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A B S T R A C T

This paper presents a method for estimating environmental contours in an arbitrary number of dimensions.
The method, referred to as Direct-IFORM, does not require a model for the joint distribution of the variables.
It can therefore be applied in higher dimensions without degradation in performance. The method involves
multiple univariate analyses under rotations of the axes to estimate return values in various directions, which
are used to form a contour. The method accounts for serial correlation in the observations, which removes
the positive bias that occurs when this is neglected. An efficient open-source code is provided for estimating
Direct-IFORM contours. A four-dimensional example is presented for contours of wind speed, wave height,
wave period and wind-wave misalignment direction. The application of the method to the design of offshore
wind turbines is discussed.
1. Introduction

The environmental contour method is widely used in offshore de-
sign to obtain approximations for long-term extreme responses. Many
approaches have been proposed for estimating environmental con-
tours (Manuel et al., 2018; Ross et al., 2020). Most methods for es-
timating contours require the estimation of the joint distribution of the
observations as a prior step to constructing the contour (Haselsteiner
et al., 2021a). The requirement to fit a joint model to the data limits
the application of most methods to low dimensions, due to the so-called
‘curse of dimensionality’, whereby observations become increasingly
sparse in higher dimensions due to the exponential increase in the
volume of the variable space.

Recent work has shown that fitting a joint model to the data
is a major source of uncertainty, with different approaches yielding
contours which result in design loads that vary by ±50% in some
cases (de Hauteclocque et al., 2022). A wide range of methods has
been proposed for estimating the joint density function. A relatively
recent review is presented by Ross et al. (2020). Most commonly, two
approaches are used, either hierarchical conditional models or copula
models. In the conditional modelling approach, the joint density func-
tion 𝑓𝑋,𝑌 of variables 𝑋, 𝑌 is written in conditional form, as 𝑓𝑋,𝑌 (𝑥, 𝑦) =
𝑓𝑋 (𝑥)𝑓𝑌 |𝑋 (𝑦|𝑥), where 𝑓𝑋 (𝑥) is the marginal density of 𝑋 and 𝑓𝑌 |𝑋 (𝑦|𝑥)
is the density of 𝑌 conditional on 𝑋. The approach extends to higher
dimensions in the obvious way. Usually, a parametric form is assumed
for both 𝑓𝑋 and 𝑓𝑌 |𝑋 , with popular choices being Weibull and log-
normal models (Haver, 1985; Mathisen and Bitner-Gregersen, 1990).
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The parameters of the conditional distribution are then modelled as a
function of the independent variable, 𝑋. There are several drawbacks to
this approach. Assuming a model for the bulk of the observations does
not guarantee a good fit to the tail of the distribution, which is the
region of most interest when estimating extreme responses. Secondly,
the model for the conditional dependence structure is based on ad-
hoc assumptions, that are not based on any physical or mathematical
principles, and give no rationale for extrapolating outside the range of
observations. These limitations mean that the fitted models are often
in poor agreement with observations (de Hauteclocque et al., 2022).

In copula-based approaches, the joint density function is expressed
as 𝑓𝑋,𝑌 (𝑥, 𝑦) = 𝑓𝑋 (𝑥) 𝑓𝑌 (𝑦) 𝑐(𝐹𝑋 (𝑥), 𝐹𝑌 (𝑦)), where 𝑓𝑋 , 𝑓𝑌 , 𝐹𝑋 , 𝐹𝑌 are the
marginal density and distribution functions, and 𝑐 is the copula density
function (see e.g. Nelsen (2006) and Joe (2015)). As well as assuming a
form for the margins, a parametric form for the copula is also assumed.
Common choices for the copula include Gaussian (sometimes referred
to as the Nataf model — see Silva-González et al. (2013)), Frank, Gum-
bel, and Farlie–Gumbel–Morgenstern (Montes-Iturrizaga and Heredia-
Zavoni, 2015, 2017). Different choices of copula can lead to large
differences in the probabilities in the joint tail regions. Moreover, there
is no a-priori reason to suppose that the dependence structure of the
observations follows a particular parametric form.

A further limitation of most environmental contour methods is
that they do not account for serial correlation in the observations.
As explained in detail in Mackay et al. (2021), this can lead to an
inherent positive bias in the estimates of return values (see also Vanem,
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2022; Coe et al., 2022). This is because serial correlation reduces the
effective number of independent observations per year, so return values
calculated under the assumption that all observations are independent
will overestimate the probability of a large value occurring in any given
year.

This work describes a method for estimating environmental con-
tours which addresses these limitations, by removing the need to fit a
joint model and accounting for serial correlation. The method, referred
to as Direct Inverse First Order Reliability Method (D-IFORM), was
initially presented by Derbanne and de Hauteclocque (2019). D-IFORM
provides a mathematically-justified way of extrapolating, based on ex-
treme value theory. The D-IFORM method was originally presented for
two-dimensional applications. An example application of the method
in three dimensions was presented by Mackay and Hardwick (2022),
who estimated contours of significant wave height, current speed and
wave–current misalignment direction. The aim of the present work is to
show how the D-IFORM method can be applied in higher dimensions,
obtaining contours in lower dimensions as special cases. As explained
in further detail in the next section, because there is no requirement to
fit a joint probability model, the D-IFORM method can be applied in
higher dimensions, without suffering from the curse of dimensionality.
The method for calculating D-IFORM contours has been implemented
in open-source code in MATLAB and Python, available from https:
//github.com/edmackay/Direct-IFORM, together with the data used in
this study.

The remainder of the paper is organised as follows. Section 2
presents the motivation for the D-IFORM method, and compares this
to alternative methods for deriving contours. Section 3 describes the
implementation of the D-IFORM method in an arbitrary number of
dimensions. An example application is presented in Section 4, where
we consider four-dimensional contours of wind and wave parameters,
and the potential application for the design of offshore wind turbines.
Finally, a discussion and conclusions are presented in Section 5.

2. Motivation for D-IFORM method

The objective of the environmental contour (EC) method is to
provide a means of estimating the long-term extreme response of a
structure, using a small number of response simulations. To achieve
this, the EC method aims to find a region of the environmental param-
eter space (referred to as the ‘design region’), such that a structure that
can withstand all environmental conditions within that region has a
probability of failure of less than or equal to a specified value. The
environmental contour represents the boundary of the design region. It
is assumed that if the structure can withstand all conditions along the
contour, then it can withstand any environmental condition inside the
contour. For simplicity, we will present the motivation for the D-IFORM
method in two dimensions. The generalisation to higher dimensions is
considered in the next section.

