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Offshore wind and marine hydrokinetic energy are underutilized energy resources. Efficiently exploiting these
energy resources requires the identification of optimal deployment locations and optimal designs for offshore
energy harvesting devices. These devices have the potential to be deployed in tandem such that the suite of
devices consistently saturates a given power transmission system. To better understand the economic viability
of harvesting marine renewable energy, a portfolio optimization is presented here. Portfolio optimization
frameworks help to identify optimal deployment maps for energy-harvesting devices in a given domain and
unify solutions of resource, technical performance, transmission, and cost model sub-problems into a unique
and comprehensive tool. These frameworks select the energy-harvesting device designs in advance. This work
proposes a portfolio optimization framework combined with optimal device design, sizing, and selection to
enable a more realistic energy depiction that is beneficial to stakeholders. By maximizing power sent back
to shore subject to a constraint on the levelized cost of energy, the algorithm creates an optimal mapping
of devices that produces the maximum transmittable power and stabilizes portfolio variability in a cost-
effective manner. Any reliably modeled offshore energy-harvesting device can be used within this framework.
In this work, wind turbines and marine hydrokinetic kites are selected as a case study considering they are
leading technologies for harvesting their respective energies. Results from this case study demonstrate optimal
portfolios of devices for a location off the coast of North Carolina and show the utility of fusing device design
optimization with the portfolio optimization.

increase from 2022. [5]. Additionally, using ocean current as an energy
resource has the technical potential to produce 2300 TWh/yr energy

1. Introduction

The ongoing energy transition is rapidly expanding, necessitating
the utilization of different renewable energy sources. In this context,
marine renewable energy (MRE) resources are presented as promising
sustainable energy candidates, which remain largely untapped [1].
Specifically, offshore wind energy has the potential to provide signifi-
cant amounts of energy should energy-harvesting devices be deployed
at scale [2]. Ocean current energy also possesses significant energy
potential, provided energy-harvesting devices are deployed at scale [3].
Their energy potential leads to offshore wind and ocean current energy
being of particular interest in MRE. Worldwide, the Global Wind Energy
Council anticipates an expansion of 380 GW of wind capacity by
2032 [4]. Domestically, by 2040 policies in the United States (US)
anticipate an offshore wind capacity of 42,730 MW, which is a 9%
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along the entire US coast [6]. Furthermore, the Gulf Stream between
Florida and North Carolina (NC) has the potential to produce 49
TWh/yr of energy, which equates to about 207 million homes [7].

NC in particular is focused on developing legislation and infrastruc-
ture to support utilization of the readily available MRE resources off
of their coast. In 2021, NC passed legislature committing to reduce
statewide CO, emissions by 70% by 2030, and become carbon neutral
by 2050 [8]. Considering NC’s location, especially with regard to the
Gulf Stream, it has the potential to utilize offshore energy resources to
aid in achieving carbon neutrality [9].

Harvesting these offshore energy resources, especially ocean current
energy, in addition to the wind resource enables maximization of
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energy output as well as increases the cost-effectiveness of energy
harvesting [10]. To compete with fossil fuels, coordinating energy
generation from these resources needs to be cost-effective. Portfolio op-
timizations are a tool that can be used to assess the economic viability
of a given portfolio (for this work, of energy harvesting devices).

Portfolio optimizations were pioneered in the field of economics
when Harry Markowitz published his mean-value portfolio (MVP) the-
ory [11]. His work focused on economics and creating a diversified
financial portfolio with the lowest possible risk [12]. Authors have
built upon MVP theory and used it to develop portfolio optimiza-
tion models within the renewable energy field. For example, in [13],
portfolio theory was used to reduce economic risk for a given value
of economic return for investments into different combinations of
renewable energy assets. Similarly, in [14], a portfolio optimization
model was used to investigate investment risks and their relation to
costs of energy generation when integrating renewable energy into
the grid. Additionally, in [15], a portfolio optimization was used to
determine the optimal renewable energy portfolios based on risk and
profitability under different cost scenarios. A portfolio optimization
which addressed deep uncertainty in energy costs was used in [16] to
highlight the utility of incorporating renewable energy into the grid
and provide energy-management insights. Moving towards offshore
energy, in [17] a portfolio optimization method was used in order to
select site locations for energy-harvesting devices while reducing the
risk of having their production affected by ocean current meander.
Furthermore, in [18], a portfolio optimization model was developed in
order to reduce the variability in energy delivered back to shore from
offshore energy harvesting. From this, it was found that integrating
multiple energy-harvesting devices leads to economic benefits and less
variability in energy being harvested for a given site [18]. This was fur-
ther confirmed in [10], where a neural network model was combined
with a portfolio optimization model that was designed to reduce the
risk within energy generation portfolio. Additionally, in [19], a port-
folio optimization was used to explore benefits from shared offshore
energy-harvesting device moorings, and mooring optimization.

Previous literature related to offshore portfolio models did not
address device design optimization or selection. This necessitates the
development of a fused portfolio optimization algorithm as a tool to
enable the optimal integration and deployment of multiple energy-
harvesting devices for a region of interest. Specifically, this work
builds on the framework developed in [18] by (i) Fusing optimal
device design, sizing and selection with the portfolio optimization, (ii)
taking curtailment of energy into account, and (iii) maximizing the
energy sent back to shore as the objective instead of reducing energy
variability. Overall, these contributions enable a more realistic energy
depiction, which benefits stakeholders. To demonstrate the benefits of
the proposed fused portfolio optimization, a case study is performed
for a domain off of the coast of NC. For the case study in this work,
offshore wind turbines were selected as one of two candidate energy-
harvesting devices to input into the portfolio optimization model since
wind turbines have been proven to be a leading technology in terms
of harnessing available offshore wind energy [20]. Moreover, NC is
actively expanding its offshore wind energy harvesting [21]. As men-
tioned above, NC is located near the Gulf Stream, which provides a
consistent ocean current. For this reason, the second candidate device
selected for the case study in this work is the marine hydrokinetic
(MHK) kite.

