length m  
 𝑡𝑠ℎ Thickness of wing shell m  
 𝑡𝑠𝑝 Thickness of wing spars m  
 𝑡𝑓𝑠 Thickness of fuselage m  

in power per unit area when compared to stationary systems [23]. 
An example kite deployment is shown in Fig.  5. As with wind tur-
bines, the portfolio optimization requires a characterization of the 
techno-economic performance of a suite of kites. However, unlike with 
wind turbine manufacturers, leading underwater kite manufacturers 
like Minesto [24] do not provide comprehensive power curve and cost 
data for their designs (e.g., the Minesto Dragon Class), and the designs 
themselves have not been tailored to the target region of operation 
for our studies. Because of this, prior to performing the portfolio 
optimization, a family of kite designs and corresponding performance 
characterizations were generated, using an in-house model and opti-
mization procedure. Specifically, a suite of kites were optimized based 
upon Eq. (2): 
maximize 𝑃 (𝑢, 𝑣𝑟)

subject to ℎ(𝑢, 𝑣𝑟) = 0

𝑔(𝑢, 𝑣𝑟) ≤ 0

(2)

where 𝑃  represents power, 𝑢 represents the vector of design variables, 
𝑣𝑟 represents the flow speed for which a particular set of variables 
were optimized (termed the rated flow speed), ℎ(𝑢) represents the 
set of equality constraints, and 𝑔(𝑢) represents the set of inequality 
constraints. The decision variables are given in Table  1. It is important 
to note that, although the objective function purely incentivizes power 
without any penalty for cost (or a surrogate, such as mass), bulky 
and costly systems are ultimately disallowed through constraints that 
require sufficiently low mass.

To complete this optimization, reliable and transparent models 
for both power output and constraints are needed. In the following 
subsections, these will be discussed, starting with the power model.
Power model: The central goal in generating a family of kite designs is 
to perform the optimization of (2) for multiple values of rated flow 
speed, 𝑣𝑟. The kites in the work are fly-gen systems, and as such, 
produce power through onboard turbines attached to their wings [33]. 
Assuming the fuselage produces no lift, for a given set of operational 
variables and marine deployment, the kite’s power output at 𝑣𝑟 is 
calculated according to Loyd’s ideal assumptions [23]. This ideal power 
output model is conventionally used in kite systems [34]. Moreover, it 
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Fig. 2. 8, 12, 15, and 18 MW wind turbine designs from [31] with associated hub heights and diameters.
Fig. 3. 8, 12, 15, and 18 MW wind turbine power curves from [31].

has been experimentally validated for MHK kites [35]. This model is 
shown below in Eq.  (3): 

𝑃 (𝑠, 𝐴𝑅,𝐿,𝐷) = 2
27

𝜌𝐻20𝑆𝑤(𝑠, 𝐴𝑅)𝑉𝑟3
𝐶3
𝐿(𝑠, 𝐴𝑅)

𝐶2
𝐷(𝑠, 𝐴𝑅,𝐿,𝐷)

𝑐𝑜𝑠3(𝜃) (3)

where 𝜌𝐻20 is the density of water, 𝑆𝑤 is the planform area of the wing, 
𝑉𝑟 is the rated flow speed of the kite, 𝐶𝐿 is the kite’s lift coefficient, 
𝐶𝐷 is the drag coefficient of the system and 𝜃 is the optimal elevation 
angle. It should be noted that the drag coefficient is inclusive of terms 
for both the kite drag and the drag on the tether. Longer tether lengths 
result in more drag, slowing the kite’s velocity and resulting in power 
losses [36]. Furthermore, for maximum power, the kite is considered 
to be flying at the optimal angle of attack (AoA), which is defined as 
the AoA that maximizes 𝐶3

𝐿
𝐶2
𝐷
 [37]. For additional information on the 

calculations of 𝐶𝐿, 𝐶𝐷, and 𝑆𝑤, the reader is directed to [38]. The 
variables 𝑠, 𝐴𝑅, 𝐿, and 𝐷 are the wingspan, aspect ratio, fuselage length 
and fuselage diameter of the kite respectively. These four variables will 
be referred to as the geometric variables, and are the only decision 
variables that affect the power output of the system (the other variables 
affect constraints but not power).
Constraint models: The constraints of Eq.  (2) come in the form of (i) a 
neutral buoyancy inequality constraint (which imposes an upper limit 
on mass), (ii) an equality constraint on fuselage thickness that ensures 
appropriate shear stress and bending moment (although this can be 
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written as an inequality constraint, it will always be active), and (iii) 
an inequality constraint on the wing’s tip deflection.

The neutral buoyancy constraint requires that the structural mass
of the kite fall below a prescribed fraction of the mass of displaced 
water. By setting this fraction substantially lower than unity, reserve 
mass becomes available for ballast and additional payloads that do not 
contribute to satisfying structural constraints. The kite’s structural mass 
is characterized based on the fuselage’s structural mass (given by 𝑚𝑓
and including the tail) and the wing’s structural mass given by (𝑚𝑤), 
with the constraint given by: 
𝑚𝑓 (𝑠, 𝐴𝑅, 𝑡𝑠ℎ, 𝑡𝑠𝑝) + 𝑚𝑤(𝑠, 𝐴𝑅,𝐿,𝐷, 𝑡𝑠ℎ, 𝑡𝑠𝑝) ≤ 𝛾𝑚𝑑𝑖𝑠𝑝, (4)

where 𝑚𝑑𝑖𝑠𝑝 is the displaced mass of water. In addition to the straight-
forward process of computing the displaced volume (and therefore 
𝑚𝑑𝑖𝑠𝑝), it is clearly necessary to calculate the structural mass terms.

