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A B S T R A C T   

The accuracy of estimated sea conditions, specifically wave height and peak/average wave periods, affects the 
estimation of electrical energy production from wave energy converters. This study investigates the uncertainty 
in wave energy harvesting estimated by the SWAN wave model and determines possible improvements by 
adjusting the model’s tunable parameters. Three different wave energy converters (OEBuoy, WaveBob, and 
Pontoon) and ten different locations along the Atlantic coast of the Iberian Peninsula are used in the study. The 
SWAN model is calibrated using the ST6 term package based on both wave height and peak period wave pa
rameters. Different wave hindcast data produced by different model settings are used to estimate the wave 
energy produced by the wave energy converters at ten buoy locations and compared to wave energy produced 
estimated based on wave observations. The study finds that the physical settings of the SWAN model have a 
considerable influence on the uncertainty in the estimation of the power output produced by the device. The 
best-fitting calibrated model improved the mean energy output value of all locations compared to the SWAN 
default settings. The study concludes that adjusting the SWAN model parameters can improve the accuracy of the 
estimation of the energy output.   

1. Introduction 

Marine renewables and, in particular wave energy, are among the 
energy sources with the greatest potential to scale up and contribute to 
the ambitious European decarbonization targets to become the world’s 
first climate-neutral continent by 2050, as stated in the EU’s Green Deal 
[1], which implies decreasing the greenhouse gas (GHG) emission by 
80–95%. In the past decade, the EU has endorsed an integrated approach 
to climate and energy policies, intending to fight climate change and 
increase the EU’s energy security. These policies have been very suc
cessful in taking the first generation of renewable energy technologies, 
such as solar PV and wind, to commercially competitive levels. How
ever, the EU will need other technologies to increase and diversify its 
low-carbon generation capacity in order to phase out the use of 
carbon-intensive fossil fuels and ensure a fair and just transition towards 

a more sustainable economy [2]. 
Over the last decade, the marine renewable energy sector has 

developed fast, especially in the field of offshore wind energy. 
Conversely, the wave energy sector is subject to continuous challenges. 
Despite the substantial progress achieved over this period, wave energy 
has not yet converged into a single/predominant technology [3], mainly 
because to date research and innovation on technology development 
and energy resource assessment have been mostly siloed. Surely, the 
potential of wave energy is indisputable, and the locations around the 
globe where the average power is particularly intense, are well known 
[4,5]. However, how can a promoter confidently assess which technol
ogy is the most appropriate for a specific location? Estimating the 
amount of electricity generated by a wave energy converter (WEC) in an 
area of interest is critical for determining the economic viability of a 
project. Furthermore, the energy output estimation must include several 
WECs to choose the best performing WEC for a given specific location 
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[6]. Nonetheless, for this estimation to be meaningful, an accurate 
characterization of the wave potential is required [7,8]; otherwise, the 
cost-benefit calculation would be questionable. 

Therefore, for the assessment of WECs, the necessary wave param
eters must be obtained from a well-calibrated and validated numerical 
model for the area of interest. Among the different numerical tools to 
estimate the wave energy resource in the large ocean or coastal regions, 
the open-source SWAN spectral wave model has become one of the most 
popular options [9–11]. However, there are many tunable coefficients in 
the SWAN model that can be calibrated simultaneously and the most 
popular one is the whitecapping coefficient [12,13]. The ST6 terms 
package (considered the latest wave modeling calibration package [14]) 
can be parameterized with three different wind drag formulas, such as 

Hwang et al. [15], Fan et al. [16], and ECMWF [17]. Amarouche et al. 
[9], conducted sensitivity tests based on the tunable parameters rec
ommended by the SWAN team [18] and concluded that the wind scaling 
factor and wind drag formulas are the most sensitive and influencing 
factors in the calibration of the ST6 source term package. In the present 
study, different wind scaling factors in HWANG, FAN, and ECMWF wind 
drag formulas of the operational SWAN ST6 source terms package 
(initially documented by Rogers et al. [19]), are used for the calibration 
of the model. 

The wave energy resource must be accurately evaluated to obtain a 
credible estimation of the power output of wave energy farms [20]. For 
instance, Hiles et al. [21] investigated the uncertainty in the estimation 
of the power output of wave farms using data from simulated 

Abbreviations 

[a1sds], [a2sds] Options in ST6 SWAN that can be used for wind 
scaling factor calibration 

α high-frequency energy level estimated from JANSWAP 
project data 

AEP Annual energy production 
BIAS Bias 
CD Wind drag coefficient 
cdfac A parameter in ST6 SWAN that can be calculated based on 

the wind stress and is used with the DEBIAS option 
CP phase speed at the peak frequency 
cθ Propagation velocity in θ space due to refraction 
cx The velocity of wave action density propagation in the x 

direction 
cy The velocity of wave action density propagation in the y 

direction 
cσ Propagation velocity in σ space due to variations in depths 

and impact of currents 
DEBIAS An option available to the user in ST6 SWAN that can 

counter bias in the input wind fields by providing a 
multiplier on the drag coefficient 

ECMWF European Centre for Medium-Range Weather Forecasts 
ECMWF32 ECMWF wind drag formula with wind scaling factor of 

32 
ECMWF35 ECMWF wind drag formula with wind scaling factor of 

35 
E0 Total energy output for the period of interest 
ERA5 The fifth generation of the European Reanalysis 
FAN Wind-Wave Model developed by Fabrice Ardhuin and 