MHK kites are the leading technology for harvesting tidal and
ocean current energy, and are currently commercially deployed by
Minesto [22]. MHK kites use high lift-to-drag wings to fly in specific
patterns perpendicular to the oncoming flow. As shown in [23], this
enables kites to reach velocities 5 to 10 times faster than the oncoming
flow, which allows them to harvest an order of magnitude more energy
than stationary turbines. Models for grid-scale MHK kites, such as the
Minesto Dragon Class, are not transparent; detailed information about
rated flow speeds, ideal operating depths and/or altitudes, rated power,
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mass, or costs associated with the devices are unattainable [24]. The
lack of transparency with existing models necessitates the development
of an accurate, open source kite model that can create kite designs for
a variety of operating sites such that these designs can be input into the
overall portfolio optimization model. Designs for MHK kites can be gen-
erated site-specifically, [25]. However, this technique has drawbacks.
At a large scale, designing a kite for each individual location would
be unrealistic to manufacture based upon impractical tooling costs
associated with so many different device designs. Instead, addressing
spatial variation in MRE resources by site can be accomplished by
creating an optimized suite of kite designs based upon a set number of
current speeds and deployment depths that may be encountered within
the selected domain. This suite is then input into the portfolio model.

Overall, this work enables the coordination of energy generation
from multiple offshore energy sources via a multitude of candidate
devices. The contributions of this paper are as follows:

i A fused portfolio optimization model, within which device de-
sign, sizing and selection are integrated into an existing portfolio
optimization model. This model takes in suites of optimally
designed energy-harvesting devices, decides which device de-
signs are the best fit for the domain of interest, and from
these, decides the optimal locations and combinations of devices
such that power delivered to shore from the transmission sys-
tem is maximized for a given levelized cost of energy (LCOE)
constraint.

ii A transparent MHK kite optimization model

iii Provides a thorough analysis of a real-world case study

The remainder of this work is structured as follows. Section 2
provides descriptions of the fused portfolio optimization model and
the design optimization model, as well as in-depth descriptions of
the candidate technologies considered in the fused portfolio model
and LCOE. Section 3 provides information and details regarding the
performed case study. Section 4 provides the results from the case
study, and a thorough discussion of the results. Section 5 provides the
conclusions of the case study.

2. Fused portfolio optimization model

The fused portfolio optimization in this work is designed to take in
data from an environment, candidate energy-harvesting device models,
a transmission model, and cost models, and output the optimal de-
ployment configuration of energy-harvesting devices within a given do-
main. This framework takes optimal device design, sizing, and selection
into account. This framework is shown in Fig. 1.

2.1. Model input data

This subsection discusses the input data for the portfolio optimiza-
tion model including the environmental data used, the covered domain,
and how costs will be quantified. The transmission costs are discussed
in Section 3.

The wind speed data considered in this work comes from the NREL
Wind Toolkit [26]. The ocean current data comes from the Hybrid
Coordinate Ocean Model (HYCOM) for ocean current data [27]. Data
from the years 2009-2013 was used for this work due. Newer datasets
were not used due to the lack of availability of easily accessible ocean
current data for the domain.

The domain for the fused portfolio optimization can be made as
large or small as desired, provided energy resource data is readily
available. This model considers the site-dependency of transmission
system costs and the impact of site-dependency of the costs and power
outputs of energy-harvesting devices due to the available energy re-
source. To account for these site dependencies, LCOE, in dollars per
megawatt hour, is considered. LCOE is a measure of the lifetime costs
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Fig. 1. Overall framework of the portfolio optimization model that shows how the environmental data, energy-harvesting device costs, and energy-harvesting

device models interact with the portfolio optimization model.

of a system divided by the lifetime energy production of the system,
and is commonly used for economic analysis for marine energy con-
verters [28]. For example, in [29], LCOE is used for design analysis of
various devices. Additionally, in [30] LCOE is used to determine the
economic feasibilities of offshore energy harvesting deployments.

The lifetime costs of the system are split into capital expendi-
tures and operational expenditures. Capital expenditures include device
design, manufacturing, and deployment, and are typically one-time
costs for the system. Conversely, operational expenditures cover yearly
expenses such as maintenance and leasing costs. These will be defined
for each candidate device and the transmission system in Section 3.

2.2. Candidate technologies

Coordination of energy generation methods through a portfolio
optimization requires reliable models of energy-harvesting devices and
transmission systems. For energy-harvesting devices, the discussion in
this paper focuses on models for wind turbines and MHK kites. This
subsection will provide insight into these wind and kite system models.

2.2.1. Wind turbine modeling

Since wind turbines are an established technology, wind turbine
models are readily available. This work uses reliable wind turbine
models from the NREL 2023 Annual Technology Baseline (ATB) [31].
Models for 8 MW turbines (typical 2021 design) and 12, 15 and 18 MW
turbines which are esimated to represent offshore wind deployments in
2030 considering respectively a conservative, moderate and advanced
development of the offshore wind energy sector. These wind turbines
are shown in Fig. 2 along with their associated rotor diameters and hub
heights. To solve for the power the wind turbines produce at a given
wind speed, power is solved for based on the wind speed at a given site
based on the power curves shown in Fig. 3 which follow the power law
shown in Eq. (1). Here, p is the air density, A is the swept area of the
wind turbine blades, C, is the coefficient of power of the turbine, and
v,, is the wind speed at the hub height of the turbine. Note that the
C,s for each wind turbine at various wind speeds are given along with
their designs in [31].