The wing mass is calculated as [39]:
𝑚𝑤(𝑠, 𝐴𝑅, 𝑡𝑠ℎ, 𝑡𝑠𝑝) = 𝑠𝜌𝑤[𝐴𝑠ℎ(𝑠, 𝐴𝑅, 𝑡𝑠ℎ) +

𝐴𝑠𝑝(𝑠, 𝐴𝑅, 𝑡𝑠ℎ, 𝑡𝑠𝑝)] + 𝜌𝑓𝑚𝑚𝑓𝑚 (5)

where 𝐴𝑠ℎ is the total area of the wing shell, 𝐴𝑠𝑝 is the total area of the 
spars, and 𝑚𝑓𝑚 is the mass of buoyant syntactic foam that fills the empty 
space within the wing. The buoyancy of the foam allows the optimized 
kites to achieve neutral buoyancy. Additionally, the wing is assumed to 
have a constant cross section and the wing’s shell and spar thicknesses 
are assumed to be constant. Furthermore, the wing is assumed to be 
rectangular. Solving the equation for 𝐴𝑅 from Fig.  4 for the chord 𝐶
yields Eq. (6)
𝐶 = 𝑠

𝐴𝑅
(6)

The fuselage is treated as a thin-walled hollow cylinder, with 
constant wall thickness 𝑡𝑓 𝑠. The mass of the fuselage is modeled as [39]:

𝑚𝑓 (𝑠, 𝐴𝑅,𝐿,𝐷, 𝑡𝑠ℎ, 𝑡𝑠𝑝) = 2𝜌𝑤𝜋𝐷𝐿𝑡𝑓𝑠 (7)

The second set of constraints are structural limits on the fuselage. 
Ultimately the fuselage must be sufficiently thick to satisfy both shear 
stress and bending limits. Because there is no benefit to further thick-
ening the fuselage, both constraints are solved for at equality, then the 
fuselage thickness, 𝑡𝑓𝑠, is set to the larger of the two values (thereby 
satisfying both constraints). This process is laid out below:

(i) To satisfy shear stress along the wing-fuselage attachment: 

𝑡𝑓𝑠(𝑠, 𝐴𝑅,𝐿,𝐷) =
𝐹𝑤𝑖𝑛𝑔(𝑠, 𝐴𝑅,𝐿,𝐷)

𝐶𝜁𝜎𝑦𝑖𝑒𝑙𝑑
(8)

where 𝐹𝑤𝑖𝑛𝑔 is the lift force on the wing’s halfspan, 𝜁 is the factor of 
safety, which is two in this work, and 𝜎  is the yield strength of 
𝑦𝑖𝑒𝑙𝑑
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Fig. 4. View of the kite and wing structures, with selected dimensions highlighted.
the material, which for this study is aluminum 6061. This calculation 
assumes the wing spars are continuous, and thus go through the fuse-
lage. Additionally, it is assumed that the fuselage must be thick enough 
to account for the shear from both halfspans of the wing. For more 
information on calculating 𝐹𝑤𝑖𝑛𝑔 , see [40].

(ii) To satisfy the bending loads on the fuselage: 

𝑡𝑓𝑠(𝑠, 𝐴𝑅,𝐿,𝐷) =
4|𝑀𝑚𝑎𝑥(𝑠, 𝐴𝑅,𝐿,𝐷)|

𝜋𝐷2𝜁𝜎𝑦𝑖𝑒𝑙𝑑
(9)

where |𝑀𝑚𝑎𝑥| is the maximum internal bending moment along the 
fuselage where the force from the tail is assumed to equal 0.1*𝐹𝑤𝑖𝑛𝑔
acting in the opposite direction as the lift from the wing. The tether 
is considered to have its attachment points at 40% of the fuselage 
length. For information on how to calculate maximum internal bending 
moments, the reader is directed to [41].

The final constraint is an inequality constraint on wing tip de-
flection. Specifically, to acquire values for 𝑡𝑠ℎ and 𝑡𝑠𝑝, the wing tip 
deflection constraint from [39] is considered. The halfspan is treated 
as a cantilevered beam with a uniformly distributed load. and the 
maximum wing tip deflection is assumed to be 5% of the halfspan. 
Following [39]’s solution for the maximum deflection leads to an 
inequality constraint on bending moment of inertia of the wing, which 
takes the following form: 

𝐼𝑤𝑖𝑛𝑔(𝑠, 𝐴𝑅, 𝑡𝑠ℎ) ≥ 𝐼𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 (𝑠, 𝐴𝑅,𝐿,𝐷) =
𝐹𝑤𝑖𝑛𝑔(𝑠, 𝐴𝑅,𝐿,𝐷) ∗ 𝑠3

𝛿 ∗ 𝐸 ∗ 64
(10)

where 𝐼𝑤𝑖𝑛𝑔 is the moment of inertia (MOI) of the wing, 𝐼𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 is the 
required MOI of the wing to satisfy the prescribed wing tip deflection 
limit, 𝛿 is the wing tip deflection, and 𝐸 is the elastic modulus of the 
wing’s material. Solving this at equality for a given 𝑡𝑠𝑝 allows for 𝑡𝑠ℎ to 
be solved for at equality.
Optimization results: In this work, the optimization of Eq.  (2) was 
solved for rated flow speeds in increments of 0.25 m/s, ranging from 
0.5 m/s to 2.75 m/s, which are representative of the section of the 
U.S. Gulf Stream and shelf under consideration in this work. A grid 
search over geometric variables, along with a nested line search across 
spar thicknesses and direct calculation of remaining structural variables 
(based on equality constraints), was used to perform the optimization. 
The optimized kite designs and associated power outputs and structural 
masses for the given design space of operational variables are given in 
Table  2 (to save space, only span and aspect ratio values are shown, 
as these exhibit the most notable trends). For a detailed explanation of 
these results please see Appendix  A.

2.2.3. Transmission model
This works incorporates two modes of transmission, both with full 

reactive power compensation: high voltage direct current (HVDC), and 
high voltage alternating current (HVAC). The energy losses from the 
system are divided into offshore terminal losses, losses on cables, and 
onshore terminal losses. The models for these were taken from [18] and 
the reader is directed there for more information.
5 
Fig. 5. Floating platform deployment of MHK kite with key mechanical 
components, VS, and elevation angle, 𝜃, shown.

To optimize the transmission system, an algorithm was developed 
using the models from [18] to find the optimal transmission parameters 
out of all possible configurations with the objective being to minimize 
cost for any given location. These costs will be defined in Section 3.2. 
To account for anchoring, a maximum depth of 2500 m was used [29]. 
Line designs with rated powers of 300, 600, 1000, and 1200 MW were 
considered and the lines were assumed to be operating at a 50% CF. 
Based upon offshore wind energy deployments, the annualized costs of 
energy losses was taken to be 83.3 $/MWh [31].