Nicolas Rascle 
FAN28 FAN wind drag formula with wind scaling factor of 28 
FAN32 FAN wind drag formula with wind scaling factor of 32 
FAN35 FAN wind drag formula with wind scaling factor of 35 
g gravitational acceleration 
GEBCO General Bathymetric Chart of the Oceans 
GHG Greenhouse Gas 
Hm0 Significant wave height 
Hwang Wind-Wave Model developed by Y.T. Hwang 
HWANG32 HWANG wind drag formula with wind scaling factor of 

32 
HWANG35 HWANG wind drag formula with wind scaling factor of 

35 
JONSWAP Joint North Sea Wave Project 
k Von Karman constant with a value of 0.4 
MAE Mean absolute error 
MIKE Hydrodynamic and Water Quality Model 
nH Total number of wave height classes considered in the 

analysis 

nT Total number of wave period classes considered in the 
analysis 

NOAA National Oceanic and Atmospheric Administration 
[p1sds], [p2sds] Options in ST6 SWAN that can be used for wind 

scaling factor calibration 
Pij Power generated by the WEC for a specific wave period and 

wave height 
PTO Power take-off system 
PV Photovoltaic 
ρij Percentage occurrence of wave energy 
R Correlation coefficient 
Rw logarithmic wind profile parameter 
RMSE Root Mean Square Error 
Sbot Shallow water source term: Bottom friction-induced 

dissipation 
Sbrk Shallow water source term: Wave breaking due to depth 
Sin Deep-water source term: Energy transfer from the wind to 

waves 
Snl3 Shallow water source term: Non-linear triad interaction 
Snl4 Deep-water source term: Non-linear quadruplet wave- 

wave interactions 
Stot Total source term 
Swc Deep-water source term: Wave energy dissipation induced 

by whitecapping 
SI Scatter Index 
ST6 SWAN source term package 
SWAN Simulating Waves Nearshore (a third-generation spectral 

wave model) 
SWAN-DEF Default SWAN settings 
ST6-DEF Default ST6 settings 
Te Wave energy period 
Tp Peak wave period 
Tm02 Mean Zero-Crossing Period 
TOMAWAC SWAN-based wave model for coastal and marine 

engineering applications 
TRUE10 An option for wind scaling factor in ST6 SWAN 
U10 10-m wind speed 
u∗ friction velocity characterizing the shear stress at the 

surface 
U10PROXY An option for wind scaling factor in ST6 SWAN that has 

been shown to improve the prediction of mean square 
slope 

uz wind speed at a particular height z above the surface 
WAM A third-generation wave prediction model 
WEC Wave Energy Converter 
WWIII Wave Watch III Model 
z a particular height above the surface 
z0 momentum roughness length that reflects the surface 

roughness’s effect on the wind flow  
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deployments of WECs with different working principles in different lo
cations. For this purpose, a Monte Carlo method was used to analyze the 
mean Annual Energy Production (AEP) and it showed uncertainty levels 
ranging from 2% to 20%. It was also found that the type of WECs and 
deployment location had a significant impact on the obtained uncer
tainty levels, which were also highly sensitive to the number of input 
data [21]. In addition, several researchers, such as Livermore [22] using 
the standard error propagation method (a similar approach to that 
applied in wind energy), Guanche et al. [23] using a boot-strap resam
pling technique, Mackay et al. [24] investigating the impacts of sam
pling variability method, Kofoed et al. [25], and Bailey et al. [26], 
propose different methods to estimate the uncertainty of the mean AEP 
associated with the WEC performances. 

In consequence, one of the challenges for the wave energy industry to 
overcome is to develop fair and consistent methodologies for evaluating 
the performance of WEC technologies. For this purpose, the Interna
tional Electrotechnical Commission developed and regularly updates 
technical specifications to homogenize and standardize the key aspects 
related to wave energy resource assessment and WEC performance 
assessment [27,28]. However, there are uncertainties from a range of 
contributing factors when a performance matrix is used together with 
calculations based on observed data from a deployed WEC at a single 
location [21,29]. 

The AEP is usually calculated using the WEC power matrix obtained 
experimentally or numerically by WEC developers. Another component 
used in the AEP computation is the wave resource matrix, which pre
sents the probability of occurrence of each sea state and should be 
prepared according to the power matrix of the WEC device. The wave 
energy resource matrix can be elaborated using wave data obtained from 
either field measurements or numerical modeling (e.g., SWAN [18], 
MIKE [30], TOMAWAC [31], WWIII [32], and WAM [33]). In the case of 
using data from numerical modeling, the shape of the wave resource 
matrix can be highly influenced by the set-up of the main physical pa
rameters of the wave model. These changes may shift the number of 
events from one class to another (from one cell to another) and, hence, 
their probability will be multiplied by a different cell in the power 
matrix, having a different power conversion value. 

Therefore, a notable uncertainty may occur when estimating the 
power output using the power matrix of WEC technologies. For this 
reason, the present study focuses on investigating the impacts of the 
adjustment of the physical parameters of the SWAN wave model on the 
estimation of the energy production of WECs. For this purpose, the 
OEBuoy, WaveBob, and Pontoon [34,35] technologies were used as case 
studies in combination with 10 different locations alongside the Atlantic 
coast of the Iberian Peninsula. This region, facing the North Atlantic, 
presents one of the most energetic wave regimes in continental Europe 
[36–39], and, therefore, it appears as a promising location for the 
exploitation of the wave energy resource. 