1
P= EpAcpufU @

2.2.2. Marine hydrokinetic kite modeling and design suite optimization
MHK kites (kites) are one of the candidate devices included in
the portfolio optimization. Kites were selected for this case study
because they are a leading technology for harvesting ocean current
energy [32]. As discussed in Section 1, a kite’s high lift-to-drag ratio
allows it to “fly” underwater at speeds significantly in excess of the
prevailing flow speed, which through the cubic relationship between
flight speed and power easily leads to an order of magnitude increase

Table 1

Kite decision variables.
Variable Meaning Units
s Wingspan m
AR Aspect ratio
D Fuselage diameter m
L Fuselage length m
o Thickness of wing shell m
1y, Thickness of wing spars m
ty Thickness of fuselage m

in power per unit area when compared to stationary systems [23].
An example kite deployment is shown in Fig. 5. As with wind tur-
bines, the portfolio optimization requires a characterization of the
techno-economic performance of a suite of kites. However, unlike with
wind turbine manufacturers, leading underwater kite manufacturers
like Minesto [24] do not provide comprehensive power curve and cost
data for their designs (e.g., the Minesto Dragon Class), and the designs
themselves have not been tailored to the target region of operation
for our studies. Because of this, prior to performing the portfolio
optimization, a family of kite designs and corresponding performance
characterizations were generated, using an in-house model and opti-
mization procedure. Specifically, a suite of kites were optimized based
upon Eq. (2):

maximize P(u,v,)
subject to  A(w,v,) =0 2)
g,v,)<0

where P represents power, u represents the vector of design variables,
v, represents the flow speed for which a particular set of variables
were optimized (termed the rated flow speed), h(u) represents the
set of equality constraints, and g(u) represents the set of inequality
constraints. The decision variables are given in Table 1. It is important
to note that, although the objective function purely incentivizes power
without any penalty for cost (or a surrogate, such as mass), bulky
and costly systems are ultimately disallowed through constraints that
require sufficiently low mass.

To complete this optimization, reliable and transparent models
for both power output and constraints are needed. In the following
subsections, these will be discussed, starting with the power model.

Power model: The central goal in generating a family of kite designs is
to perform the optimization of (2) for multiple values of rated flow
speed, v,. The kites in the work are fly-gen systems, and as such,
produce power through onboard turbines attached to their wings [33].
Assuming the fuselage produces no lift, for a given set of operational
variables and marine deployment, the kite’s power output at v, is
calculated according to Loyd’s ideal assumptions [23]. This ideal power
output model is conventionally used in kite systems [34]. Moreover, it
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Fig. 2. 8, 12, 15, and 18 MW wind turbine designs from [31] with associated hub heights and diameters.
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Fig. 3. 8, 12, 15, and 18 MW wind turbine power curves from [31].

has been experimentally validated for MHK kites [35]. This model is
shown below in Eq. (3):

3
C3 (s, AR)

2 3
P(s, AR, L, D) = == ppp.0S,(s, ARW,? L _
277 10" " C2(s,AR, L, D)

cos’(0) 3
where py ( is the density of water, S, is the planform area of the wing,
V, is the rated flow speed of the kite, C; is the kite’s lift coefficient,
Cp, is the drag coefficient of the system and 6 is the optimal elevation
angle. It should be noted that the drag coefficient is inclusive of terms
for both the kite drag and the drag on the tether. Longer tether lengths
result in more drag, slowing the kite’s velocity and resulting in power
losses [36]. Furthermore, for maximum power, the kite is considered

to be flying at the optimal 3angle of attack (AoA), which is defined as
c

the AoA that maximizes c_é [37]. For additional information on the
D

calculations of C;, Cp, and S, the reader is directed to [38]. The
variables s, AR, L, and D are the wingspan, aspect ratio, fuselage length
and fuselage diameter of the kite respectively. These four variables will
be referred to as the geometric variables, and are the only decision
variables that affect the power output of the system (the other variables
affect constraints but not power).

Constraint models: The constraints of Eq. (2) come in the form of (i) a
neutral buoyancy inequality constraint (which imposes an upper limit
on mass), (ii) an equality constraint on fuselage thickness that ensures
appropriate shear stress and bending moment (although this can be

written as an inequality constraint, it will always be active), and (iii)
an inequality constraint on the wing’s tip deflection.

The neutral buoyancy constraint requires that the structural mass
of the kite fall below a prescribed fraction of the mass of displaced
water. By setting this fraction substantially lower than unity, reserve
mass becomes available for ballast and additional payloads that do not
contribute to satisfying structural constraints. The kite’s structural mass
is characterized based on the fuselage’s structural mass (given by m,
and including the tail) and the wing’s structural mass given by (m,,),
with the constraint given by:

me(s, AR, g, 15,) +my (s, AR, L, D,t g, 1) < ymy;g,, C)]

where my;, is the displaced mass of water. In addition to the straight-

forward process of computing the displaced volume (and therefore

my;sp), it is clearly necessary to calculate the structural mass terms.
The wing mass is calculated as [39]:

my, (s, AR, 1y, 1) = sp,[Agn(s, AR, 1) +
Agy(ss ARt 1))+ p oy (5)

where Ay, is the total area of the wing shell, A;, is the total area of the
spars, and m ,, is the mass of buoyant syntactic foam that fills the empty
space within the wing. The buoyancy of the foam allows the optimized
kites to achieve neutral buoyancy. Additionally, the wing is assumed to
have a constant cross section and the wing’s shell and spar thicknesses
are assumed to be constant. Furthermore, the wing is assumed to be
rectangular. Solving the equation for AR from Fig. 4 for the chord C
yields Eq. (6)
N
=R (6)
The fuselage is treated as a thin-walled hollow cylinder, with
constant wall thickness 7 ;5. The mass of the fuselage is modeled as [39]:

m(s, AR, L, D,t.1,,) = 2p,nDLt %)

The second set of constraints are structural limits on the fuselage.
Ultimately the fuselage must be sufficiently thick to satisfy both shear
stress and bending limits. Because there is no benefit to further thick-
ening the fuselage, both constraints are solved for at equality, then the
fuselage thickness, 7, is set to the larger of the two values (thereby
satisfying both constraints). This process is laid out below:

(i) To satisfy shear stress along the wing-fuselage attachment:

Fpoing(s. AR, L, D)

tr(s,AR,L,D) = ———— (8)
Is CL0yiera
where F,,,, is the lift force on the wing’s halfspan, ¢ is the factor of

safety, which is two in this work, and o

yieta 1S the yield strength of
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Fig. 4. View of the kite and wing structures, with selected dimensions highlighted.

the material, which for this study is aluminum 6061. This calculation
assumes the wing spars are continuous, and thus go through the fuse-
lage. Additionally, it is assumed that the fuselage must be thick enough
to account for the shear from both halfspans of the wing. For more
information on calculating F,;,,, see [40].