2.3. Portfolio optimization model formulation

This subsection details the portfolio optimization model. The port-
folio optimization acts in the following manner: (i) Suites of optimally 
designed energy-harvesting devices are input into the optimization 
framework (ii) The model then decides which device designs are the 
best fit for the domain of interest (iii) From the best fit energy-
harvesting devices, the portfolio optimization decides the optimal lo-
cations and combinations such that power delivered to shore from the 
transmission system is maximized for a given levelized cost of energy 
(LCOE) constraint.

This optimization model treats the following as decision variables: 
(i) the variable that controls the center of the energy collection system 
for each possible configuration of candidate energy-harvesting devices, 
𝑣𝑖 (ii) the relaxation variable for that center 𝑤𝑑 , and (iii) the number 
of energy-harvesting devices of design type d at the site location i, 
𝑦𝑖,𝑑 . As previously mentioned, the portfolio optimization model’s ob-
jective is to maximize energy delivered to shore from a configuration 
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Table 2
The power outputs, structural masses, spans, and ARs of the optimized kite designs for the design space of operational variables. 
 Kite parameters
 Rated flow speed (m/s) 0.5 0.75 1 1.25 1.5 1.75 2.0 2.25 2.5 2.75  
 Power output (kW) 53.7 147.5 312.6 570.8 931.9 1431.6 2041.2 1987.7 1872.0 1814.4 
 Structural mass (kg) 1780.6 2442.2 3262.0 3738.6 4822.5 5248.7 5682.4 4063.3 2784.8 2101.5 
 Span (m) 11.0 11.0 11.0 11.0 11.0 11.0 11.0 9.7 8.3 7.4  
 Aspect ratio 5.3 4.6 3.8 3.8 3.0 3.0 3.0 3.0 3.0 3.0  
of energy-harvesting devices. This metric is appropriate because the 
goal of integrating multiple energy-harvesting devices into a single 
deployment is to take advantage of being able to harvest multiple 
energy resources, thereby increasing the amount of energy produced. 
The objective function that represents this is shown in Eq.  (11), where 
𝐸𝐺𝑡 is the average energy generation for the years of analysis at time 
𝑡 (i.e., each hour) by an energy-harvesting device, 𝛥𝑡 is the energy 
curtailed due to limits in the transmission system at time 𝑡, and 𝑇
is the years of analysis. This objective function is subject to various 
constraints which will be discussed in this section. 
max
y,w,v

∑

t∈T

(

𝐸𝐺𝑡(𝑦,𝑤, 𝑣)𝑊 𝑖𝑛𝑑 + 𝐸𝐺𝑡(𝑦,𝑤, 𝑣)𝐾𝑖𝑡𝑒 − 𝛥𝑡(𝑦,𝑤, 𝑣)
)

(11)

Within the portfolio optimization, an LCOE (acting as a budget) 
is set as a constraint, as shown in Eq.  (12) where 𝑇𝐴𝐶 is the total 
annualized cost of each deployment and 𝑇𝐶 is the annualized cost 
of the transmission system. A configuration of devices and device 
locations is chosen that meets the set LCOE. 

𝑇𝐴𝐶𝑊 𝑖𝑛𝑑 + 𝑇𝐴𝐶𝐾𝑖𝑡𝑒 + 𝑇𝐶
8760 E𝑡∈𝑇

(

𝐸𝐺𝑊 𝑖𝑛𝑑
𝑡 + 𝐸𝐺𝐾𝑖𝑡𝑒

𝑡 − 𝛥𝑡
) ≤ 𝐿𝐶𝑂𝐸 (12)

Next, constraints on aggregating costs are shown in Eqs. (13)–(15) 
where 𝐴𝐶 is the annualized cost of deploying one device at a given site 
location, 𝑇𝐶𝑖 is the annualized cost of a transmission system placed at 
site 𝑖, 𝐷 is the set of device designs, 𝐼𝑑 is the set of viable site locations 
for the deployment of device design 𝑑, and 𝐼𝑇 𝑟 is the set of locations 
for the energy collection system. 
𝑇𝐴𝐶𝑊 𝑖𝑛𝑑 =

∑

𝑑∈𝐷𝑊 𝑖𝑛𝑑

∑

𝑖∈𝐼𝑑𝑊 𝑖𝑛𝑑

𝐴𝐶𝑊 𝑖𝑛𝑑
𝑖,𝑑 𝑦𝑊 𝑖𝑛𝑑

𝑖,𝑑 (13)

𝑇𝐴𝐶𝐾𝑖𝑡𝑒 =
∑

𝑑∈𝐷𝐾𝑖𝑡𝑒

∑

𝑖∈𝐼𝑑𝐾𝑖𝑡𝑒

𝐴𝐶𝐾𝑖𝑡𝑒
𝑖,𝑑 𝑦𝐾𝑖𝑡𝑒

𝑖,𝑑 (14)

𝑇𝐶 =
∑

𝑖∈𝐼𝑇 𝑟

𝑣𝑖𝑇𝐶𝑖 (15)

These constraints determine the total cost of the energy-harvesting 
devices and the total system costs. This constraint is appropriate be-
cause aggregate costs that are exceedingly expensive would deter inte-
grated deployment.

The aggregating energy generation constraints in Eqs. (16)–(17) 
focus on the total energy generation coming from the energy-harvesting 
devices (𝐸𝐺𝑡). 
𝐸𝐺𝑊 𝑖𝑛𝑑

𝑡 =
∑

𝑑∈𝐷𝑊 𝑖𝑛𝑑

∑

𝑖∈𝐼𝑑𝑊 𝑖𝑛𝑑

𝐸𝐺𝑊 𝑖𝑛𝑑
𝑖,𝑑,𝑡 𝑦𝑊 𝑖𝑛𝑑

𝑖,𝑑 ∀ 𝑡 ∈ 𝑇 (16)

𝐸𝐺𝐾𝑖𝑡𝑒
𝑡 =

∑

𝑑∈𝐷𝐾𝑖𝑡𝑒

∑

𝑖∈𝐼𝑑𝐾𝑖𝑡𝑒

𝐸𝐺𝐾𝑖𝑡𝑒
𝑖,𝑑,𝑡 𝑦𝐾𝑖𝑡𝑒

𝑖,𝑑 ∀ 𝑡 ∈ 𝑇 (17)