The remainder of this paper is structured as follows: Section 2 de
scribes the physics of the SWAN numerical model and the input and 
calibration factors considered for this work. Section 3 presents a brief 
description of the WEC technologies analyzed in this research work. 
Section 4 presents and discusses the results obtained. Finally, conclu
sions are drawn in Section 5. 

2. SWAN numerical model 

2.1. SWAN physics 

SWAN is a third-generation spectral wave model developed at the 
Delft University of Technology (Netherlands) and is available through 
an open-source license. The SWAN model is among the most widely used 
wave models on a regional scale [40–44] and has been properly 
implemented on a global scale. SWAN uses an Eulerian formulation of 
the balance of wave energy densities to compute variations in wave 
action density (N) [45]. 

∂
∂t

N +
∂
∂x

cxN +
∂
∂y

cyN +
∂

∂σcσN +
∂
∂θ

cθN =
Stot

σ , (1)  

where the first term represents the local rate of change in wave action 
density in time, and the second and third terms represent the propaga
tion of wave action density in the geographical space with velocities of 
cx and cy in the x and y directions, respectively. The fourth term is the 
shifting of the relative frequency with a propagation velocity cσ in σ 
space due to variations in depths and the impact of currents. The fifth 
term is the refraction due to currents and bathymetry changes with a 
propagation velocity cθ in θ space [46,47]. The generation, dissipation, 
and redistribution of wave energy are all represented on the right side of 
Eq. (1). Eq. (2) shows the six deep and shallow water source and sink 
terms that may be used to simulate wind-to-wave energy transfer and 
wave energy dissipation [48]: 

Stot = Sin + Swc + Snl4 + Sbot + Sbrk + Snl3, (2)  

where the deep-water source terms refer to an energy transfer from the 
wind to waves (Sin), wave energy dissipation induced by whitecapping 
(Swc), and non-linear quadruplet wave-wave interactions (Snl4). On the 
other hand, bottom friction-induced dissipation (Sbot), wave breaking 
due to depth (Sbrk), and non-linear triad interaction (Snl3) terms are the 
shallow water source terms [49]. Consequently, SWAN simulates 
wind-wave generation, dissipation, and propagation, including the ef
fects of shoaling and refraction from depths and currents, triad- and 
quad-wave interactions, bottom friction, whitecapping dissipation, and 
refraction due to water depth variations and diffraction effects. 

In order to simulate energy transmission to, from, and between 
waves, each of the abovementioned parameterizations relies on labo
ratory and experimental data. In this context, the ST6 physics package 
was added with SWAN release version 41.20, including, among others, 
parameterizations for wind input, whitecapping, wind speed scaling, 
and swell dissipation. Similarly, wave models (e.g. NOAA’s WaveWatch 
III) have also integrated the ST6 physics package. The whitecapping 
term, Swc, has two main assumptions in the expression used in ST6 [50]: 
firstly, waves do not break unless the spectral density at a particular 
frequency exceeds a threshold calculated from the spectral saturation 
spectrum. Secondly, two separate dissipation terms for the two phases of 
the whitecapping term are assumed to be distinguishable based on two 
distinct mechanisms [51]. 

The level of roughness on the surface of the ocean is significant in its 
interaction with the atmosphere. This is primarily because it causes 
resistance to the wind, which in turn has an impact on the exchange of 
mass, momentum, and energy between the ocean and the atmosphere 
[15]. Rogers et al. [19], offered a modified equation based on [52] for 
the ST6 wind input term in the SWAN model, which included a negative 
input term owing to oblique and unfavorable winds. 

2.2. The ST6 physics 

The ST6 package is a physics module in the SWAN wave model that 
computes the source terms of waves, including those generated by wind, 
currents, and wave-wave interactions. The wind source term is 
computed using a wind scaling factor and a wind drag formula. The 
wind scaling factor adjusts the wind speed to the height of the wave 
boundary layer and is determined by the [windscaling] option. The wind 
drag formula is used to calculate the drag coefficient, which, in turn, is 
used to calculate the wind stress on the sea surface. The ST6 module 
offers the options of HWANG [15], FAN [16], and ECMWF [17] drag 
formulas, with HWANG [15] being the default option that is recom
mended for use with the DEBIAS option, which corrects for bias in the 
input wind fields. 

Moreover, the ST6 package includes a wave-wave interaction source 
term that accounts for the transfer of energy between different wave 
components. The wind scaling factor and wind drag formulas are 
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considered the most sensitive and influential factors in the calibration of 
the ST6 source term package. The wind scaling factor is defined as the 
ratio of the wave height to the wind speed, and the user can choose from 
a selection of calibrated options, including [a1sds], [a2sds], [p1sds], 
and [p2sds]. The user can also choose between the TRUE10 and 
U10PROXY options for the wind scaling factor, with the default option 
being U10PROXY with [windscaling] = 32, which has been shown to 
improve the prediction of the mean square slope. The DEBIAS option is 
another choice available to the user, which can counter bias in the input 
wind fields by providing a multiplier on the drag coefficient [53]. The 
physics of the ST6 module are described in detail in Rogers et al., [19]. 

The wind drag coefficient (CD) defined by Hwang et al. [14,15,19] is 
given in Eq. (3). 

CD = 10− 4 ×
(
8.058+ 0.967U10 − 0.016U2

10

)
, (3)  

Where, U10 is the 10-m wind speed. The wind drag coefficient defined by 
Fan et al. [16] is computed by the following equations 

CD = 10− 3 ×

(

0.021+
10.4

R1.23
w + 1.85

)

, (4)  

Rw = ln
[

zg
0.2 ̅̅̅̅̅̅̅αuz

√

]

, (5)  

where g is gravitational acceleration, α is the high-frequency energy 
level estimated parametrically from JANSWAP project data and given by 
the following equation. 