(ii) To satisfy the bending loads on the fuselage:

4|M,,, (s, AR, L, D)|

2
zD é/o—yield

t/5(s,AR, L, D) = 9)
where |M,,,.| is the maximum internal bending moment along the
fuselage where the force from the tail is assumed to equal 0.1*F,,;,,
acting in the opposite direction as the lift from the wing. The tether
is considered to have its attachment points at 40% of the fuselage
length. For information on how to calculate maximum internal bending
moments, the reader is directed to [41].

The final constraint is an inequality constraint on wing tip de-
flection. Specifically, to acquire values for ¢, and ,,, the wing tip
deflection constraint from [39] is considered. The halfspan is treated
as a cantilevered beam with a uniformly distributed load. and the
maximum wing tip deflection is assumed to be 5% of the halfspan.
Following [39]’s solution for the maximum deflection leads to an
inequality constraint on bending moment of inertia of the wing, which
takes the following form:

(s,AR,L, D) % s>

6% E x 64
where ;. is the moment of inertia (MOI) of the wing, I,,4.q is the
required MOI of the wing to satisfy the prescribed wing tip deflection
limit, 6 is the wing tip deflection, and E is the elastic modulus of the
wing’s material. Solving this at equality for a given t,, allows for 7, to
be solved for at equality.

Fwing

(s, AR, 1) 2 L oquireq(ss AR, L, D) = (10)

Iwing

Optimization results: In this work, the optimization of Eq. (2) was
solved for rated flow speeds in increments of 0.25 m/s, ranging from
0.5 m/s to 2.75 m/s, which are representative of the section of the
U.S. Gulf Stream and shelf under consideration in this work. A grid
search over geometric variables, along with a nested line search across
spar thicknesses and direct calculation of remaining structural variables
(based on equality constraints), was used to perform the optimization.
The optimized kite designs and associated power outputs and structural
masses for the given design space of operational variables are given in
Table 2 (to save space, only span and aspect ratio values are shown,
as these exhibit the most notable trends). For a detailed explanation of
these results please see Appendix A.

2.2.3. Transmission model

This works incorporates two modes of transmission, both with full
reactive power compensation: high voltage direct current (HVDC), and
high voltage alternating current (HVAC). The energy losses from the
system are divided into offshore terminal losses, losses on cables, and
onshore terminal losses. The models for these were taken from [18] and
the reader is directed there for more information.

Floating Platform

Flight Path

Anchor

Fig. 5. Floating platform deployment of MHK kite with key mechanical
components, VS, and elevation angle, 6, shown.

To optimize the transmission system, an algorithm was developed
using the models from [18] to find the optimal transmission parameters
out of all possible configurations with the objective being to minimize
cost for any given location. These costs will be defined in Section 3.2.
To account for anchoring, a maximum depth of 2500 m was used [29].
Line designs with rated powers of 300, 600, 1000, and 1200 MW were
considered and the lines were assumed to be operating at a 50% CF.
Based upon offshore wind energy deployments, the annualized costs of
energy losses was taken to be 83.3 $/MWh [31].

2.3. Portfolio optimization model formulation

This subsection details the portfolio optimization model. The port-
folio optimization acts in the following manner: (i) Suites of optimally
designed energy-harvesting devices are input into the optimization
framework (ii) The model then decides which device designs are the
best fit for the domain of interest (iii) From the best fit energy-
harvesting devices, the portfolio optimization decides the optimal lo-
cations and combinations such that power delivered to shore from the
transmission system is maximized for a given levelized cost of energy
(LCOE) constraint.

This optimization model treats the following as decision variables:
(i) the variable that controls the center of the energy collection system
for each possible configuration of candidate energy-harvesting devices,
v; (ii) the relaxation variable for that center w,, and (iii) the number
of energy-harvesting devices of design type d at the site location i,
Yi.q- As previously mentioned, the portfolio optimization model’s ob-
jective is to maximize energy delivered to shore from a configuration
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The power outputs, structural masses, spans, and ARs of the optimized kite designs for the design space of operational variables.

Kite parameters

Rated flow speed (m/s) 0.5 0.75 1 1.25 1.5 1.75 2.0 2.25 2.5 2.75
Power output (kW) 53.7 147.5 312.6 570.8 931.9 1431.6 2041.2 1987.7 1872.0 1814.4
Structural mass (kg) 1780.6 2442.2 3262.0 3738.6 4822.5 5248.7 5682.4 4063.3 2784.8 2101.5
Span (m) 11.0 11.0 11.0 11.0 11.0 11.0 11.0 9.7 8.3 7.4
Aspect ratio 5.3 4.6 3.8 3.8 3.0 3.0 3.0 3.0 3.0 3.0

of energy-harvesting devices. This metric is appropriate because the
goal of integrating multiple energy-harvesting devices into a single
deployment is to take advantage of being able to harvest multiple
energy resources, thereby increasing the amount of energy produced.
The objective function that represents this is shown in Eq. (11), where
EG, is the average energy generation for the years of analysis at time
t (i.e., each hour) by an energy-harvesting device, 4, is the energy
curtailed due to limits in the transmission system at time ¢, and T
is the years of analysis. This objective function is subject to various
constraints which will be discussed in this section.

max Y (EG,(y,w,0)” ™ + EG,(y,w,v)*" - 4,(y,w,0)) an
VATAY

teT

Within the portfolio optimization, an LCOE (acting as a budget)
is set as a constraint, as shown in Eq. (12) where TAC is the total
annualized cost of each deployment and 7TC is the annualized cost
of the transmission system. A configuration of devices and device
locations is chosen that meets the set LCOE.

TACYird L TACKIe  TC
8760 E,cr (EG)Y" + EGKI" — A,)

< LCOE 12)

Next, constraints on aggregating costs are shown in Egs. (13)-(15)
where AC is the annualized cost of deploying one device at a given site
location, T'C; is the annualized cost of a transmission system placed at
site i, D is the set of device designs, I is the set of viable site locations
for the deployment of device design d, and I, is the set of locations
for the energy collection system.