The first environmental contour method, known as the Inverse First
Order Reliability Method (IFORM), was presented by Winterstein et al.
(1993). The method is based on the First-Order Reliability Method
(FORM) (Madsen et al., 2006). In the FORM method, a failure surface
for a structure is estimated as a function of environmental variables 𝑋
and 𝑌 . The failure surface is transformed to independent standard nor-
mal space using the Rosenblatt transformation (Rosenblatt, 1952). The
probability of failure of the structure is then estimated by linearising
the failure surface at the highest probability point in standard normal
space, and calculating the probability contained in the corresponding
half-space region (see Fig. 1). If the distance from the linearised failure
surface to the origin is 𝛽, then the probability of an observation falling
in the exceedance region is 𝛼 = 1 −𝛷(𝛽), where 𝛷 is the standard nor-
mal cumulative distribution function (CDF). Winterstein et al. (1993)
observed that all half-plane regions which contain probability 𝛼 are at
a fixed radius of 𝛽 from the origin, and the intersection of all such
regions forms a circle. Therefore, if the desired probability of failure
2

of the structure is 𝛼, then the FORM approach can be made more
efficient by calculating the response of the structure for combinations
of environmental variables which lie on a circle of radius 𝛽 in standard
normal space. Transforming this circle back to the original variable
space gives the IFORM environmental contour.

Huseby et al. (2013) observed that if the motivation is to define
half-space regions which contain a given probability, then the use of
the Rosenblatt transformation is unnecessary. Instead, environmental
contours can be defined as the intersection of all half-space regions
in the original variable space, that contain fixed probability level 𝛼.
These half-space regions are interpreted as the linearised boundaries
of failure regions of possible structures (see Fig. 1). To estimate these
regions, Huseby et al. (2013) proposed to first fit a joint probability
model to the observations, then generate a large Monte Carlo sample
from the fitted model. The distance from the origin of the half-space
region at angle 𝜃 is then calculated by projecting the Monte Carlo
sample onto a line at angle 𝜃, and calculating the empirical quantile
at exceedance probability 𝛼. The resulting method is referred to as the
Direct Sampling (DS) method. As well as the uncertainty in the fitted
joint distribution model, this procedure introduces a further sampling
uncertainty, due to the random Monte Carlo simulation procedure —
see Mackay and Jonathan (2021) for a discussion of the sampling
uncertainties in extreme quantiles.

Derbanne and de Hauteclocque (2019) noted that the procedure
could be simplified further. Since IFORM and DS environmental con-
tours are defined as the intersection of half space regions, there is no
need to fit a joint probability model. Instead, the half-space regions can
be viewed as univariate exceedance regions under rotations of the axes.
For each given rotation angle, a standard univariate analysis can be ap-
plied. Univariate extreme value theory and inference is well-established
and widely used (Coles, 2001; Beirlant et al., 2004). Derbanne and
de Hauteclocque (2019) proposed that a standard peaks-over-threshold
(POT) analysis is conducted on the observations projected onto lines
at various angles to the origin, whereby a generalised Pareto (GP)
distribution is fitted to exceedances of a pre-determined threshold. The
return values at each angle (and hence the desired half-space regions)
can then be calculated in terms of the estimated GP parameters. The
boundary of the region formed by taking the intersection of the half-
spaces defined by the directional return values gives the Direct IFORM
(D-IFORM) contour. Since extreme value theory tells us that threshold
exceedances from any distribution (that satisfies certain regularity con-
ditions) will converge to a GP distribution (Coles, 2001), the D-IFORM
method gives a mathematically-justified and general means of forming
environmental contours, which does not rely on ad hoc models.

In the POT method, serial correlation in the observations is ac-
counted for by declustering. This is the process of modelling only peak
observations which are sufficiently separated in time that they can
be considered independent. Various procedures exist for identifying
peaks which meet this condition (see e.g. Coles (2001) and Beirlant
et al. (2004)), and an efficient method for declustering is described in
Section 3.4. Accounting for the serial correlation in the observations
removes the positive bias in estimates of return values, caused by as-
suming serially-correlated observations are independent (Mackay et al.,
2021).

Finally, it is worth mentioning that while the IFORM method and
its variants make a linear approximation to the failure surface, other
methods have been proposed for defining environmental contours
which involve different approximations for the shape of the failure
region. Haselsteiner et al. (2017) and Chai and Leira (2018) noted
that the linear approximation to the failure region is non-conservative
if the failure region is convex. To account for this, they make the
conservative assumption that structural failure occurs anywhere out-
side the environmental contour. The corresponding exceedance regions
are defined in terms of the total probability outside the contour,
either in standard normal space (Chai and Leira, 2018), or in the

original variable space (Haselsteiner et al., 2017). In both cases, the
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Fig. 1. Illustration of IFORM, Direct Sampling and Direct IFORM methods. Direct
Sampling simplifies the IFORM method by removing the need to apply the Rosenblatt
transformation. Direct IFORM simplifies the Direct Sampling method by removing the
need to fit a joint probability model. The two response curves shown represent different
response quantities, with a single response level shown for each.

derived contours typically result in a more conservative set of design
conditions and correspondingly more severe responses (see e.g. Mackay
and Haselsteiner (2021), de Hauteclocque et al. (2022) and Haselsteiner
et al. (2021b, 2022)). These methods both require a model for the joint
probability of the observations, and are therefore subject to the same
uncertainties as the IFORM and DS methods. They are therefore not
considered further in this work.

3. Implementation of D-IFORM in higher dimensions

Throughout this section, we assume that we have a sample of
𝑛 observations of a 𝑑-dimensional random vector 𝐗 = (𝑋1,… , 𝑋𝑑 ),
denoted {𝐱𝑗}𝑗=1∶𝑛, where 𝐱𝑗 = (𝑥1,𝑗 ,… , 𝑥𝑑,𝑗 ). A flowchart of the steps
involved in estimating D-IFORM contours is shown in Fig. 2. In the
following subsections, we describe each of these steps in detail.

3.1. Normalisation

The scales of environmental variables can be very different. For
example, wind speeds are typically in the range 0–50 m/s, whereas
values of wave steepness are typically less than 0.1. Whilst this does
not directly affect the inference, if contours were constructed using
the raw variables, then a higher resolution of direction vectors would
be required in certain direction ranges, to account for the differing
scales. To avoid this issue, we normalise each variable to give roughly
equal scales in each dimension. In the present implementation, we have
normalised each variable by its standard deviation. We also subtract the
median of each variable, so that data is centred. This step is not strictly
necessary, as the location of the origin does not affect the inference.
However, it slightly simplifies the presentation later on. We denote the
normalised sample as {𝐲𝑗}𝑗=1∶𝑛, where

𝐲𝑗 =
(𝑥1,𝑗 − med(𝑋1) ,… ,

𝑥𝑑,𝑗 − med(𝑋𝑑 )
)

. (1)
3

std(𝑋1) std(𝑋𝑑 )
Fig. 2. Flowchart of steps for estimating D-IFORM environmental contours. Red:
Inputs/Outputs. Blue: User-defined hyper-parameters. Black: Computational steps.