α= 0.57
(

CP

u∗

)− 1.5

, (6)  

uz =
u∗

k
ln
(

z
z0

)

, (7)  

where CP is the phase speed at the peak frequency, uz represents the 
wind speed at a particular height z above the surface, u∗ is the friction 
velocity that characterizes the shear stress at the surface, k is a constant 
with a value of 0.4 known as the Von Karman constant, and z0 represents 
the momentum roughness length that reflects the surface roughness’s 
effect on the wind flow. 

The wind drag coefficient of ECMWF followed by WAM cycle 4 based 
on Janssen [17] is given in Eq. (7). 

CD =

{
1.2875×10− 3,U10 < 7.5 m

/
s

(0.8 + 0.065U10) × 10− 3,U10 ≥ 7.5 m
/

s
(8)  

In the present study, a comparison of SWAN default, ST6 default, Hwang 
wind drag formula with wind scaling factors of 32 and 35, FAN wind 
drag formula with wind scaling factors of 28, 32, and 35, and ECMWF 
wind drag formula with wind scaling factors of 32 and 35, has been 
carried out for the area of study. 

2.3. SWAN model implementation 

The most important input parameter affecting the wind-wave 
modeling accuracy is wind forcing [54]. In the present study, the 
wave model is forced with hourly ERA5 wind reanalysis, which presents 
a spatial resolution of 0.25 × 0.25◦ [55]. The ERA5 wind data is pro
duced by the European Center for Medium-Range Weather Forecasts 
(ECMWF) using an integrated forecast system consisting of 137 
sigma-pressure hybrid layers with a 0.01 hPa top-level [56]. The ERA5 
wind data is currently among the most widely used wind reanalysis 

Fig. 1. The defined unstructured mesh grid system (a), bathymetry (b), and buoy locations (black dots) for the study area.  
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datasets in wind-wave climate studies [57] and it is considered a 
reference for the validation and improvement of historical and future 
climate projections [58]. In this sense, several studies have confirmed 
the accuracy of the ERA5 wind data in different areas around the world 
[9,59–62]. SWAN can compute wave propagation using regular, curvi
linear, or unstructured computational grids based on cartesian or 
spherical coordinate systems [48,63,64]. In this study, in order to catch 
the critical effect of local physics without sacrificing computational ef
ficiency, an unstructured grid system is used (Fig. 1a). The unstructured 
grid presents a space varying cell size, which ranges from 0.002◦ (0.25 
km) to 0.26◦ (29 km) in the present study. As a result, the grid consists of 
114518 vertices, 220485 internal cells, 4261 boundary cells, 334975 
internal faces, and 4288 boundary faces. The bathymetry dataset 
(Fig. 1b) interpolated onto the grid was obtained from the General 
Bathymetric Chart of the Oceans (GEBCO) [65]. 

The wave boundary conditions for the model were extracted from the 
hourly ERA5 wave hindcast reanalysis [55], which presents a 1 × 1◦

spatial resolution alongside the area of the study (Fig. 1a and b). The 
model was run in non-stationary mode and the boundary conditions 
were imposed using a JONSWAP spectrum, which was defined in terms 

of significant wave height (Hm0), peak wave period (Tp), and peak wave 
direction (ƟP). Following previous works on the area of study, the 
JONSWAP spectrum peak enhancement factor was set to 3.3 [38]. 
Finally, it is worth mentioning that the model was calibrated against the 
measurements of 10 wave buoys operated either by the Portuguese 
Hydrographic Institute or by the Spanish Port Authority, Table 1. 

3. Case-study WECs 

The OEBuoy, WaveBob, and Pontoon technologies were selected for 
evaluating the uncertainties in the energy output due to the SWAN 
model set-up. The three selected WECs are all point absorbers, whose 
operating characteristics make them suitable to operate at the locations 
where the wave buoys indicated in Table 1 are located. 

OEBuoy is a floating oscillating water column, which keeps an air 
pocket fixed just above the water column in a semi-submerged open 
chamber below the ocean free surface. Incoming waves cause the 
oscillating water column to move up and down. The produced airflow 
passes through a bidirectional turbine that converts its energy into 
electrical energy. OEBuoy presents a rated power output of 2880 kW. In 
its power matrix (Appendix A, Table A1), the power output rises until a 
maximum operational significant wave height (Hm0) of 7 m. In terms of 
wave period, power production reaches its maximum at an operational 
peak period (Tp) of 11 s and then falls back. Only 3% of the operational 
Hm0 and Tp combinations have a power conversion above 80% of the 
WEC rated power [26]. 

WaveBob is an axisymmetric self-reactive point absorber made of a 
torus sliding along a vertical floating body connected to a high-inertia 
underwater tank. A hydraulic Power Take-Off (PTO) system generates 
power by the relative motions between the two bodies, having a rated 
power of 1000 kW. Its power matrix has a wide power band (Appendix 
A, Table A2) and roughly 13% of the operating Hm0 and Tp combinations 
have a power conversion above 80% of the WEC nominal power [35]. 

The Pontoon WEC is a multiple-point absorber made up of numerous 
heaving buoys connected by a hydraulic PTO system to a common 

Table 1 
Location, buoy ID, water depth, and number of data records available in 2010 for 
all the considered locations.  