TACWimI — Z ACWmd thd (13)
d€Dwina ielf, .
TACKite — Z 2 ACK!te Ktte (14)
d€Dkie IEIK:re
TC= Y uTC 15)
i€lr,

These constraints determine the total cost of the energy-harvesting
devices and the total system costs. This constraint is appropriate be-
cause aggregate costs that are exceedingly expensive would deter inte-
grated deployment.

The aggregating energy generation constraints in Egs. (16)—(17)
focus on the total energy generation coming from the energy-harvesting
devices (EG,).

EG)" = Z EGind ¥ ind Vie T (16)
d€Dwing icrf,
EGK"* =Y Z EGE]'e yKire Vie T a7

d€Dgi, lel
Kite

The constraint on curtailment is shown in Eq. (18), where RPy, is
the rated power capacity of the transmission system. This constraint
balances energy generation and the amount of energy that must be
curtailed by the system. Additionally, it considers the balance between
creating enough energy to saturate the transmission system, while
not over-producing energy to the point where the majority of energy
created is being curtailed.

EG)™ + EGK" — A < RPy, VieT (18)

Limits on the number of device designs are set in Egs. (19)—(22)
where NT is the maximum total number of devices deployed and N D
is the maximum number of different designs from the given suite of
designs used by the portfolio optimization model. These constraints
dictate how many different models of each energy-harvesting device
the portfolio may choose from.

Wind Wind xr-Wind
Z yymd < wlf it NT Vd € Dy ing

(19)
Ie[Wmd
> wind < NpVM Vd € Dyjy (20)
d€Dying
Z yKn‘e < wKne NTK”f Vd € Dy;y, @1
€1
Klte Kite
> <ND Yd € Dy, 22)
d€Dgire

Limits on the maximum number of devices per site are set by the
constraints shown in Egs. (23)-(24) where ROLAIB is the ratio of the
area of the site of the technology A that is overlapped by the site of
the technology B, PD is the maximum packing density for each device,
S LAIB is how many devices of type A can be placed at the same location
for each device of type B and OLAlBI is the set of site/designs (i, d)
from technology B that overlap w1th the sites/designs of technology A.
These constraints ensures devices will not overlap or act detrimentally
towards one another.

Wind | Wind Wind|W ind
UPDG vy g ROLGa,a,

yWMd S NTWWd |: Wind
( d )EOLW:M\W:M I/PDi’d

Ki Wmd|Kn‘e PDin]i”d Wind|Kite
ite o

z Viod, ROLGay6,a) \ pprme ~ST@iay
(i,-d,)€OL 1K iod,

Vde Dygic I8

Wind
(23)
yKITE < NTK”e—
PDKlte
Wind Kite|Wind id Kite|Wind
[ 2 (y' o ROL(: d)\(ipdy) (PDWmd - SL(d)l(da) )) -
(iyd )EOLK”‘IW‘"d iosdy
Kite Klte Kite|Kite
V/PD; g, Viyidy ROL GG,
( d }eOLKue\Kue 1/PDK”e
; d
Vd € Dgje i € Iy,
(24

The maximum radius for the energy collection system is limited
by Egs. (25)-(26) where OR,, is the set of designs that have their
corresponding site location farther than R kilometers from the energy
collection point associated with v;. These constraints do not allow the
transmission system to be larger than a certain radius, limiting the area
where energy-harvesting devices may be deployed.

Z ymi"d + Z

(k,d)eOR}) (k,d)eORUK,”E

K"E <(-v)NT Vi€l (25)
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Fig. 6. Flow chart showing the solution process of the portfolio optimization.

Y ou=1 (26)

ielr,
2.4. Portfolio optimization outputs

This subsection details the outputs of the portfolio optimization. In
order to solve, the mixed integer nonlinear optimization is modeled in
Pyomo [42,43]. It was then solved using Gurobi [44] as shown in Fig.
6.

The developed portfolio optimization selects the optimal configu-
ration of candidate devices in order to coordinate energy generation
from a variety of devices and/or resources for a given region of interest,
subject to the constraints discussed in Section 2.3. To accomplish this,
the model must consider each device’s performance and costs at each
location in the domain in order to calculate the energy sent back to
shore and the LCOE. By using the input device models and environ-
mental data, time series power for each site is calculated. It is then
used with the input cost data for each device to determine the LCOE
and the energy sent to shore. To provide meaningful analysis, the LCOE
constraint is parameterized, and optimal configurations of devices are
solved for at each LCOE to yield a full set of configurations. The best
configuration in terms of energy delivered to shore is then selected
and output. This process creates a computationally efficient frontier
which captures the trade-offs between delivering more energy to shore,
thereby displacing as much fossil fuel as possible, and decreasing LCOE
so as to not drive the cost of energy upward.

3. Case study overview

This section lays out a case study using existing wind turbine
models, optimized MHK kite designs, and a transmission system op-
timization model. The costs for candidate devices and the transmission
system will be discussed in this section.

3.1. The North Carolina coast

This case study focuses on the offshore energy harvesting opportu-
nities off of the coast of NC and explores the coordination of energy
generation from wind turbines with a suite of optimized MHK Kkites.
Environmental parameters such as wind speed and ocean current speed
affect the amount of power that can be sent to shore and these change
on a site-by-site basis. A map showing the wind speeds and ocean
current speeds in the region of interest is shown in Fig. 7. The wind
speed increases with distance from shore, and the ocean current speed
increases within the Gulf Stream. It is noted that the ocean current
speeds are minimal in areas that are not the Gulf Stream, and therefore
have not been depicted.

Furthermore, water depth tends to increase with distance from
shore, which affects transmission costs, due to transmission lines need-
ing to be installed longer and deeper. Additionally, depth affects wind
turbine and kite LCOEs predominantly due to mooring costs. Some
of these costs can be alleviated when deploying kites off of floating
platforms attached to the wind turbines themselves, which is why this
deployment method was selected for this case study. Water depths for
the domain are shown by contour lines in Fig. 7.