In practice, the sample median and standard deviation are used in
place of the population median and standard deviation. Contours are
calculated in the normalised space, then converted back to the original
variable space at the end.

3.2. Selection of direction vectors

When working in two or three dimensions, it is natural to use
polar or spherical coordinates to specify angles. However, the use of
spherical coordinates becomes cumbersome in higher dimensions, so
vector notation is used here instead. To apply the D-IFORM method, we
need to select a number of direction vectors, 𝐮, for analysis. Preferably,
we would like the directions to be evenly-spaced. This is equivalent
to choosing evenly-spaced points on the surface of the 𝑑-dimensional
hypersphere. This is only possible when 𝑑 = 2, and the 2-dimensional
hypersphere is a circle, although various approximate algorithms exist
for 𝑑 > 2.

In this work, we have opted to address the problem by choosing
evenly-spaced points on the surface of the unit hypersphere with re-
spect to the 𝐿1 norm, given by {𝐰 ∶ ‖𝐰‖1 = 1}, where ‖𝐰‖1 =
∑𝑑

𝑖=1 |𝑤𝑖|. In contrast to the standard hypersphere with respect to the 𝐿2

(Euclidean) norm, it is straightforward to create evenly spaced points
on the surface of the 𝐿1 hypersphere. We can then normalise so that
𝐮 = 𝐰∕‖𝐰‖2 is a unit vector with respect to the 𝐿2 norm, where
‖𝐰‖2 =

(

∑𝑑
𝑖=1 𝑤

2
𝑖

)1∕2
. If we restrict our attention to the points in the

orthant {𝐰 ∶ 𝑤𝑖 ≥ 0}, then the surface of the 𝐿1 hypersphere in R𝑑 is a
regular 𝑑 −1 simplex, with vertices given by the standard basis vectors
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Fig. 3. Left: Evenly-spaced points on surface of unit 𝐿1-sphere in 3 dimensions. Right: Equivalent points after normalisation to lie on surface of unit 𝐿2-sphere in 3 dimensions.
of R𝑑 . Regularly-spaced points, with 𝑚 + 1 points along each edge of
the simplex, can be written

𝑤1 ∈ {𝑖1∕𝑚 ∶ 𝑖1 = 0,… , 𝑚}

𝑤2 ∈ {𝑖2∕𝑚 ∶ (𝑖2 = 0,… , 𝑚) ∧ (𝑤2 ≤ 1 −𝑤1)}

𝑤3 ∈ {𝑖3∕𝑚 ∶ (𝑖3 = 0,… , 𝑚) ∧ (𝑤3 ≤ 1 −𝑤1 −𝑤2)}

⋮ ⋮

𝑤𝑑 = 1 −
𝑑−1
∑

𝑖=1
𝑤𝑖.

(2)

This gives
(𝑑+𝑚−1

𝑑−1

)

= (𝑚 + 1)(𝑚 + 2)⋯ (𝑚 + 𝑑 − 1)∕(𝑑 − 1)! points on
the surface of the 𝐿1-hypersphere, within a single orthant of R𝑑 . These
points all lie on a regular Cartesian grid with spacing 1∕𝑚. Therefore,
a simple algorithm to generate these points is to first generate a dense
grid with spacing 1∕𝑚 in each dimension, then keep only the points
whose coordinates sum to one. Although this is a somewhat inefficient
way to generate the direction vectors, the computational cost is very
small (typically fractions of a second) in comparison to other steps in
the method. Direction vectors in other orthants of R𝑑 can be obtain by
reflection.

The resulting points on the first octant of the 𝐿1-sphere in 3 dimen-
sions are shown in Fig. 3, for 𝑚 = 10. The normalised points lying on
the surface of 𝐿2-sphere are also shown for comparison. The rescaled
points on the 𝐿2-sphere have a slightly larger spacing in the region
closer to the direction (1, 1, 1), due to the stretching of the surface.
However, the non-equal spacing of direction vectors is not critical
for the analysis. The important factor is to have a sufficient angular
resolution to produce a reasonably smooth contour (see Section 3.6).
Moreover, the simplicity of the algorithm for generating the direction
vectors in higher dimensions makes it attractive.

3.3. Projection of data

We denote the projection of the observations onto the line in the
direction of the unit vector 𝐮 = (𝑢1,… , 𝑢𝑑 ), as {𝑟𝐮,𝑗}𝑗=1∶𝑛, where

𝑟𝐮,𝑗 = 𝐮 ⋅ 𝐲𝑗 =
𝑑
∑

𝑖=1
𝑢𝑖 𝑦𝑖,𝑗 . (3)

An illustration of the projection of a sample onto three different
direction vectors is shown in Fig. 4. The projected sample is one-
dimensional, and can be thought of as a sample of observations of the
random variable 𝑅𝐮 = 𝐮 ⋅ 𝐘, corresponding to the shortest distance
from the origin to the hyperplane containing 𝐘, with normal vector 𝐮.
Alternatively, the projected variable, 𝑅𝐮, can be interpreted as the first
coordinate of the data under a rotation of the coordinate axes.
4

For a given direction 𝐮, the problem of finding return values of
𝑅𝐮 is a univariate problem, where a standard univariate POT method
can be applied. Since all observations are used in the projection at
each direction, increasing the number of dimensions or resolution of
direction vectors only affects computational time, but does not decrease
the available data. This is the key feature of the D-IFORM method that
enables its use for higher-dimensional problems.

3.4. Declustering

To account for the serial correlation in the data, the return values of
the random vector 𝑌 in direction 𝐮 are estimated using a POT analysis.
However, the points in the time series {𝑟𝐮,𝑗}𝑗=1∶𝑛 which correspond to
local peaks, will depend on the projection direction 𝐮. This is illustrated
in Fig. 5. This means we need to identify peaks for each projection
direction. In the present implementation, peaks are defined as local
maxima within a moving window of ±ℎ hours, where the value of ℎ
is set by the user. A moving maxima envelope over a window of ±ℎ
hours is defined as

𝑟𝐮,max(𝑡, ℎ) = max{𝑟𝐮(𝜏) ∶ 𝜏 ∈ [𝑡 − ℎ, 𝑡 + ℎ]}. (4)

Peaks are defined as points where original time series is equal to
moving-maximum envelope, i.e. values of 𝑡 such that 𝑟𝐮(𝑡) = 𝑟𝐮,max(𝑡, ℎ)
(see Fig. 6). A check is then performed to see if there are any peaks
which are separated by less than ℎ hours, which can happen if there
are two equal maxima in the same window. In this case, we discard the
second equal maxima in the window. For most metocean variables this
is unlikely to occur, so this final check is quick to make. This algorithm
also works with time series with gaps (often the case for measured
datasets), as gaps do not affect the moving maxima envelope.