Location Buoy ID Lon (◦) Lat (◦) Depth (m) Data No 

B1 6200084 − 9.3675 41.9665 292.5 4996 
B2 6200192 − 9.64 39.51 1547.1 2629 
B3 6200199 − 9.21 39.56 65.4 2214 
B4 2136 − 3.04 43.64 827.0 8513 
B5 2242 − 6.18 43.75 748.0 6020 
B6 2248 − 9.43 42.12 691.3 4996 
B7 2246 − 9.21 43.5 424.8 8726 
B8 2244 − 7.68 44.12 1650.0 1160 
B9 2342 − 6.96 36.49 467.0 6863 
B10 Leixões Buoy − 8.983 41.3167 84.8 2524  

Fig. 2. Changes of SI, RMSE, and BIAS (dash-lines) error parameters of Hm0 (blue), Tm02 (red), and Tp (black) of 9 different SWAN settings for the locations B1, B2, B3, 
B4, and B5. The left y-axis represents both the SI and RMSE and the right y-axis represents the BIAS. 
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underwater structure. The Pontoon unit considered in this work includes 
10 heaving buoys and has a nominal power of 3619 kW. Because the 
device cannot perform well in both short and long-crested waves, only 
12% of the bins in the power matrix have a normalized power output 
above 40% of its nominal power (Appendix A, Table A3) [35]. 

4. Results and discussion 

4.1. SWAN model calibration 

One of the main objectives of this study is to calibrate the imple
mented wave model by adjusting the ST6 SWAN package settings. 
Recently, several studies [9,13,14,66] showed that the use of the new 
ST6 package in the SWAN model provides better accuracy than the 

Fig. 3. Changes of SI, RMSE, and BIAS (dash-lines) error parameters of Hm0 (blue), Tm02 (red), and Tp (black) of 9 different SWAN settings for the locations B6, B7, B8, 
B9, and B10. The left y-axis represents both the SI and RMSE and the right y-axis represents the BIAS. 

Fig. 4. Time series of Hm0, Tm02, and Tp of the SWAN model (HWANG35) against the measurements from buoy B4 for the year 2010.  
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default SWAN settings. Thus, the ST6 package was calibrated by 
adjusting the wind drag formulation, wind scaling factor, and wind 
growth formula. For this purpose, a detailed comparison of the SWAN 
default (SWAN-DEF), ST6 default (ST6-DEF), HWANG with wind scaling 
factors of 32 (HWANG32) and 35 (HWANG35), FAN with wind scaling 
factors of 28 (FAN28), 32 (FAN32), and 35 (FAN35), ECMWF with wind 
scaling factors of 32 (ECMWF32) and 35 (ECMWF35) has been carried 
out. The outputs of these 9 different SWAN settings are compared 
against measurements of 10 different wave buoys alongside the area of 
interest (Table 1). To assess the performance of each SWAN setting 

across the study area, the scatter index (SI), Root Mean Square Error 
(RMSE), and BIAS have been computed for the wave spectral parameters 
(Hm0, Tm02, and Tp) for the locations highlighted in Table 1. The results 
obtained are plotted in Figs. 2 and 3. Evaluating the 9 different error 
parameters (SI-Hm0, SI–Tm02, SI-Tp, RMSE-Hm0, RMSE-Tm02, RMSE-Tp, 
BIAS-Hm0, BIAS-Tm02, BIAS-Tp), at all 10 locations, in overall, it can be 
concluded that HWANG35 presents the best performance except for 
locations B5, B7, and B8, where FAN35 shows the lowest error values 
(Figs. 2 and 3). 

The time series for the significant wave heights (Hm0), mean wave 

Fig. 5. A comparison of the scatter diagrams for Hm0 between the SWAN default and the calibrated model for all 10 different locations considered in the study area.  
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periods (Tm02), and peak periods (Tp) for the HWANG35 SWAN setting 
against the measurements from buoy B4 for the year 2010 are presented 
in Fig. 4. These time series clearly show that the SWAN model can es
timate those wave parameters satisfactorily. Overall, it can be concluded 
that the higher values of Hm0 (top panel) are underestimated whereas 
the lower values are overestimated. However, in Tm02 (middle panel), 
the higher values are overestimated, and the lower values of the model 
are underestimated. Finally, the Tp (bottom panel) is slightly over
estimated in the time frame of 2010. 

For a better understanding of the model performance, the scatter 
diagrams of Hm0 for all the considered SWAN settings against 10 
different in-situ measurements are presented in Fig. 5. Each figure 
contains a red and a black line that highlights the clustering of data 
points. The red line represents the best-fitted curve, and the black line 
shows the regression model y = cx. N is the number of temporally 
matched data in the dataset. In general terms, the scatter diagrams of 
Hm0 confirm the model accuracy. Again, for all the locations analyzed, 
the best-fitted curves show overestimations and underestimations in the 
low and high values of Hm0, respectively. 

After analyzing the results, it is observed that the HWANG35 setting 
provides the closest values to the data from buoy measurements for 7 
different locations (B1, B2, B3, B4, B6, B9, and B10) and the FAN35 
setting for 3 (B5, B7, and B8). 

For the validation of the best model setting, some statistical error 
parameters such as N, R, BIAS, RMSE, MAE, and SI, for Hm0, Tm02, and Tp 
are presented in Table 2. The error parameters in Table 2 are improved 
in the adjusted model compared to the default model, but this 
improvement is much more significant in Tm02 and Tp. The equations 
used to determine the statistical error parameters are presented in Ap
pendix B. 