3.2. Transmission system costs

Estimates for the CapEx and OpEx of the transmission systems
were made based upon Egs. (27)-(37), which were derived from Faria
et al. [18]. Egs. (27)—(31) make up the CapEx of a AC system and
represent the offshore platform and plant cost (OPPC ), the onshore
plant cost (OPC ), the cost for reactive power compensation (CQ 4(),
the cable cost (CC,), and the total CapEx (CAPEX"L), respectively.
S is the rated power of the transmission line, Q, is the total reactive
power produced by the line, N, is the number of parallel circuits, ccll‘&’:
is the cost per kilometer of cable supply, ;¢ is the length of trunk
cable, and Dy, is the distance of the energy collection point to shore.

Egs. (32)-(35) represent CapEx of a DC system and represent the
offshore platform and plant cost (OPPCj), the onshore plant cost
(OPCpc), the cable cost and installation (CCp.), and the CapEx
(CAPEXTL), respectively. Eq. (36) represents the OpEx of the system
(OPEXTL), and Eq. (37) represents the annualized transmission costs
(TCTL) where FCRTL is the fixed charge rate.

The efficiency and LCOE (marginal component assuming 50% CF)
for selected transmission configurations and the site locations consid-
ered in this work are shown in Fig. 8.

OPPC ¢ = 6.55+0.0472 Sy, [M$] 27
OPC 4 =0.03434 57,071 [M$) (28)
CO,c =0.0262 Q. [M$] (29)
CCyc = N ccklellye +0221 Dgy +4.245x107 Sp; +0.629 [M$] (30)
CAPEX'L = OPPCye + OPCyc +CQ e + CCye [M$] 3D
OPPC¢ = 3275 +0.07205 Sy, [M$] (32)
OPCpc =0.1067 Sy [M$] (33)

CCpc = Neecf1c +0.221 Dgy +4.245x1073 Sp; +0.629 [MS] (34)

CAPEXTL = OPPCpe + OPCpe + CCpe [MS$] (35)
OPEXTL =0.025 CAPEXTL [M$/Y ear] (36)
TCT: = FCRT'*CAPEXTE + OPEXTL [M$/Y ear) 37)

3.3. Wind turbine costs

The capital and operational expenditures for these technologies are
shown in Table 3 for fixed-bottom turbines at different water depths
and site-to-landfall distances [31]. Wind speeds at 100, 140, and 160 m
height were taken for the regions of interest in this case study from
NREL Wind Toolkit at a maximum depth of 1000 m from January 2009
to December 2013 with spatial resolution of 2 km x 2 km and a 1-
hour time discretization [26]. These speeds were adjusted to the wind
turbine model hub heights using the wind profile power law [45]. This
data combined with the CapEx and OpEx, enabled solving for capacity
factors (CF) and LCOE:s for these turbine models. The CFs and LCOEs for
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Fig. 7. Average ocean current speeds based on a 3-hour time discretization for 2007-2013 [27] overlaid onto average offshore wind speeds (2009-2013) off the
coast of NC for a wind turbine with 140 m hub height [26]. Dashed lines represent different water depths.
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Fig. 8. Transmission system LCOE (assuming a 50% CF), efficiency, and mode of transmission (HVAC or HVDC).

8 and 18 MW wind turbines are shown in Fig. 9. CFs and LCOE:s for 12
and 15 MW wind turbines are located in Appendix B. Higher capacity
factor locations lend themselves to producing closer to the maximum
theoretical energy of the device. Additionally, it is clear that the LCOE
increases with distance from shore, despite high CFs, which indicates
that mooring costs are a significant cost influence. Mooring costs are
expected to increase with distance from shore due to increased water
depth.

3.4. Kite costs

To select kite designs for input into the portfolio optimization,
this work collected data from The Hybrid Coordinate Ocean Model
(HYCOM) [27] at 3-hour time discretizations and 1/12° grid resolution
for the time period 2009-2013. This data gets input into a control
module which outputs the optimal time series power generation of a
given kite in a given site location. This control module accounts for
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Table 3
CapEx and OpEx estimates for fixed-bottom offshore wind turbines at different depths and distances from shore [31]. Here, TRG is representative of different
ocean sites.

Resource Depth Site to landfall Base 2021 8 MW (102 m Conservative 2030 12 Moderate 2030 15 MW Advanced 2030 18 MW
group (m) (km) Hub) MW (136 m Hub) (150 m Hub) (161 m Hub)
Capex [$/kW] Opex Capex [$/kW] Opex Capex [$/kW] Opex Capex [$/kW] Opex
[$/kW-yr] [$/kW-yr] [$/kW-yr] [$/kW-yr]
TRG 1 23 35 $3871 $118 $2435 $105 $2435 $87 $2435 $79
TRG 2 24 38 $3917 $121 $3357 $107 $2723 $89 $2464 $80
TRG 3 28 40 $4073 $123 $3397 $109 $2755 $90 $2562 $82
TRG 4 32 45 $4229 $124 $3533 $110 $2865 $91 $2660 $82
TRG 5 32 65 $4438 $127 $3668 $113 $2975 $94 $2792 $85
TRG 6 33 74 $4406 $126 $3849 $111 $3122 $92 $2772 $84
TRG 7 36 77 $4446 $120 $3822 $106 $3100 $88 $2797 $80
- Capacity Factor for ATB 8MW Wind Turbine Capacity Factor for ATB 18MW Wind Turbine ]
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Fig. 9. Capacity factors and LCOEs for 8 and 18 MW wind turbine designs at different locations on the north carolina coast. Computed for The Period (2009-2013).