This declustering algorithm has the advantage that it does not
require definition of a threshold or a definition of peak prominence.
It only requires a separation time, specified in terms of the length of
the moving maxima window. A rigorous selection of peak separation
time can be determined by looking at decorrelation times, using visu-
alisations such as the extremogram (Davis and Mikosch, 2009). This
is defined as the limiting conditional probability lim𝜇→∞ Pr(𝑋𝑡+𝜏 >
𝜇|𝑋𝑡 > 𝜇), which estimates the extent of asymptotic dependence in
the time series at lag 𝜏. For stationary series, the quantity Pr(𝑋𝑡+𝜏 >
𝜇|𝑋𝑡 > 𝜇) − Pr(𝑋𝑡 > 𝜇) will tend to zero when 𝑋𝑡 and 𝑋𝑡+𝜏 are
independent. This quantity can be plotted as a function of 𝜏 for various
thresholds 𝜇, to select de-correlation timescales used in declustering
routines (see Mackay and Johanning (2018)). Typical choices for peak
separation times are in the range of 2–5 days.

The efficiency of the declustering algorithm is strongly dependent
on the implementation. Looping over the time series, moving the

window and calculating maxima can be very slow. MATLAB has an



Ocean Engineering 273 (2023) 113959E. Mackay and G.d. Hauteclocque
Fig. 4. Illustration of projection of observations onto lines at various angles to the origin. (a) Original normalised sample. (b)–(d) Original normalised sample, plus projected
sample at various angles. The distances of the projected observations from the origin are shown in (c) for two observations. Note that all observations are used to create the
projected sample at each angle.
Fig. 5. Illustration of why declustering must be conducted for each projection direction.
Grey lines show time series of 𝐻𝑠 and 𝑇𝑚. Red and black lines show 24-h sections of
time series, centred on a local maximum of 𝐻𝑠, indicated by a circle. The corresponding
maximum period and steepness in these sections of time series are indicated by stars
and diamonds, respectively. The points corresponding to ‘peaks’ in the time series
therefore depend on the projection direction.

efficient native function for calculating a moving maximum of an array,
movmax, which is several orders of magnitude faster than looping
through the time series.

An example of the effect of neglecting serial correlation on es-
timated return periods is shown in Fig. 7, using significant wave
height (𝐻𝑠) and wind speed (𝑈10) data for the example presented in
Section 4. Return periods calculated under the incorrect assumption
that all hourly observations are independent are shown in red. Return
periods for the declustered peaks are shown in blue. It is clear that
neglecting the serial correlation in the observations leads to a positive
bias in the return value at a given return period. However, since the
largest hourly observation and largest observed peak must coincide in
any dataset, the empirical return periods for the largest hourly value
and largest peak are equal. This is an effect of finite sample size. To
mitigate for this, return periods inferred from fitted GP models (see
following subsection) are also shown. These indicate that the positive
bias caused by neglecting serial correlation persists outside the range of
observations. Further discussion of these effects can be found in Mackay
et al. (2021).

3.5. Inference

For a given projection direction, the return values of 𝑅𝐮 are calcu-
lated using a POT analysis, where exceedances of a threshold, 𝜇, are
5

modelled using a generalised Pareto (GP) distribution. The cumulative
distribution function (CDF) of the GP distribution is

𝐹 (𝑦) =

⎧

⎪

⎨

⎪

⎩

1 −
(

1 + 𝜉
𝑦 − 𝜇
𝜎

)−1∕𝜉
, 𝜉 ≠ 0,

1 − exp
(

−
𝑦 − 𝜇
𝜎

)

, 𝜉 = 0,
(5)

where the support is 𝜇 ≤ 𝑦 < ∞ for 𝜉 ≥ 0 and 𝜇 ≤ 𝑦 ≤ 𝜇− 𝜎∕𝜉 for 𝜉 < 0.
Here, 𝜉 and 𝜎 are shape and scale parameters. For a given set of GP
parameters, the return value of 𝑅𝐮 at return period 𝑇 , is then given by

𝑅𝐮,𝑇 =

⎧

⎪

⎨

⎪

⎩

𝜇 + 𝜎
𝜉
(

(𝜆𝑇 )𝜉 − 1
)

, 𝜉 ≠ 0,

𝜇 + 𝜎 log(𝜆𝑇 ), 𝜉 = 0,
(6)

where 𝜆 is the average number of threshold exceedances per year.
The GP parameters are estimated independently for each direction,

𝐮. We set the threshold estimate, 𝜇̂, as an empirically-estimated quantile
of 𝑅𝐮 at a fixed exceedance probability, 𝜁 . The choice of 𝜁 is a bias–
variance trade-off between the asymptotic GP model being appropriate
for the exceedances (bias) and having a sufficient number of obser-
vations to estimate the model (variance). In practice, we found that
setting 𝜁 = 0.1 gave reasonable results for our datasets. The fit of the
model for a given threshold can be assessed using standard diagnostic
plots (see e.g. Coles (2001)).

The scale and shape parameters are estimated using a constrained
maximum likelihood method. When the shape parameter, 𝜉, is non-
negative, the distribution is unbounded from above. For most metocean
variables, this is physically unrealistic, and we would expect the distri-
bution to have some finite upper bound. We therefore constrain the
estimate 𝜉 < 0. A GP distribution with 𝜉 = −1 is a uniform distribution.
When 𝜉 < −1 the likelihood of observations increases toward the upper
end point of the distribution. This is also physically unlikely for most
metocean variables, so we also set a lower bound for the estimate as 𝜉 ≥
−1. We also place an additional constraint that max{𝑟𝐮,𝑗} ≤ 𝜇̂ − 𝜎̂∕𝜉, so
that the parameter estimates are consistent with the observations. The
parameter values that minimise the negative log-likelihood function
are then found using a simplex search method (Lagarias et al., 1998),
using the moment estimators as a first guess. The moment estimators
are given by 𝜉𝑚𝑜𝑚 = 1

2

(

1 − (𝑟̄∕𝑠𝑟)2
)

, 𝜎̂𝑚𝑜𝑚 = 𝑟̄ (1 − 𝜉𝑚𝑜𝑚), where 𝑟̄ and 𝑠𝑟
are the sample mean and standard deviation.