The constraint on curtailment is shown in Eq.  (18), where 𝑅𝑃𝑇 𝑟 is 
the rated power capacity of the transmission system. This constraint 
balances energy generation and the amount of energy that must be 
curtailed by the system. Additionally, it considers the balance between 
creating enough energy to saturate the transmission system, while 
not over-producing energy to the point where the majority of energy 
created is being curtailed. 
𝐸𝐺𝑊 𝑖𝑛𝑑

𝑡 + 𝐸𝐺𝐾𝑖𝑡𝑒
𝑡 − 𝛥𝑡 ≤ 𝑅𝑃𝑇 𝑟 ∀ 𝑡 ∈ 𝑇 (18)
6 
Limits on the number of device designs are set in Eqs. (19)–(22) 
where 𝑁𝑇  is the maximum total number of devices deployed and 𝑁𝐷
is the maximum number of different designs from the given suite of 
designs used by the portfolio optimization model. These constraints 
dictate how many different models of each energy-harvesting device 
the portfolio may choose from. 
∑

𝑖∈𝐼𝑑𝑊 𝑖𝑛𝑑

𝑦𝑊 𝑖𝑛𝑑
𝑖,𝑑 ≤ 𝑤𝑊 𝑖𝑛𝑑

𝑑 𝑁𝑇𝑊 𝑖𝑛𝑑 ∀𝑑 ∈ 𝐷𝑊 𝑖𝑛𝑑 (19)

∑

𝑑∈𝐷𝑊 𝑖𝑛𝑑

𝑤𝑊 𝑖𝑛𝑑
𝑑 ≤ 𝑁𝐷𝑊 𝑖𝑛𝑑 ∀𝑑 ∈ 𝐷𝑊 𝑖𝑛𝑑 (20)

∑

𝑖∈𝐼𝑑𝐾𝑖𝑡𝑒

𝑦𝐾𝑖𝑡𝑒
𝑖,𝑑 ≤ 𝑤𝐾𝑖𝑡𝑒

𝑑 𝑁𝑇𝐾𝑖𝑡𝑒 ∀𝑑 ∈ 𝐷𝐾𝑖𝑡𝑒 (21)

∑

𝑑∈𝐷𝐾𝑖𝑡𝑒

𝑤𝐾𝑖𝑡𝑒
𝑑 ≤ 𝑁𝐷𝐾𝑖𝑡𝑒 ∀𝑑 ∈ 𝐷𝐾𝑖𝑡𝑒 (22)

Limits on the maximum number of devices per site are set by the 
constraints shown in Eqs. (23)–(24) where 𝑅𝑂𝐿𝐴|𝐵 is the ratio of the 
area of the site of the technology A that is overlapped by the site of 
the technology B, 𝑃𝐷 is the maximum packing density for each device, 
𝑆𝐿𝐴|𝐵 is how many devices of type A can be placed at the same location 
for each device of type B and 𝑂𝐿𝐴|𝐵|

𝑖,𝑑  is the set of site/designs (𝑖, 𝑑) 
from technology B that overlap with the sites/designs of technology A. 
These constraints ensures devices will not overlap or act detrimentally 
towards one another. 

𝑦𝑊 𝑖𝑛𝑑
𝑖,𝑑 ≤ 𝑁𝑇𝑊 𝑖𝑛𝑑

𝑖,𝑑 −

[

∑

(

𝑖𝑜 ,𝑑𝑜
)

∈𝑂𝐿𝑊 𝑖𝑛𝑑|𝑊 𝑖𝑛𝑑
𝑖,𝑑

⎛

⎜

⎜

⎝

1∕𝑃𝐷𝑊 𝑖𝑛𝑑
𝑖𝑜 ,𝑑𝑜

𝑦𝑊 𝑖𝑛𝑑
𝑖𝑜 ,𝑑𝑜

𝑅𝑂𝐿𝑊 𝑖𝑛𝑑|𝑊 𝑖𝑛𝑑
(𝑖,𝑑)|(𝑖𝑜 ,𝑑𝑜)

1∕𝑃𝐷𝑊 𝑖𝑛𝑑
𝑖,𝑑

⎞

⎟

⎟

⎠

−

∑

(

𝑖𝑜 ,𝑑𝑜
)

∈𝑂𝐿𝑊 𝑖𝑛𝑑|𝐾𝑖𝑡𝑒
𝑖,𝑑

(

𝑦𝐾𝑖𝑡𝑒
𝑖𝑜 ,𝑑𝑜

𝑅𝑂𝐿𝑊 𝑖𝑛𝑑|𝐾𝑖𝑡𝑒
(𝑖,𝑑)|(𝑖𝑜 ,𝑑𝑜)

(

𝑃𝐷𝑊 𝑖𝑛𝑑
𝑖,𝑑

𝑃𝐷𝐾𝑖𝑡𝑒
𝑖𝑜 ,𝑑𝑜

− 𝑆𝐿𝑊 𝑖𝑛𝑑|𝐾𝑖𝑡𝑒
(𝑑)|(𝑑𝑜)

)) ]

∀ 𝑑 ∈ 𝐷𝑊 𝑖𝑛𝑑 , 𝑖 ∈ 𝐼𝑑
𝑊 𝑖𝑛𝑑

(23)

𝑦𝐾𝑖𝑡𝑒
𝑖,𝑑 ≤ 𝑁𝑇𝐾𝑖𝑡𝑒

𝑖,𝑑 −
[

∑

(

𝑖𝑜 ,𝑑𝑜
)

∈𝑂𝐿𝐾𝑖𝑡𝑒|𝑊 𝑖𝑛𝑑
𝑖,𝑑

(

𝑦𝑊 𝑖𝑛𝑑
𝑖𝑜 ,𝑑𝑜

𝑅𝑂𝐿𝐾𝑖𝑡𝑒|𝑊 𝑖𝑛𝑑
(𝑖,𝑑)|(𝑖𝑜 ,𝑑𝑜)

(

𝑃𝐷𝐾𝑖𝑡𝑒
𝑖,𝑑

𝑃𝐷𝑊 𝑖𝑛𝑑
𝑖𝑜 ,𝑑𝑜

− 𝑆𝐿𝐾𝑖𝑡𝑒|𝑊 𝑖𝑛𝑑
(𝑑)|(𝑑𝑜)

))