Table 4
Top five design configurations with the lowest average 10% LCOEs.

the changing ocean current profile causing the kite to adjust its depth in
order to take advantage of relatively higher flows. The depth controller

portion of this control model comes from [25]. It should be noted Design Design parameters “Average 10% lowest
that although each kite was designed for a set depth, it is capable number Rated flow Rated power LCOEs [$/MWh]

of operating at other depths, and adjusting depth is typical for kite speed [m/s] [kw]

systems. However, despite the possibility that the kite enters a zone 1 0.75 147.47 23.49

in which the flow speed is high enough to generate more than its rated 2 1 312.61 23.86

power, the kite is not permitted to generate more power than its rated i (1)'25 2217'28 §§'32

power due to structural limitations. 5 15 931.91 39.90

The five kite designs with the most potential in terms of LCOE off
the coast of NC were selected for use within this case study and are
shown in Table 4. These five designs indicate that for this domain, the
147.47 kW Kkite design is the cheapest configuration at 23.49 $/MWh
and the 931.91 kW design is still relatively cost-competitive at 39.90
$/MWh;

2 Not considering transmission system cost.

such as increased costs of mooring and anchoring. Fig. 10 shows the CFs
for a selection of kite designs, and Fig. 11 displays the corresponding

For each kite design, annualized cost estimates were developed.
The ARPA-E SHARKS cost modeling spreadsheet [46] was used as
the base for the calculations. Equations from the spreadsheet were
adapted using kite sizing and cost modeling from Aull et. all, [47] with
modifications to address variations between marine vs. airborne Kkites,

LCOEs without accounting for transmission system costs, only showing
LCOEs for sites below a threshold of 250 $/MWh. Based on these
figures, a trend emerges. Sites with lower LCOEs tend to have higher
CFs. This is because the higher the CF, the more often the device
is generating power at capacity, hence increasing the devices power
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Fig. 10. CFs for selected kite designs with defined VS and rated flow speeds. Computed for the period 2009-2013.

output, which decreases LCOE. These sites with high CFs and low
LCOEs also correspond to locations in the water column where the
ocean current is on average, higher; this allows the kites to generate
more power on average which increases CF, and decreases LCOE.

4. Case study results and discussion

This section investigates the power and LCOE implications of the
proposed fused portfolio optimization model by exploring deployments
of wind turbines and optimized MHK kites within the same transmission
system. The chosen region of interest is off the entire coast of North
Carolina, where the ocean current is conducive to kite deployment, and
the wind resource is prominent. It was found that integrating the opti-
mized suite of kites into the portfolio enables greater power generation
at lower costs than single-device portfolios; avoiding the diminishing
returns that accompany single-device systems. This is shown in Fig. 12
for a transmission system with a rated power of 300 MW, and in Fig.
13 for a transmission system with a rated power of 1200 MW, although
this trend holds for all investigated transmission system rated powers.

For these efficient frontiers, optimal deployments were selected
via the portfolio optimization model based upon a sweep of LCOE
constraints. For the 300 MW efficient frontiers, it can be seen that
the optimized suite of kites (blue, dashed line) outperforms the single
device wind deployments (black and yellow lines) based strictly on
LCOE, demonstrating a benefit of the portfolio optimization being able
to choose the optimal design on a site-by-site basis. This occurs due to
the kites having significantly lower LCOEs compared to wind turbines
within this transmission system. Kites having lower LCOEs than wind
turbines is especially significant for the 1200 MW transmission system
and 8 MW wind turbines (increased base transmission costs compared
to 300 MW). It is shown that the lowest attainable LCOE with only 8
MW wind turbines is higher than the attainable LCOE when combining
kites and 8 MW turbines. This is due to the kites reducing the total
LCOE by increasing power outputs at reduced costs. This is shown by
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the green line in Fig. 13. Note that the same effect does not occur for
the 1200 MW transmission and 18 MW turbines due to the 18 MW
turbines having lower LCOEs than kites under this transmission system.
However, both the 300 MW and 1200 MW efficient frontiers show
that the coordinated deployments of 8 MW and 18 MW wind turbines
and the suite of kites (green and red lines) are able to achieve higher
average powers sent back to shore at lower costs than single device
deployments. Any reductions in average power along the frontiers for
certain lower LCOEs are due to the configuration’s location having to
be balanced between being beneficial for kites and beneficial for wind
turbines.

Fig. 14 shows the optimized deployment locations from the lowest
LCOE condition from the 8 MW wind and kites deployment from Fig.
12 (green line). From the figure, it can be seen that the portfolio
optimization chooses to place the devices where MHK kites can stretch
as far into the gulf stream as possible, where the ocean current resource
is the strongest, while still allowing the system radius to stretch close
enough to shore that the water depth is conducive to wind turbine
deployment. This relates back to Fig. 9, where it is shown that capacity
factors become more favorable as distance to shore increases, because
the depth also increases, the cost of mooring increases, making the
LCOEs at these sites unfavorable. These selections from the portfolio
optimization account for the combined deployment’s ability to maxi-
mize power sent back to shore via its transmission system with low
increases in LCOE; from the corresponding efficient frontiers, we can
see that on average, our wind and kite deployments operate closer
to the rated power of the transmission system that the individual
device deployments the specific LCOE. Furthermore, it can be seen
that different kites are selected by the portfolio on a site-by-site basis,
allowing the kite deployments to operate in zones where their capacity
factors are high, thereby reducing their LCOEs and enabling the suite
of optimized kite designs to outperform the single-device wind turbine
deployments.
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Fig. 11. LCOEs for a combination of kite designs developed with defined VS and rated flow speed. Values computed for the period 2009-2013.
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LCOE vs MWAvg on 0.3GW Transmission System
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Fig. 12. Efficient frontiers for 300 MW transmission system: 8 MW wind turbine deployments (black), 18 MW wind turbine deployments (yellow), of optimized
kite design suite deployments (blue, dashed), coordinated 8 MW wind turbine and optimized kite design suite deployments (green), and coordinated 18 MW wind
turbine and optimized kite design suite deployments (red).

4.1. Sources of uncertainty and final remarks

It should be noted that there is inherently uncertainty in all cost and
design models. Sources of uncertainty in cost models include changing
costs of materials, labor, and permitting. Other evolving factors include

government subsidies, grid demand, and stakeholder engagement, all of
which may affect costs. A cost sensitivity study was performed in Fig.
15.

This study treats the 8 MW wind and kites scenario on a 300
MW transmission line, from Fig. 14, as the base case. It then varies
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LCOE vs MWAvg on 1.2GW Transmission System
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Fig. 13. Efficient frontiers for 1200 MW transmission system: 8 MW wind turbine deployments (black), 18 MW wind turbine deployments (yellow), of optimized
kite design suite deployments (blue, dashed), coordinated 8 MW wind turbine and optimized kite design suite deployments (green), and coordinated 18 MW wind
turbine and optimized kite design suite deployments (red).