4.2. The energy output of the case-study WECs 

In this section, the uncertainties in terms of AEP estimation are 
investigated for the three case-study WECs (OEBuoy, WaveBob, and 
Pontoon). For this purpose, the measured and modeled (considering the 
different ST6-SWAN settings) wave conditions are used to construct the 
omnidirectional wave energy resource matrices for the locations 

highlighted in Table 1. Then, the wave resource matrices are combined 
with the power matrices of the WECs to compute the AEP. Finally, a 
comparison of the AEP estimated using the model results and the field 
measurements is carried out. The matched datasets between the model 
and measurements are classified considering the characteristics (Hm0 
and Tp steps) of the power matrix of OEBuoy, WaveBob, and Pontoon. 
The results show that the model accuracy changes depending on the sea 
state conditions. Since the best results for 70% of the investigated lo
cations were obtained using HWANG35 and location B4 has the largest 
data record entries among the 7 best-fitted locations with HWANG35, 
location B4 is here discussed in more detail. The difference in the 
number of events between the resource matrices obtained from the 
SWAN model and measurements for location B4 are given in Table 3. 

The model underestimates the occurrences for sea states in the range 
from 0.5 to 5.5 m of Hm0 and 2–9 s of Tp. Conversely, the model over
estimates the occurrence of sea states concentrated in the region be
tween 1 and 5 m of Hm0 and 11–16 s of Tp. Consequently, the results 
show that the sea states estimated by the SWAN model are shifted from 
the lower Tp bins to the higher Tp bins. 

Using the power matrix of OEBuoy (Appendix A, Table A1) and the 
wave energy resource matrices obtained from the SWAN simulations 
and buoy measurements for location B4, and applying Eq. (9), the en
ergy output for each sea state can be calculated (Tables 4 and 5, 
respectively). Due to the lack of continuous measurements available in 
location B4 during the year 2010, the energy during a period of 8513 h 
(approximately one year). The total energy output for the period of in
terest, E0, can be calculated using, 

E0 =
∑nT

i=1

∑nH

j=1
ρij × Pij × Δ T (9)  

where ρij represents the percentage occurrence of wave energy, and Pij 
represents the power generated by the WEC for a specific wave period 
(ith class) and wave height (jth class). The value of ρij is obtained from 
the wave scatter diagram calculated over the period Δ T at the chosen 
location, while the Pij is obtained from the power matrix of the WEC. The 
values of nT and nH represent the total number of wave period and wave 
height classes, respectively, that were considered in the analysis [67]. 

Table 2 
R, BIAS, RMSE, MAE, and SI statistical error parameters for the Hm0, Tm02, and Tp of 10 different buoy measurements against SWAN-DEF and HWANG35 model settings 
around the study area.  

Model/Location N Hm0 (m) Tm02 (s) TP (s) 

R BIAS 
(m) 

RMSE 
(m) 

MAE 
(m) 

SI R BIAS 
(s) 

RMSE 
(s) 

MAE 
(s) 

SI R BIAS 
(s) 

RMSE 
(s) 

MAE 
(s) 

SI 

HWANG35 B1 4996 0.94 0.05 0.46 0.35 0.18 0.80 − 3.00 3.23 3.00 0.35 0.66 1.41 2.35 1.83 0.24 
B2 2629 0.92 0.19 0.49 0.38 0.21 0.82 − 0.64 0.99 0.75 0.15 0.75 0.45 1.72 1.17 0.17 
B3 2214 0.86 0.26 0.62 0.49 0.29 0.77 − 0.57 1.09 0.85 0.16 0.63 0.44 2.18 1.46 0.21 
B4 8513 0.93 0.07 0.40 0.29 0.24 0.86 − 0.02 0.79 0.59 0.15 0.67 1.46 2.54 1.83 0.29 
B5 6020 0.82 0.14 0.51 0.37 0.30 0.71 − 0.20 0.89 0.65 0.16 0.56 1.26 2.43 1.79 0.29 
B6 4996 0.94 0.09 0.46 0.36 0.18 0.85 − 0.06 0.81 0.60 0.13 0.66 1.37 2.33 1.81 0.24 
B7 8726 0.92 0.17 0.52 0.39 0.21 0.88 − 0.03 0.65 0.49 0.11 0.72 1.33 2.19 1.63 0.24 
B8 1160 0.88 0.21 0.45 0.36 0.19 0.84 − 0.32 0.78 0.57 0.12 0.57 0.40 2.48 1.66 0.24 
B9 6863 0.90 − 0.02 0.39 0.28 0.28 0.82 − 0.46 1.00 0.77 0.22 0.63 1.17 3.19 2.25 0.42 
B10 2524 0.93 0.11 0.38 0.30 0.19 0.79 − 0.52 1.03 0.78 0.17 0.72 0.11 1.86 1.15 0.18 
ABS 
mean 