−

∑

(

𝑖𝑜 ,𝑑𝑜
)

∈𝑂𝐿𝐾𝑖𝑡𝑒|𝐾𝑖𝑡𝑒
𝑖,𝑑

⎛

⎜

⎜

⎝

1∕𝑃𝐷𝐾𝑖𝑡𝑒
𝑖𝑜 ,𝑑𝑜

𝑦𝐾𝑖𝑡𝑒
𝑖𝑜 ,𝑑𝑜

𝑅𝑂𝐿𝐾𝑖𝑡𝑒|𝐾𝑖𝑡𝑒
(𝑖,𝑑)|(𝑖𝑜 ,𝑑𝑜)

1∕𝑃𝐷𝐾𝑖𝑡𝑒
𝑖,𝑑

⎞

⎟

⎟

⎠

]

∀ 𝑑 ∈ 𝐷𝐾𝑖𝑡𝑒, 𝑖 ∈ 𝐼𝑑𝐾𝑖𝑡𝑒

(24)

The maximum radius for the energy collection system is limited 
by Eqs. (25)–(26) where 𝑂𝑅𝑣𝑖  is the set of designs that have their 
corresponding site location farther than 𝑅 kilometers from the energy 
collection point associated with 𝑣𝑖. These constraints do not allow the 
transmission system to be larger than a certain radius, limiting the area 
where energy-harvesting devices may be deployed. 

∑

𝑊 𝑖𝑛𝑑

𝑦𝑊 𝑖𝑛𝑑
𝑖,𝑑 +

∑

𝐾𝑖𝑡𝑒

𝑦𝐾𝑖𝑡𝑒
𝑖,𝑑 ≤ (1 − 𝑣𝑖)𝑁𝑇 ∀𝑖 ∈ 𝐼𝑇 𝑟 (25)
(𝑘,𝑑)∈𝑂𝑅𝑣𝑖 (𝑘,𝑑)∈𝑂𝑅𝑣𝑖
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Fig. 6. Flow chart showing the solution process of the portfolio optimization.
∑

𝑖∈𝐼𝑇 𝑟

𝑣𝑖 = 1 (26)

2.4. Portfolio optimization outputs

This subsection details the outputs of the portfolio optimization. In 
order to solve, the mixed integer nonlinear optimization is modeled in 
Pyomo [42,43]. It was then solved using Gurobi [44] as shown in Fig. 
6.

The developed portfolio optimization selects the optimal configu-
ration of candidate devices in order to coordinate energy generation 
from a variety of devices and/or resources for a given region of interest, 
subject to the constraints discussed in Section 2.3. To accomplish this, 
the model must consider each device’s performance and costs at each 
location in the domain in order to calculate the energy sent back to 
shore and the LCOE. By using the input device models and environ-
mental data, time series power for each site is calculated. It is then 
used with the input cost data for each device to determine the LCOE 
and the energy sent to shore. To provide meaningful analysis, the LCOE 
constraint is parameterized, and optimal configurations of devices are 
solved for at each LCOE to yield a full set of configurations. The best 
configuration in terms of energy delivered to shore is then selected 
and output. This process creates a computationally efficient frontier 
which captures the trade-offs between delivering more energy to shore, 
thereby displacing as much fossil fuel as possible, and decreasing LCOE 
so as to not drive the cost of energy upward.

3. Case study overview

This section lays out a case study using existing wind turbine 
models, optimized MHK kite designs, and a transmission system op-
timization model. The costs for candidate devices and the transmission 
system will be discussed in this section.

3.1. The North Carolina coast

This case study focuses on the offshore energy harvesting opportu-
nities off of the coast of NC and explores the coordination of energy 
generation from wind turbines with a suite of optimized MHK kites. 
Environmental parameters such as wind speed and ocean current speed 
affect the amount of power that can be sent to shore and these change 
on a site-by-site basis. A map showing the wind speeds and ocean 
current speeds in the region of interest is shown in Fig.  7. The wind 
speed increases with distance from shore, and the ocean current speed 
increases within the Gulf Stream. It is noted that the ocean current 
speeds are minimal in areas that are not the Gulf Stream, and therefore 
have not been depicted.

Furthermore, water depth tends to increase with distance from 
shore, which affects transmission costs, due to transmission lines need-
ing to be installed longer and deeper. Additionally, depth affects wind 
turbine and kite LCOEs predominantly due to mooring costs. Some 
of these costs can be alleviated when deploying kites off of floating 
platforms attached to the wind turbines themselves, which is why this 
deployment method was selected for this case study. Water depths for 
the domain are shown by contour lines in Fig.  7.
7 
3.2. Transmission system costs

Estimates for the CapEx and OpEx of the transmission systems 
were made based upon Eqs. (27)–(37), which were derived from Faria 
et al. [18]. Eqs. (27)–(31) make up the CapEx of a AC system and 
represent the offshore platform and plant cost (𝑂𝑃𝑃𝐶𝐴𝐶 ), the onshore 
plant cost (𝑂𝑃𝐶𝐴𝐶 ), the cost for reactive power compensation (𝐶𝑄𝐴𝐶 ), 
the cable cost (𝐶𝐶𝐴𝐶 ), and the total CapEx (𝐶𝐴𝑃𝐸𝑋𝑇𝐿

𝐴𝐶 ), respectively. 
𝑆𝑇𝐿 is the rated power of the transmission line, 𝑄𝑐 is the total reactive 
power produced by the line, 𝑁𝑐 is the number of parallel circuits, 𝑐𝑐𝑘𝑚𝐴𝐶
is the cost per kilometer of cable supply, 𝓁𝑇𝐶 is the length of trunk 
cable, and 𝐷𝑆𝐿 is the distance of the energy collection point to shore.

Eqs. (32)–(35) represent CapEx of a DC system and represent the 
offshore platform and plant cost (𝑂𝑃𝑃𝐶𝐷𝐶 ), the onshore plant cost 
(𝑂𝑃𝐶𝐷𝐶 ), the cable cost and installation (𝐶𝐶𝐷𝐶 ), and the CapEx 
(𝐶𝐴𝑃𝐸𝑋𝑇𝐿

𝐷𝐶 ), respectively. Eq. (36) represents the OpEx of the system 
(𝑂𝑃𝐸𝑋𝑇𝐿), and Eq.  (37) represents the annualized transmission costs 
(𝑇𝐶𝑇𝐿) where 𝐹𝐶𝑅𝑇𝐿 is the fixed charge rate.