It is reasonable to expect that the GP parameters are smoothly-
varying functions of direction 𝐮. This could be accounted for directly
in the inference, by fitting a non-stationary model, where the smooth
variation of the parameters is modelled using e.g. splines (Randell et al.,
2015; Zanini et al., 2020) or piecewise-linear functions (Barlow et al.,
2023). An alternative option is to first estimate the GP parameters,
then smooth the estimated return values, as suggested by Derbanne
and de Hauteclocque (2019). For the non-stationary models, an optimal
‘roughness’ for the parameters can be estimated as part of the infer-
ence. For the post-inference smoothing of return values, the choice of
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Fig. 6. Illustration of criteria used for declustering. Solid line: time series of variable to be declustered. Dashed line: Maximum value of variable within ±3 days of each time step.
Circles: Declustered peaks, defined as local maxima within a window of ±3 days — these correspond to points where the time series meets the local maxima envelope.
Fig. 7. Effect of neglecting serial correlation on estimated return periods for 𝐻𝑠 (left) and 𝑈10 (right). Crosses denote return periods calculated under the incorrect assumption
that all hourly are independent. Circles denote return periods for declustered peaks. Solid lines are fitted generalised Pareto models.
optimal smoothing is more ad hoc. However, both approaches become
difficult to implement and slow to compute in higher dimensions. In
the examples presented in Section 4, the GP parameter estimates and
return values from the independent analyses were reasonably smooth,
meaning that there would be little benefit to using a more complex
inference scheme. Also, given the approximate nature of extreme re-
sponse estimates from environmental contours, using an efficient but
less-than-optimal inference scheme seems appropriate.

3.6. Calculation of contours

Finding the intersection of a large number of half-spaces in higher
dimensions is a difficult computational problem. An efficient solution
to this problem was proposed by Hafver et al. (2022), who showed that
environmental contours can be interpreted as the boundary of Voronoi
cells. This geometric interpretation leads to a simple algorithm for
constructing contours, utilising efficient code for calculating Voronoi
cells in higher dimensions. Here, we present a sketch of the argument
for the Voronoi interpretation of environmental contours, and refer
to Hafver et al. (2022) for further details.

The Voronoi cell of a point 𝐨 ∈ R𝑑 , with respect to a set of points
𝑆 ⊂ R𝑑 is denoted Vor(𝐨, 𝑆). It consists of the set of points that are at
least as close to 𝐨 as any point in S. That is

Vor(𝐨, 𝑆) =
{

𝐱 ∈ R𝑑 ∶ ‖𝐱 − 𝐨‖2 ≤ min
𝐬∈𝑆

‖𝐱 − 𝐬‖2
}

. (7)

In the original IFORM and Direct Sampling definitions, environmental
contours are the boundary of a region defined as the intersection
of half-spaces. The half-spaces represent non-exceedance regions at
various angles to the origin (see left hand plot of Fig. 8). Consider, the
6

set of reflections, 𝑆, of the origin, 𝐨, in the boundaries of the exceedance
regions at each direction, illustrated in the right hand plot of Fig. 8.
For a given set of direction vectors, 𝑈 , and return period, 𝑇 , the set of
reflections of the origin, 𝑆(𝑈, 𝑇 ), is given by

𝑆(𝑈, 𝑇 ) = {2𝑅𝐮,𝑇 𝐮 ∶ 𝐮 ∈ 𝑈}. (8)

For a given direction, 𝐮, the half-space defined by the non-exceedance
region {𝐲 ∶ 𝐲 ⋅ 𝐮 ≤ 𝑅𝐮,𝑇 } is equal to the set of points that are
closer to the origin, than to the reflection point 2𝑅𝐮,𝑇 𝐮. Following
this reasoning, we see that the intersection of all such non-exceedance
regions is the set of points that is closer to the origin than to the set
of reflections, 𝑆. That this, the Voronoi cell of the origin with respect
to 𝑆, given in (7). Fig. 8 provides an illustration of the equivalence
of the Voronoi definition of a contour, with the ‘standard’ definition
in terms of intersections of non-exceedance regions. For the MATLAB
implementation, the native function voronoin is used to calculate
Voronoi cells in arbitrary numbers of dimensions, which utilises the
Quickhull algorithms1 (Barber et al., 1996).

In the present work, we have set the origin as the joint median of the
sample. However, Hafver et al. (2022) showed that contours defined in
terms of Voronoi cells are invariant to the location of the origin, pro-
vided that it is within the contour. Moreover, Hafver et al. (2022) also
showed that if 𝑈1 ⊆ 𝑈2, then Vor(𝐨, 𝑆(𝑈2, 𝑇 )) ⊆ Vor(𝐨, 𝑆(𝑈1, 𝑇 )). That is,
estimating contours using fewer direction vectors is conservative, and
adding more direction vectors to the analysis will reduce the volume
contained within the contour. An illustration of this is shown in Fig. 9,
where contours are shown using 4, 8, and 16 direction vectors for a

1 http://www.qhull.org/.

http://www.qhull.org/
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Fig. 8. Illustration of equivalent definitions of environmental contours. Left: ‘Standard’ definition in terms of intersection of non-exceedance regions. Right: Definition in terms of
the Voronoi cell for the origin, with respect to the set of reflections of the origin in the boundaries of the exceedance regions.
Fig. 9. Illustration of effect of calculating contours using different numbers of direction
vectors.

2D case. In the case that 𝑈 = {(±1, 0), (0,±1)}, the contour is defined
by the intersection of the half-spaces representing the marginal return
values. Clearly, such a contour would lead to conservative designs, if
responses increase monotonically in each variable, as is often (but not
always) the case for responses dependent on wave heights, wind speeds
and current speeds.

The Voronoi method for calculating contours from half-spaces
avoids the occurrence of ‘loops’ in the contour, which can occur when
using the Monte Carlo method proposed by Huseby et al. (2013). This
problem is neatly avoided using the Voronoi interpretation.

3.7. Visualisation

The contours that are calculated are output as lists of vertices of
a hyper-surface, that is, a set of 𝑚 points 𝐶 = {𝐜1,… , 𝐜𝑚}, where
each point 𝐜𝑖 = (𝑐𝑖,1,… , 𝑐𝑖,𝑑 ) is a 𝑑-dimensional vector. However, for
selecting design conditions, it is useful to visualise the contour in 2 or
3 dimensions, either by projecting the contour into lower dimensions,
or by taking slices through the contour for fixed values of certain
variables.