4864 0.90 0.13 0.47 0.36 0.23 0.81 ¡0.58 1.13 0.91 0.17 0.66 0.94 2.33 1.66 0.25 

SWAN- 
DEF 

B1 4996 0.94 − 0.07 0.49 0.36 0.19 0.73 − 2.65 3.05 2.67 0.33 0.65 1.45 2.40 1.85 0.24 
B2 2629 0.90 − 0.05 0.50 0.36 0.21 0.77 − 0.53 1.22 0.96 0.19 0.77 0.38 1.69 1.12 0.17 
B3 2214 0.84 0.09 0.60 0.46 0.29 0.71 − 0.13 1.39 1.10 0.21 0.63 0.50 2.20 1.44 0.21 
B4 8513 0.92 0.01 0.43 0.31 0.26 0.78 0.16 1.19 0.91 0.22 0.67 1.47 2.55 1.84 0.29 
B5 6020 0.81 0.02 0.49 0.36 0.29 0.63 0.17 1.22 0.97 0.22 0.56 1.27 2.45 1.79 0.29 
B6 4996 0.94 − 0.04 0.48 0.36 0.19 0.80 0.27 1.38 1.10 0.22 0.66 1.41 2.37 1.82 0.24 
B7 8726 0.92 − 0.03 0.51 0.36 0.20 0.82 0.29 1.18 0.90 0.20 0.71 1.37 2.23 1.64 0.25 
B8 1160 0.86 0.09 0.43 0.33 0.18 0.79 0.11 1.12 0.85 0.18 0.59 0.42 2.44 1.64 0.24 
B9 6863 0.90 − 0.10 0.39 0.28 0.28 0.81 − 0.65 1.13 0.92 0.24 0.60 1.15 3.35 2.39 0.45 
B10 2524 0.91 − 0.01 0.39 0.28 0.20 0.73 − 0.21 1.37 1.08 0.22 0.69 0.08 1.95 1.21 0.19 
ABS 
mean 

4864 0.89 0.05 0.47 0.35 0.23 0.76 0.52 1.43 1.15 0.22 0.65 0.95 2.36 1.67 0.26  
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It can be concluded that when real buoy measurements are consid
ered (Table 5), the energy output is concentrated between 7 and 12 s of 
Tp and 1–4 m of Hm0, whereas for SWAN model outputs (Table 4) it is 
mostly concentrated between 9 to 11 s and 12–14 s of Tp and 1.5–3 m of 
Hm0. These results are linked to the shift, in SWAN model simulation 
outputs, of some sea states from lower Tp-valued cells to higher Tp- 
valued cells while others sea states shifted from higher Tp-valued cells to 
lower Tp-valued cells in the resource matrix. Meaning that the model 
accuracy is lower for Tp compared to Hm0. The differences in the energy 
output in MWh, from the SWAN model (Table 4) and real measurements 
(Table 5) based estimations, are given in Table 6. 

Table 6 shows that model-based assessments overestimate the energy 
produced for higher Tp values and underestimate the energy harvested 
by the WEC in the ranges of lower Tp values. 

The total energy output produced by OEBuoy for the 10 locations 
around the study area, obtained from the wave measurements and 9 
different SWAN model settings, are presented in Table 7. Overall, 
HWANG35 SWAN settings presents the nearest results to the wave 
measurement outputs, except for locations B2 with FAN35, B3 and B8 
with FAN32, and B10 with SWAN-DEF. The averages of all locations 
(Table 7) show that HWANG35, with 1439.21 MWh of energy output, 
has the closest result to the energy output based on real measurements 
(1404.3 MWh). Due to the availability of the buoys measurements, the 
energy outputs for most of the buoys are not exactly AEPs, since they 
only cover a portion of the year 2010 (except for B7 and B4), which is 
given in column T (YEAR) of Table 7. 

The differences (in percentage) between the energy output of the 
model and the measurements for all the considered 10 locations and 9 
different SWAN adjustments for OEBuoy, WaveBob, and Pontoon, are 
presented in Tables 8–10, respectively. The mean values in those tables 
were calculated from the mean energy output of the model and the in- 
situ measurement from all 10 locations (data in Table 7 was used). 

HWANG35 presented the lowest error percentages for OEBuoy 
(Table 8) in locations B1, B4, B6, B7, and B9. The average deviation for 
all 10 locations was 2.5%. Locations B2 (0.39%) with FAN35, B3 
(0.16%) with FAN32, B8 (3.33%) with FAN32, and B10 (− 0.98%) with 
SWAN-DEF presented the lowest differences in the total energy output 
compared to the in-situ measurements. For WabeBob (Table 9), results 
suggest similar SWAN adjustments for all locations except for B8, which 
changed from FAN32 to FAN28 settings (− 1.48% difference), and B10 
which changed from SWAN-DEF to HWANG32 settings (0.63% differ
ence). The Pontoon (Table 10) presented less total energy output dif
ferences for more locations with the HWANG35 settings compared to 
OEBuoy and WaveBob. In fact, only B3 with ST6-DEF (− 0.37%), B8 with 
ECMWF32 (− 0.56%), and B10 with HWANG32 (0.68%) are not per
forming well with HWANG35 SWAN adjustment. When looking at the 
averages, HWANG35 settings present the best results, having the lowest 
errors for all considered WEC devices which, roughly, presents an 
agreement with the SWAN model calibration presented in Figs. 2 and 3. 

Considering the results obtained from the current study, it is un
derstood that the calibrated SWAN model usually gives the closest re
sults to the actual measurements with the HWANG35 model setting. To 
highlight this, Table 11 presents the SWAN setting that leads to the 
energy output closer to that obtained from the real measurements, for 
the three considered WECs and for all the 10 locations. 

Locations B2, B3, B8, and B10, with fewer wave measurements, 
generally showed different SWAN settings for different WEC technolo
gies in different locations. The reason for this variability could be the 
number of wave data available, but for location B7, which was a full year 
of wave data, the best SWAN calibration is FAN35 while for all case 
study WECs the HWANG35 settings present the best results. If we look at 
location B7, it can be observed that the difference in the energy output of 
all case study WECs is higher than 7% (optimal SWAN calibration setting 
(FAN35) vs the calibration setting recommended by the energy output of 
the case study WECs (HWANG35)). These outcomes confirm that in the 
assessment of a WEC device in a particular location, it is extremely Ta
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important to assess its energy output for local sea states obtained for 
different SWAN settings. 