The efficiency and LCOE (marginal component assuming 50% CF) 
for selected transmission configurations and the site locations consid-
ered in this work are shown in Fig.  8. 
𝑂𝑃𝑃𝐶𝐴𝐶 = 6.55 + 0.0472 𝑆𝑇𝐿 [𝑀$] (27)

𝑂𝑃𝐶𝐴𝐶 = 0.03434 𝑆𝑇𝐿
0.7513 [𝑀$] (28)

𝐶𝑄𝐴𝐶 = 0.0262 𝑄𝑐 [𝑀$] (29)

𝐶𝐶𝐴𝐶 = 𝑁𝑐𝑐𝑐
𝑘𝑚
𝐴𝐶𝑒𝑙𝑙𝑇𝐶 + 0.221 𝐷𝑆𝐿 + 4.245𝑥10−3 𝑆𝑇𝐿 + 0.629 [𝑀$] (30)

𝐶𝐴𝑃𝐸𝑋𝑇𝐿
𝐴𝐶 = 𝑂𝑃𝑃𝐶𝐴𝐶 + 𝑂𝑃𝐶𝐴𝐶 + 𝐶𝑄𝐴𝐶 + 𝐶𝐶𝐴𝐶 [𝑀$] (31)

𝑂𝑃𝑃𝐶𝐷𝐶 = 32.75 + 0.07205 𝑆𝑇𝐿 [𝑀$] (32)

𝑂𝑃𝐶𝐷𝐶 = 0.1067 𝑆𝑇𝐿 [𝑀$] (33)

𝐶𝐶𝐷𝐶 = 𝑁𝑐𝑐𝑐
𝑘𝑚
𝐷𝐶𝓁𝑇𝐶 + 0.221 𝐷𝑆𝐿 + 4.245𝑥10−3 𝑆𝑇𝐿 + 0.629 [𝑀$] (34)

𝐶𝐴𝑃𝐸𝑋𝑇𝐿
𝐷𝐶 = 𝑂𝑃𝑃𝐶𝐷𝐶 + 𝑂𝑃𝐶𝐷𝐶 + 𝐶𝐶𝐷𝐶 [𝑀$] (35)

𝑂𝑃𝐸𝑋𝑇𝐿 = 0.025 𝐶𝐴𝑃𝐸𝑋𝑇𝐿 [𝑀$∕𝑌 𝑒𝑎𝑟] (36)

𝑇𝐶𝑇𝐿 = 𝐹𝐶𝑅𝑇𝐿𝐶𝐴𝑃𝐸𝑋𝑇𝐿 + 𝑂𝑃𝐸𝑋𝑇𝐿 [𝑀$∕𝑌 𝑒𝑎𝑟] (37)

3.3. Wind turbine costs

The capital and operational expenditures for these technologies are 
shown in Table  3 for fixed-bottom turbines at different water depths 
and site-to-landfall distances [31]. Wind speeds at 100, 140, and 160 m 
height were taken for the regions of interest in this case study from 
NREL Wind Toolkit at a maximum depth of 1000 m from January 2009 
to December 2013 with spatial resolution of 2 km × 2 km and a 1-
hour time discretization [26]. These speeds were adjusted to the wind 
turbine model hub heights using the wind profile power law [45]. This 
data combined with the CapEx and OpEx, enabled solving for capacity 
factors (CF) and LCOEs for these turbine models. The CFs and LCOEs for 
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Fig. 7. Average ocean current speeds based on a 3-hour time discretization for 2007–2013 [27] overlaid onto average offshore wind speeds (2009–2013) off the 
coast of NC for a wind turbine with 140 m hub height [26]. Dashed lines represent different water depths.
Fig. 8. Transmission system LCOE (assuming a 50% CF), efficiency, and mode of transmission (HVAC or HVDC).
8 and 18 MW wind turbines are shown in Fig.  9. CFs and LCOEs for 12 
and 15 MW wind turbines are located in Appendix  B. Higher capacity 
factor locations lend themselves to producing closer to the maximum 
theoretical energy of the device. Additionally, it is clear that the LCOE 
increases with distance from shore, despite high CFs, which indicates 
that mooring costs are a significant cost influence. Mooring costs are 
expected to increase with distance from shore due to increased water 
depth.
8 
3.4. Kite costs

To select kite designs for input into the portfolio optimization, 
this work collected data from The Hybrid Coordinate Ocean Model 
(HYCOM) [27] at 3-hour time discretizations and 1∕12◦ grid resolution 
for the time period 2009–2013. This data gets input into a control 
module which outputs the optimal time series power generation of a 
given kite in a given site location. This control module accounts for 
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Table 3
CapEx and OpEx estimates for fixed-bottom offshore wind turbines at different depths and distances from shore [31]. Here, TRG is representative of different 
ocean sites.
 Resource
group

Depth
(m)

Site to landfall
(km)

Base 2021 8 MW (102 m 
Hub)

Conservative 2030 12 
MW (136 m Hub)

Moderate 2030 15 MW 
(150 m Hub)

Advanced 2030 18 MW 
(161 m Hub)

 Capex [$/kW] Opex 
[$/kW-yr]

Capex [$/kW] Opex 
[$/kW-yr]

Capex [$/kW] Opex 
[$/kW-yr]

Capex [$/kW] Opex 
[$/kW-yr]

 

 TRG 1 23 35 $3871 $118 $2435 $105 $2435 $87 $2435 $79  
 TRG 2 24 38 $3917 $121 $3357 $107 $2723 $89 $2464 $80  
 TRG 3 28 40 $4073 $123 $3397 $109 $2755 $90 $2562 $82  
 TRG 4 32 45 $4229 $124 $3533 $110 $2865 $91 $2660 $82  
 TRG 5 32 65 $4438 $127 $3668 $113 $2975 $94 $2792 $85  
 TRG 6 33 74 $4406 $126 $3849 $111 $3122 $92 $2772 $84  
 TRG 7 36 77 $4446 $120 $3822 $106 $3100 $88 $2797 $80  
Fig. 9. Capacity factors and LCOEs for 8 and 18 MW wind turbine designs at different locations on the north carolina coast. Computed for The Period (2009–2013).
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 

the changing ocean current profile causing the kite to adjust its depth in
order to take advantage of relatively higher flows. The depth controller
portion of this control model comes from [25]. It should be noted
that although each kite was designed for a set depth, it is capable
of operating at other depths, and adjusting depth is typical for kite
systems. However, despite the possibility that the kite enters a zone
in which the flow speed is high enough to generate more than its rated
power, the kite is not permitted to generate more power than its rated
power due to structural limitations.