Projection of the contour into lower dimensions is straightforward.
Suppose that we wish to visualise the contour in three dimensions,
corresponding to variables 𝑋𝑗 , 𝑋𝑘 and 𝑋𝑙. We define the set 𝐶𝑗𝑘𝑙 =
{𝐜′1,… , 𝐜′𝑚} as the restriction of 𝐶 to dimensions 𝑋𝑗 , 𝑋𝑘 and 𝑋𝑙, that
is, we simply ignore the values of vertices of the hyper-surface in the
dimensions that we are not interested in, so that 𝐜′ = (𝑐 , 𝑐 , 𝑐 ),
7

𝑖 𝑖,𝑗 𝑖,𝑘 𝑖,𝑙
𝑖 = 1,… , 𝑚. We then note that the closed convex hull of a set is
the intersection of all closed half-spaces containing it (Rockafellar,
1970). So the projected contour in dimensions 𝑋𝑗 , 𝑋𝑘 and 𝑋𝑙 can be
defined as the convex hull of 𝐶𝑗𝑘𝑙. In MATLAB, this is implemented
in the native function convhulln, which also uses the Quickhull
algorithms (Barber et al., 1996). This function outputs a triangulation
of the vertices of 𝐶𝑗𝑘𝑙, which form the convex hull, so that a mesh of
the 3D surface can be plotted.

A 2D slice through the contour for fixed values of certain variables
can be calculated as follows. First, we calculate a triangulation of the
hyper-surface into (𝑑 − 1)-simplices, using the function convhulln.
For each simplex which intersects with the values of the 𝑑 − 2 fixed
variables, we find coordinates of the intersection. This can be calculated
by interpolating along each edge of the simplex which intersects the
fixed values. The contour of the 2D slice is then defined as the convex
hull of the intersection points.

4. Example: environmental contours of wind and wave parame-
ters

We consider the particular problem of defining design conditions for
the design of offshore wind turbines. The design standard IEC 61400-
3-1 (2019) requires designers to estimate extreme responses using an
environmental contour. In design load case (DLC) 1.6 it is required that
the design is checked for combinations of wind speed and significant
wave height along a 50-year environmental contour, and that the
spectral peak period should be chosen as the period that causes the
highest loads at the particular combination of wind speed and wave
height. Using the period that leads to the highest loads is conservative.
However, this combination of probabilistic and deterministic choices
of variables cannot be interpreted consistently in terms of failure
probability and implied reliability (see the discussion in Haselsteiner
et al. (2022)). The standard also requires that the misalignment in wind
and wave directions should be considered, although it does not provide
guidance on probabilistic means to do this.

In this section, we show how the D-IFORM method can be used to
calculate environmental contours of wind speed (𝑈10), significant wave
height (𝐻𝑠), mean wave period (𝑇𝑚), and wind-wave misalignment
direction (𝜃𝑟𝑒𝑙). These contours provide a rigorous means of selecting
design conditions for offshore wind turbines that have a specified
return period. The example uses data for a site in the Celtic Sea, off
the south west coast of the UK, which has been identified for the
development of floating offshore wind farms. The data comes from a
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Table 1
Values of hyperparameters used in the example.

Spacing of 𝐿1 directional vectors (see Eq. (2)) 0.1
Peak separation time 2 days
Threshold exceedance probability 0.1

31-year hindcast of wind, wave and current conditions, with data at
hourly intervals (Mackay and Hardwick, 2022).

As environmental contours are the boundary to a convex set, it is
advantageous to work with combinations of variables for which the
isodensity lines of the joint probability density function also define a
convex region. Although the joint density is not estimated as part of
the D-IFORM method, a visual inspection of scatter plots can indicate
whether the isodensity lines are approximately convex. Wave breaking
is governed by steepness. In deep water, a spectrally-averaged steepness
can be defined as 𝑠𝑚 = 2𝜋𝐻𝑠∕𝑔𝑇 2

𝑚. So, for a fixed steepness, we have
𝐻𝑠 proportional to 𝑇 2

𝑚. Moreover, wind drag on the sea surface is
approximately quadratic, and for a Pierson–Moskowitz spectrum, the
value of 𝐻𝑠 is proportional to 𝑈2

10 (Tucker and Pitt, 2001, §5.5.1.1). It
is therefore useful to work with

√

𝐻𝑠, rather than 𝐻𝑠, so that the region
of observations is more convex. Scatter plots of 𝐻𝑠 against 𝑈10 and 𝑇𝑚
are shown in Fig. 10, showing the sample cloud is concave on the upper
left boundary. Scatter plots of the normalised variables (see Section 3.1)
are also shown, where the normalised wave height is calculated from
√

𝐻𝑠. In these cases, the sample cloud of the normalised variables are
more convex in shape.

As directions are periodic, it does not make sense to estimate ex-
treme directions. Instead, we work with the components of wave height
that are in line (longitudinal) and transverse to the wind direction. We
therefore work with the following variables:

• 𝑈10, hourly-mean wind speed at 10 m above sea level
• 𝐻𝐿 =

√

𝐻𝑠 cos(𝜃𝑟𝑒𝑙), the longitudinal component of
√

𝐻𝑠, in line
with the wind direction.

• 𝐻𝑇 =
√

𝐻𝑠 sin(𝜃𝑟𝑒𝑙), the transverse component of
√

𝐻𝑠, at right
angles to the wind direction.

• 𝑇𝑚, mean wave period

Note that 𝐻𝐿 and 𝐻𝑇 are not intended to represent physical transport
of energy in particular directions. Rather, they simply intended to be
convenient quantities to work with for the calculation of contours. If
return values of combinations of 𝐻𝐿 and 𝐻𝑇 are known, then the
corresponding return values of 𝐻𝑠 and 𝜃𝑟𝑒𝑙 can be retrieved using the
inverse transformation:

𝐻𝑠 = 𝐻2
𝐿 +𝐻2

𝑇 , (9)

𝜃𝑟𝑒𝑙 = atan2(𝐻𝑇 ,𝐻𝐿), (10)

where atan2 is the four-quadrant inverse tan function.
The application of the D-IFORM method requires the specification

of three hyper-parameters, listed in Table 1. For the analysis we have
used 𝐿1 direction vectors with a spacing of 0.1 in each dimension
(see Eq. (2)). From Section 3.2, we see that using this spacing gives
286 direction vectors in each orthant of R4. Using reflection to obtain
direction vectors in each of the 16 orthants and removing duplicates
(i.e. those vectors where the distance from the reflection hyperplane
is zero), results in 2720 direction vectors. The declustering procedure
used a peak-separation time of 48 hours, and identified between ap-
proximately 2100 and 2600 peaks at each direction. The threshold
exceedance probability was fixed at 𝜁 = 0.1, which resulted in between
210 and 260 exceedances used to fit the GP model at each direction.
For the fitted GP distributions, the upper bound for the shape parameter
estimate, of 𝜉 = 0, was reached for 5 out of 2720 directions, and the
lower bound of 𝜉 = −1 was reached once. This relatively low occurrence
is likely due to the use of a reasonably long dataset of 31 years. If a
shorter dataset had been used, then the upper bound would likely have
8