D at LCOE of $42.0 D at LCOE of $120.0
U - N
A Wind Turbine Location ﬁ A Wind Turbine Location v
701 X Kite Location 791 X Kite Location —
Total MW Average: 186.8MW Total MW Average: 261.24W

50 12 a0
1oun -

0
S—/‘(% e o

3m

025

oss

079

Ocean Current Speed
Wind Speed (m/s)

Number of Kites

[

o728

100
os6s

% 0600

os

D at LCOE of $57.0 D at LCOE of $120.0
AV

A Wind Turbine Location \3 W

391 % Kite Location
Total MW Average: 262.2MW

A Wind Turbine Location
X Kite Location
Total MW Average: 857.4MW.

: 3
| =

20 —

11 900

%5

0384

%0

EE oy

0520

Number of Kites
Wind Speed (m/s)

Ocean Current Speed

o720

os64

os00

:0
os3s

s Ty s I [ 160 [ o Ses s Seo T = e 60 [ N as

Fig. 14. Top: Deployment maps for the lowest and highest LCOE conditions from the 8 MW wind and kites deployment on 300 MW transmission system from
Fig. 12 (green line). Bottom: Deployment maps for the lowest and highest LCOE conditions from the 8 MW wind and kites deployment on 1200 MW transmission
system from Fig. 13 (green line). Wind and ocean current speeds are overlaid.

costs for wind, kites, and transmission individually by +20%. From the transmission system increases the LCOE for sending a given average
Fig. 15, it can be seen that reducing costs of wind, kites, and the power to shore. Interestingly, wind turbines are shown to be more
transmission system reduces the LCOE for sending a given average sensitive to these effects. This is due to wind turbines having the highest
power to shore. Similarly, increasing cost of wind turbines, kites, and baseline LCOEs. Another point of interest is that when the kite costs
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LCOE vs MWAvg — 300 MW Transmission System
Cost Sensitivity Analysis
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Fig. 15. These efficient frontiers represent various cost deviations from a baseline 8 MW wind and kite frontier. Blue dashed lines represent +20% wind cost
scenarios, red dashed lines represent +20% Kkite cost scenarios, and yellow dashed lines represent +20% transmission cost scenarios.

are varied, at higher LCOEs, these scenarios are almost identical. This
indicates that at higher LCOE combined scenarios, wind turbines domi-
nate power production. It should be noted that although this sensitivity
study varied costs in terms of percentages, explicit quantification of
cost model uncertainties should be of interest for continuing work.
Furthermore, results will be affected by the fidelity of the optimized
design library the user inputs to the portfolio optimization. Future work
should include accounting for design model uncertainties, especially for
designs of energy-harvesting devices that are in nascency and not yet
being developed at full-scale.

5. Conclusion

This work introduced and tested a fused portfolio optimization
model. This model integrated an optimized suite of energy-harvesting
devices into a portfolio optimization model and expanded the portfolio
optimization model to allow it to site-by-site select the best energy-
harvesting device from a set of optimized devices. To enable the inte-
gration an optimized suite of energy-harvesting devices, a transparent
MHK kite optimization model is contributed.

The case study of a domain off the coast of NC demonstrated that
inputting suites of optimally designed energy harvesting devices into
the portfolio optimization and allowing the model to decide which
device designs are the best fit on a site-by-site basis enables coordinated
deployments to send more power back to shore for minimal increases
in LCOE. Furthermore, it clearly shows that deploying multiple offshore
energy-harvesting devices in tandem on a shared transmission system
enables the maximization of power transmitted back to shore in a
cost-effective manner.

Future work should explore expansion of the portfolio optimization
to include additional optimized suites of offshore energy-harvesting
devices. With more optimized devices, it may be possible to gain
additional power and cost benefits due to further diversification of
the portfolio. Moreover, future work should address weighting terms
to account for devices at lower innovation stages, capital discounts,
and policy dynamics. Additionally, investigation of this optimization
problem while addressing device model uncertainty, connecting the
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energy-harvesting configuration with energy storage, and addressing
design of off-grid systems, like mobile energy harvesting devices are
promising avenues to for the expansion of this work. Finally, future
work should employ a systematic comparison of results from the port-
folio optimization to hybrid energy systems, which may consist of
different technologies from one another and exist in multiple domains.
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Appendix A. Optimized kite design analysis

Initially, at low flow speeds, the optimization model chooses a
wing with a large span, and a small enough aspect ratio to allow
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Fig. B.16. Capacity factors and LCOEs for 12 and 15 MW wind turbines at different locations on the North Carolina coast. Computed for The Period (2009-2013).

the wing enough surface area to achieve enough lift to maximize the
extraction of power from the low flow. As the flow speed increases,
the optimization selects a wing with high span and low aspect ratio to
increase the surface area of the wing, thereby increasing the lift on the
wing, which results in more power. This also increases the drag on the
wing, which indicates that the drag of the kite is small in comparison to
the tether drag, because if the drag of the kite were on the same scale
as the drag from the tether, this increase in drag would greatly reduce
power output. As the flow velocity continues to increase, the lift forces
acting on the wing become too large to satisfy the structural constraints,
most prominently the bending moment, thus the optimization opts for
a wing with a lower span to reduce the bending moment. Furthermore,
the power output of the kites increases with increasing flow speed due
to the power being proportional to the prevailing flow speed cubed
until the flow speed creates too much force on the wings such that
structural constraints, namely bending moment, are no longer satisfied.
The kite then reduces its span to reduce bending moment, which results
in less lift for a given AR, and the kite being able to create less power.

The structural mass of the kite includes the internal spar structure,
as well as the wing’s outer shell and internal syntactic foam. Upon
inspection of these results, it can be concluded that until 2.25 m/s
flow speed, the kite’s structural constraints are inactive, and the opti-
mization selects the lower bound for the thickness of the wing shell.
The required MOI increases as flow speed increases because high
flow speeds result in higher forces on the wing, which results in this
constraint becoming active with increasing flow speeds. To increase
its bending rigidity, the structural mass in the kite increases at higher
flow speeds. For further information on constraint activity in kites, the
reader is directed to [39].

Appendix B. Capacity factors and levelized costs of energy for 12
and 15 MW wind turbines

See Fig. B.16.
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