The five kite designs with the most potential in terms of LCOE off
the coast of NC were selected for use within this case study and are
shown in Table  4. These five designs indicate that for this domain, the
147.47 kW kite design is the cheapest configuration at 23.49 $/MWh
and the 931.91 kW design is still relatively cost-competitive at 39.90
$/MWh;

For each kite design, annualized cost estimates were developed.
The ARPA-E SHARKS cost modeling spreadsheet [46] was used as
the base for the calculations. Equations from the spreadsheet were
adapted using kite sizing and cost modeling from Aull et. all, [47] with
modifications to address variations between marine vs. airborne kites,
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Table 4
Top five design configurations with the lowest average 10% LCOEs. 
 Design Design parameters aAverage 10% lowest  
 number Rated flow 

speed [m/s]
Rated power 
[kW]

LCOEs [$/MWh]  

 1 0.75 147.47 23.49  
 2 1 312.61 23.86  
 3 1.25 191.68 28.49  
 4 0.5 53.75 30.06  
 5 1.5 931.91 39.90  
a Not considering transmission system cost.

such as increased costs of mooring and anchoring. Fig.  10 shows the CFs 
for a selection of kite designs, and Fig.  11 displays the corresponding 
LCOEs without accounting for transmission system costs, only showing 
LCOEs for sites below a threshold of 250 $/MWh. Based on these 
figures, a trend emerges. Sites with lower LCOEs tend to have higher 
CFs. This is because the higher the CF, the more often the device 
is generating power at capacity, hence increasing the devices power 
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Fig. 10. CFs for selected kite designs with defined VS and rated flow speeds. Computed for the period 2009–2013.
output, which decreases LCOE. These sites with high CFs and low 
LCOEs also correspond to locations in the water column where the 
ocean current is on average, higher; this allows the kites to generate 
more power on average which increases CF, and decreases LCOE.

4. Case study results and discussion

This section investigates the power and LCOE implications of the 
proposed fused portfolio optimization model by exploring deployments 
of wind turbines and optimized MHK kites within the same transmission 
system. The chosen region of interest is off the entire coast of North 
Carolina, where the ocean current is conducive to kite deployment, and 
the wind resource is prominent. It was found that integrating the opti-
mized suite of kites into the portfolio enables greater power generation 
at lower costs than single-device portfolios; avoiding the diminishing 
returns that accompany single-device systems. This is shown in Fig.  12 
for a transmission system with a rated power of 300 MW, and in Fig. 
13 for a transmission system with a rated power of 1200 MW, although 
this trend holds for all investigated transmission system rated powers.

For these efficient frontiers, optimal deployments were selected 
via the portfolio optimization model based upon a sweep of LCOE 
constraints. For the 300 MW efficient frontiers, it can be seen that 
the optimized suite of kites (blue, dashed line) outperforms the single 
device wind deployments (black and yellow lines) based strictly on 
LCOE, demonstrating a benefit of the portfolio optimization being able 
to choose the optimal design on a site-by-site basis. This occurs due to 
the kites having significantly lower LCOEs compared to wind turbines 
within this transmission system. Kites having lower LCOEs than wind 
turbines is especially significant for the 1200 MW transmission system 
and 8 MW wind turbines (increased base transmission costs compared 
to 300 MW). It is shown that the lowest attainable LCOE with only 8 
MW wind turbines is higher than the attainable LCOE when combining 
kites and 8 MW turbines. This is due to the kites reducing the total 
LCOE by increasing power outputs at reduced costs. This is shown by 
10 
the green line in Fig.  13. Note that the same effect does not occur for 
the 1200 MW transmission and 18 MW turbines due to the 18 MW 
turbines having lower LCOEs than kites under this transmission system. 
However, both the 300 MW and 1200 MW efficient frontiers show 
that the coordinated deployments of 8 MW and 18 MW wind turbines 
and the suite of kites (green and red lines) are able to achieve higher 
average powers sent back to shore at lower costs than single device 
deployments. Any reductions in average power along the frontiers for 
certain lower LCOEs are due to the configuration’s location having to 
be balanced between being beneficial for kites and beneficial for wind 
turbines.

Fig.  14 shows the optimized deployment locations from the lowest 
LCOE condition from the 8 MW wind and kites deployment from Fig. 
12 (green line). From the figure, it can be seen that the portfolio 
optimization chooses to place the devices where MHK kites can stretch 
as far into the gulf stream as possible, where the ocean current resource 
is the strongest, while still allowing the system radius to stretch close 
enough to shore that the water depth is conducive to wind turbine 
deployment. This relates back to Fig.  9, where it is shown that capacity 
factors become more favorable as distance to shore increases, because 
the depth also increases, the cost of mooring increases, making the 
LCOEs at these sites unfavorable. These selections from the portfolio 
optimization account for the combined deployment’s ability to maxi-
mize power sent back to shore via its transmission system with low 
increases in LCOE; from the corresponding efficient frontiers, we can 
see that on average, our wind and kite deployments operate closer 
to the rated power of the transmission system that the individual 
device deployments the specific LCOE. Furthermore, it can be seen 
that different kites are selected by the portfolio on a site-by-site basis, 
allowing the kite deployments to operate in zones where their capacity 
factors are high, thereby reducing their LCOEs and enabling the suite 
of optimized kite designs to outperform the single-device wind turbine 
deployments.
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Fig. 11. LCOEs for a combination of kite designs developed with defined VS and rated flow speed. Values computed for the period 2009–2013.
Fig. 12. Efficient frontiers for 300 MW transmission system: 8 MW wind turbine deployments (black), 18 MW wind turbine deployments (yellow), of optimized 
kite design suite deployments (blue, dashed), coordinated 8 MW wind turbine and optimized kite design suite deployments (green), and coordinated 18 MW wind 
turbine and optimized kite design suite deployments (red).
4.1. Sources of uncertainty and final remarks

It should be noted that there is inherently uncertainty in all cost and 
design models. Sources of uncertainty in cost models include changing 
costs of materials, labor, and permitting. Other evolving factors include 
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government subsidies, grid demand, and stakeholder engagement, all of 
which may affect costs. A cost sensitivity study was performed in Fig. 
15.