Fig. 10. Scatter plots for original and normalised variables, colour denotes empirical
density. Normalised wave height uses

√

𝐻𝑠, so that resulting sample cloud is more
convex. Radial lines in right hand plots indicate direction vectors used in the analysis.
The non-constant spacing of direction vectors is due to the method used to create an
approximately regular spacing of direction vectors in higher dimensions. Dashed lines
on lower left plot indicate constant significant steepness at levels 0.01, 0.02, . . . , 0.06.

been reached more often, due to sampling uncertainty in estimating the
GP parameters (see e.g. Mackay et al. (2011)). The total computational
time for this example was approximately 30 s on a laptop with an
Intel® Core™ i7-7500u processor. I.e. the time required to compute the
POT analysis for each direction vector is less than 30∕2720 = 0.011 s,
since the total computational time also includes the other steps in the
analysis.

Examples of estimated return values as a function of projection
angle are shown in Figs. 11 and 12, together with the declustered
peaks at each angle. In Fig. 11 the projection angle is the Cartesian
angle calculated in the plane where the first dimension is normalised
wind speed and the second dimension is normalised wave period. In
Fig. 12 the plane has first dimension of normalised 𝐻𝐿 and the second
dimension of normalised 𝐻𝑇 . In both cases, there is a smooth variation
of the threshold and return values (up to the 50-year level) with
projection angle, indicating that using independent analyses at each
angle gives reasonable results and using more sophisticated inference
is unlikely to result in large changes. Examples of the fit of the GP
model to the threshold exceedances are shown in Fig. 13 for various
projection directions. A 95% confidence interval for the empirical ex-
ceedance probabilities is also shown (see Mackay and Jonathan (2021)
for details). In all cases shown, the GP model provides a good fit to
the observations, with deviations within the range expected due to
sampling uncertainties. Similarly, good fits were observed for other
directions (not shown here).

The comparison of the tails of the empirical and fitted distributions,
shown in Fig. 13, provides the most direct diagnostic tool for assessing
the fit of the models to the observation. Projections of the contours into
3D and 2D provide a more heuristic indication of adequacy of the esti-
mated contours (see Figs. 14 and 15). Broadly speaking, we are looking
to check that the contours provide a reasonable description of the range
of observations. The question of how many points we would expect to
observe outside the contours is complex to answer, as multiple effects
are present. Firstly, exceedances tend to occur in clusters due to serial
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Fig. 11. Declustered peaks against projection angle, with GP threshold and estimated
return values. The projection angle is the Cartesian angle calculated in the plane where
the first dimension is normalised wind speed and the second dimension is normalised
wave period.

Fig. 12. As previous figure, but with first dimension being normalised 𝐻𝐿 and the
second dimension being normalised 𝐻𝑇 .

correlation of the variables. Secondly, the contour is defined in terms
of an intersection of multiple non-exceedance regions, so it difficult
to say how many observations would be expected to fall outside the
contour in a given period. The difference between the probability of an
observation falling in a particular half-space exceedance region and the
probability of an observation falling anywhere outside the contour was
discussed in detail by Mackay and Haselsteiner (2021).

For a particular projection direction, 𝐮, the problem of calculating
the probability that the maximum observation in 𝑁 years does not
exceed the 𝑇 -year return value, is straightforward. First, define 𝑀𝐮,𝑁
to be the random variable representing the maximum value of 𝑅𝐮 in
an 𝑁-year period. Then the 𝑇 -year return value, 𝑅𝐮,𝑇 , is defined as the
solution of

𝑃 (𝑀𝐮,1 ≤ 𝑅𝐮,𝑇 ) = 1 − 1
𝑇
. (11)

As the maximum value in each year is independent, the probability of
not exceeding 𝑅𝐮,𝑇 in 𝑁 years is

𝑃 (𝑀𝐮,𝑁 ≤ 𝑅𝐮,𝑇 ) =
(

𝑃 (𝑀𝐮,1 ≤ 𝑅𝐮,𝑇 )
)𝑁 =

(

1 − 1
𝑇

)𝑁
. (12)

In this particular example, 𝑁 = 31, so 𝑃 (𝑀𝐮,31 ≤ 𝑅𝐮,50) ≈ 0.53.
Therefore, there is a roughly 50–50 chance that we will have at least
one observation falling outside the 50-year contour in any particular
direction. It is difficult to generalise to points falling anywhere outside
the contour, as the peaks are correlated between directions. Consider
a 2D example, and denote the coordinates of an observation, not
necessarily a peak, as (𝑥𝑖, 𝑦𝑖) = 𝜌𝑖(sin(𝜃𝑖), cos(𝜃𝑖)). The projection of this
observation onto direction vector 𝐮 = (cos(𝛼), sin(𝛼)) is 𝑟𝐮,𝑖 = 𝑥𝑖 cos(𝛼) +
𝑦 sin(𝛼) = 𝜌 cos(𝛼 − 𝜃 ). So, the projected distance from the origin is
9

𝑖 𝑖 𝑖
periodic in the projection direction, 𝛼. However, as noted in Section 3.3,
the points which correspond to local peaks in the time series, will
depend on the projection direction. It is therefore it is difficult to make
more general statements about how exceedances vary with projection
direction.

Examples of 3D projections of the 4D contours are shown in Fig. 14.
The left had plot shows the 50-year contour of 𝑈10, 𝐻𝐿 and 𝐻𝑇 , and
the right hand plot shows the 50-year contour of 𝑈10, 𝑇𝑚 and 𝐻𝑠.
In the latter case, the contour vertices for 𝐻𝑠 have been calculated
from those for 𝐻𝐿 and 𝐻𝑇 using (9). In both cases, the 3D contours
(surfaces) provide a good description of the extent of the observations.
Fig. 15 shows 2D projections for contours of 𝐻𝑠 vs. 𝑈10, 𝑇𝑚 vs. 𝑈10,
𝐻𝑠 vs. 𝑇𝑚, and 𝐻𝑠,𝑙𝑜𝑛𝑔 vs. 𝐻𝑠,𝑡𝑟𝑎𝑛𝑠. In the latter case, the variables
𝐻𝑠,𝑙𝑜𝑛𝑔 = 𝐻𝑠 cos(𝜃𝑟𝑒𝑙) and 𝐻𝑠,𝑡𝑟𝑎𝑛𝑠 = 𝐻𝑠 sin(𝜃𝑟𝑒𝑙) are shown in preference
to 𝐻𝐿 and 𝐻𝑇 , so that the dimensions are in metres. In all cases,
the contours provide a good description of the observations. In the
case of the contours for (𝐻𝑠, 𝑈10) and (𝐻𝑠, 𝑇𝑚), the lower values of
observations are not tracked well by the contours. This is a result of
how the contours are calculated in terms of 𝐻𝐿 and 𝐻𝑇 . The reason
for this is discussed further below. However, it should be noted that
when estimating extreme responses, it is only the largest values of 𝐻𝑠
at a given wave period, wind speed and misalignment direction that are
of interest. The 2D projected contours therefore provide an adequate
description in this respect.