This study treats the 8 MW wind and kites scenario on a 300 
MW transmission line, from Fig.  14, as the base case. It then varies 
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Fig. 13. Efficient frontiers for 1200 MW transmission system: 8 MW wind turbine deployments (black), 18 MW wind turbine deployments (yellow), of optimized 
kite design suite deployments (blue, dashed), coordinated 8 MW wind turbine and optimized kite design suite deployments (green), and coordinated 18 MW wind 
turbine and optimized kite design suite deployments (red).
Fig. 14. Top: Deployment maps for the lowest and highest LCOE conditions from the 8 MW wind and kites deployment on 300 MW transmission system from 
Fig.  12 (green line). Bottom: Deployment maps for the lowest and highest LCOE conditions from the 8 MW wind and kites deployment on 1200 MW transmission 
system from Fig.  13 (green line). Wind and ocean current speeds are overlaid.
costs for wind, kites, and transmission individually by ±20%. From 
Fig.  15, it can be seen that reducing costs of wind, kites, and the 
transmission system reduces the LCOE for sending a given average 
power to shore. Similarly, increasing cost of wind turbines, kites, and 
12 
the transmission system increases the LCOE for sending a given average 
power to shore. Interestingly, wind turbines are shown to be more 
sensitive to these effects. This is due to wind turbines having the highest 
baseline LCOEs. Another point of interest is that when the kite costs 
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Fig. 15. These efficient frontiers represent various cost deviations from a baseline 8 MW wind and kite frontier. Blue dashed lines represent ±20% wind cost 
scenarios, red dashed lines represent ±20% kite cost scenarios, and yellow dashed lines represent ±20% transmission cost scenarios.
are varied, at higher LCOEs, these scenarios are almost identical. This 
indicates that at higher LCOE combined scenarios, wind turbines domi-
nate power production. It should be noted that although this sensitivity 
study varied costs in terms of percentages, explicit quantification of 
cost model uncertainties should be of interest for continuing work. 
Furthermore, results will be affected by the fidelity of the optimized 
design library the user inputs to the portfolio optimization. Future work 
should include accounting for design model uncertainties, especially for 
designs of energy-harvesting devices that are in nascency and not yet 
being developed at full-scale.

5. Conclusion

This work introduced and tested a fused portfolio optimization 
model. This model integrated an optimized suite of energy-harvesting 
devices into a portfolio optimization model and expanded the portfolio 
optimization model to allow it to site-by-site select the best energy-
harvesting device from a set of optimized devices. To enable the inte-
gration an optimized suite of energy-harvesting devices, a transparent 
MHK kite optimization model is contributed.

The case study of a domain off the coast of NC demonstrated that 
inputting suites of optimally designed energy harvesting devices into 
the portfolio optimization and allowing the model to decide which 
device designs are the best fit on a site-by-site basis enables coordinated 
deployments to send more power back to shore for minimal increases 
in LCOE. Furthermore, it clearly shows that deploying multiple offshore 
energy-harvesting devices in tandem on a shared transmission system 
enables the maximization of power transmitted back to shore in a 
cost-effective manner.

Future work should explore expansion of the portfolio optimization 
to include additional optimized suites of offshore energy-harvesting 
devices. With more optimized devices, it may be possible to gain 
additional power and cost benefits due to further diversification of 
the portfolio. Moreover, future work should address weighting terms 
to account for devices at lower innovation stages, capital discounts, 
and policy dynamics. Additionally, investigation of this optimization 
problem while addressing device model uncertainty, connecting the 
13 
energy-harvesting configuration with energy storage, and addressing 
design of off-grid systems, like mobile energy harvesting devices are 
promising avenues to for the expansion of this work. Finally, future 
work should employ a systematic comparison of results from the port-
folio optimization to hybrid energy systems, which may consist of 
different technologies from one another and exist in multiple domains.
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Appendix A. Optimized kite design analysis

Initially, at low flow speeds, the optimization model chooses a 
wing with a large span, and a small enough aspect ratio to allow 
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Fig. B.16. Capacity factors and LCOEs for 12 and 15 MW wind turbines at different locations on the North Carolina coast. Computed for The Period (2009–2013).
the wing enough surface area to achieve enough lift to maximize the 
extraction of power from the low flow. As the flow speed increases, 
the optimization selects a wing with high span and low aspect ratio to 
increase the surface area of the wing, thereby increasing the lift on the 
wing, which results in more power. This also increases the drag on the 
wing, which indicates that the drag of the kite is small in comparison to 
the tether drag, because if the drag of the kite were on the same scale 
as the drag from the tether, this increase in drag would greatly reduce 
power output. As the flow velocity continues to increase, the lift forces 
acting on the wing become too large to satisfy the structural constraints, 
most prominently the bending moment, thus the optimization opts for 
a wing with a lower span to reduce the bending moment. Furthermore, 
the power output of the kites increases with increasing flow speed due 
to the power being proportional to the prevailing flow speed cubed 
until the flow speed creates too much force on the wings such that 
structural constraints, namely bending moment, are no longer satisfied. 
The kite then reduces its span to reduce bending moment, which results 
in less lift for a given AR, and the kite being able to create less power.

The structural mass of the kite includes the internal spar structure, 
as well as the wing’s outer shell and internal syntactic foam. Upon 
inspection of these results, it can be concluded that until 2.25 m/s 
flow speed, the kite’s structural constraints are inactive, and the opti-
mization selects the lower bound for the thickness of the wing shell. 
The required MOI increases as flow speed increases because high 
flow speeds result in higher forces on the wing, which results in this 
constraint becoming active with increasing flow speeds. To increase 
its bending rigidity, the structural mass in the kite increases at higher 
flow speeds. For further information on constraint activity in kites, the 
reader is directed to [39].

Appendix B. Capacity factors and levelized costs of energy for 12 
and 15 MW wind turbines

See Fig.  B.16.
14 
Data availability

Data will be made available on request.
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