It is interesting to consider the variation in the 50-year 𝐻𝑠 as a
function of 𝜃𝑟𝑒𝑙, indicated in the lower right plot of Fig. 15. As would
be expected, the largest values of 𝐻𝑠 occur when the wind and wave
direction are aligned, with a 50-year value of around 9.5 m. When wind
and wave directions are perpendicular (i.e. 𝐻𝑠,𝑙𝑜𝑛𝑔 = 0), the 50-year
𝐻𝑠 is just under 6 m. Finally, when winds and waves are in opposing
directions, the 50-year 𝐻𝑠 is around 4 m.

These 2D and 3D plots are useful for assessing the fit of the contours
to the observations. However, for specifying design conditions, we need
to know the joint extreme conditions of all values. Fig. 16 shows 2D
slices through the 4D contours for 𝑈10 = 11 m∕s and various values
of 𝑇𝑚. This corresponds to somewhere around the rated speed of an
offshore wind turbine, where the largest loads on some components can
occur. For example, the IEA 15 MW reference turbine has a rated wind
speed of 10.6 m/s (Gaertner et al., 2020). The slices show that for lower
periods, the largest 𝐻𝑠 is limited by wave breaking. This is evident by
only small differences between 1-year and 50-year return values. For
longer periods, the breaking limit is not always reached, and there are
differences in return values with return period and with misalignment
direction. The plots also illustrate that the joint distribution of 𝐻𝐿 and
𝐻𝑇 is ‘hollow’. That is, for a given wind speed and wave period, there
is only a narrow range of 𝐻𝑠 that is observed, with low values of 𝐻𝑠
at larger wind speed being unlikely due to the physical connection
between winds and waves. As the contours are derived in terms of 𝐻𝐿
and 𝐻𝑇 , the contours track the outer range of these variables, rather
than the lower values of 𝐻𝑠 at a given wind speed or wave period,
explaining the trends shown in Fig. 15.

5. Discussion and conclusions

This work has presented a method for estimating environmental
contours in arbitrary numbers of dimensions. The key insight utilised in
the D-IFORM approach is that the half-space exceedance regions, which
are used to define IFORM and Direct Sampling contours, correspond to
univariate exceedance regions under rotations of the axes. This removes
the need to fit a joint probability model, removing a significant source
of uncertainty associated with other environmental contour methods.
It also allows all observations to be used in the analysis at each
direction, so that increasing the number of variables does not increase
uncertainties, as happens when a joint distribution model is fitted in

higher dimensions.
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Fig. 13. Fit of GP model for various projection directions. Dots: peaks of projected data. Dashed lines: 95% CI for empirical exceedance probability. Solid lines: GP model.
Fig. 14. Examples of 3D projections of 4D contours compared with observations (dots). Left: 50-year contour of 𝑈10, 𝐻𝐿 and 𝐻𝑇 . Right: 50-year contour of 𝑈10, 𝑇𝑚 and 𝐻𝑠.
The application of the method requires only three parameters to be
specified by the user: (1) the spacing of the directional vectors, (2) the
peak separation time, and (3) the threshold exceedance probability for
fitting the GP model. The GP model itself is asymptotically justified
from extreme value theory. In comparison, methods which involve
fitting a model for the joint distribution require much stronger as-
sumptions about the form of the marginal distributions and dependence
structure.

For the four-dimensional example presented here, the computa-
tional effort is very low, requiring around 30 s. It is interesting to
consider what would happen if other variables which may influence
the response of an offshore structure were included in the analysis.
For example, current speed, current direction and water level may also
have an effect on the response. Including these variables would result
in a seven-dimensional problem. Using a spacing of 0.1 for direction
vectors, as in the example in Section 4, would give 209762 directions
for the analysis (see Section 3.2). Compared to the example presented,
10
this would still result in reasonable computational times of less than an
hour.

The use of environmental contours provides a reduction of one
dimension for the problem of calculating extreme responses, compared
to ‘full long-term analysis’ methods, where the response must be esti-
mated for the full variable space. This reduction in dimensionality is
useful, but in higher dimensions the number of simulations required
to fully characterise a contour can be very large. High dimensional
contours can be used as a way of choosing plausible combinations of
parameters for assessing the response. It is not a requirement to conduct
response simulations for all points on a contour. Instead, sensitivity
studies can be used to indicate regions likely to lead to high response.
Engineering judgement can be applied in the same way as for lower
dimensional contours, when values of other variables must be decided
for the response analysis.

Finally, it is important to note that extreme responses calculated
using the D-IFORM method will be subject to the same limitations as
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Fig. 15. Examples of 2D projections of 4D contours compared with observations (dots). Angular-radial grid on lower right plot indicates wind-wave misalignment angle and 𝐻𝑠
(radius).

Fig. 16. Examples of 2D slices through 4D contours for 𝑈10 = 11 m∕s and various values of 𝑇𝑚, compared with observations (dots). Contour return periods are 1-, 5- and 50-years.
Bin size for observations is ±1 m∕s for 𝑈10 and ±0.5 s for 𝑇𝑚.
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the standard IFORM and Direct Sampling methods, in terms of the
assumption of a linearised failure surface and neglecting short-term
variability in the response. The effect of these assumptions has been
discussed elsewhere in the literature (see e.g. de Hauteclocque et al.
(2022) and Haselsteiner et al. (2022) for recent examples). Moreover,
the extreme responses are sensitive to the variable space in which the
contours are constructed. This is because a linear approximation to a
failure surface in one variable space will not necessarily be linear when
transformed into another variable space (see e.g. Huseby et al. (2013)
and Vanem (2017)). This highlights the uncertainty introduced by
using the FORM approximation of a linear failure surface. Nevertheless,
despite these uncertainties, extreme responses inferred using D-IFORM
environmental contours have been shown to be in good agreement with
extreme responses calculated from response-based analyses, for a wide
range of structures (de Hauteclocque et al., 2022).
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