The present study investigated the uncertainty analysis of AEP due to 
simulated wave climate. The uncertainty in AEP estimation is a crucial 
problem in deploying WECs. Previous works have dealt with this issue 
from various aspects. Livermore [22] proposed a method for AEP un
certainty analysis based on standard error propagation, similar to the 
approach used in the wind energy industry. He identified four sources of 
AEP uncertainty: measurement uncertainty, temporal extrapolation 
uncertainty, spatial extrapolation uncertainty, and device performance 
uncertainty. Guanche et al. [23] used a boot-strap resampling technique 
to investigate the sensitivity of economic metrics to the variability in the 
wave climate, while Mackay et al. [24] investigated the impact of 
sampling variability on WEC performance uncertainty. Kofoed et al. 

[25] provided a method for estimating the uncertainty in AEP associated 
with device performance uncertainty, and Bailey et al. [26] used a nu
merical model of a self-reacting point absorber within a Monte Carlo 
simulation to investigate the variability in WEC power production 
within a single Hm0-Te bin. The researchers observed a standard devia
tion in power production that amounts to 26% of the mean during their 
experiment. They concluded that the primary cause of this variability is 
the variation in wave conditions within the bin. However, the uncer
tainty in the AEP estimates related to the wave climate hindcast un
certainty was not evaluated. 

5. Conclusions 

In recent years, there has been a growing interest in exploiting wave 

Table 4 
Energy output matrix (MWh) obtained for OEBuoy and location B4, considering HWANG35 settings.   

Tp (s) 

Hm0 (m)  4 5 6 7 8 9 10 11 12 13 14 15 16 
1.0 0.3 1.4 3.0 4.7 5.3 7.5 11.0 5.7 1.7 2.2 0.6 0.0 0.0 
1.5 0.3 5.8 16.1 21.3 26.2 47.3 86.6 49.5 20.2 27.3 11.4 4.9 1.1 
2.0 0.0 1.6 9.6 23.5 37.2 45.1 88.4 57.7 32.0 47.9 20.8 5.1 1.4 
2.5 0.0 0.3 4.0 15.4 36.6 36.2 45.5 30.2 17.7 39.2 27.2 7.4 2.5 
3.0 0.0 0.0 1.1 5.6 31.0 39.5 27.8 14.5 10.2 24.5 29.8 21.8 6.0 
3.5 0.0 0.0 0.0 1.3 14.1 16.6 21.9 16.0 11.4 18.9 17.7 14.8 4.3 
4.0 0.0 0.0 0.0 0.0 4.0 5.2 27.8 23.0 7.0 14.5 14.9 10.9 3.3 
4.5 0.0 0.0 0.0 0.0 0.0 3.0 11.6 7.6 8.9 21.5 22.1 8.4 0.0 
5.0 0.0 0.0 0.0 0.0 0.0 0.0 6.5 5.6 6.0 16.9 23.3 14.2 2.2 
5.5 0.0 0.0 0.0 0.0 0.0 0.0 4.7 4.0 12.6 21.1 12.6 5.1 1.3 
6.0 0.0 0.0 0.0 0.0 0.0 0.0 3.7 3.2 2.9 5.6 5.7 4.8 1.6 
6.5 0.0 0.0 0.0 0.0 0.0 0.0 1.1 0.9 1.7 4.1 6.7 7.2 2.5 
7.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 2.8 1.9 8.3 5.8  

Table 5 
Energy output matrix (MWh) obtained for OEBuoy and location B4, considering local measurements.   

Tp (s) 

Hm0 (m)  4 5 6 7 8 9 10 11 12 13 14 15 16 
1.0 1.0 3.0 4.4 6.6 13.4 15.6 12.9 8.4 3.6 0.9 0.3 0.2 0.0 
1.5 1.7 10.8 19.2 19.8 35.3 56.9 49.5 29.9 15.0 4.8 1.5 0.9 0.4 
2.0 0.7 7.9 21.4 28.6 36.5 48.8 56.1 48.9 23.8 5.8 2.0 1.4 0.2 
2.5 0.0 2.9 13.1 37.5 51.8 40.1 44.1 49.4 32.4 9.3 2.5 1.9 1.4 
3.0 0.0 1.0 9.2 34.9 55.2 39.2 32.0 37.2 28.6 13.0 8.0 5.8 1.3 
3.5 0.0 0.0 1.7 15.6 34.3 24.9 16.9 23.0 20.2 10.1 6.8 4.2 0.5 
4.0 0.0 0.0 0.2 4.1 16.6 17.9 16.2 23.4 20.7 11.4 8.2 4.5 0.5 
4.5 0.0 0.0 0.0 1.3 5.7 12.5 16.8 22.4 17.3 5.5 4.0 2.7 0.0 
5.0 0.0 0.0 0.0 0.0 1.4 5.1 9.1 20.0 25.3 15.9 8.9 4.3 0.4 
5.5 0.0 0.0 0.0 0.0 1.7 4.5 3.9 4.0 15.0 17.6 12.6 6.8 0.0 
6.0 0.0 0.0 0.0 0.0 0.0 1.1 4.7 14.3 17.9 11.1 5.7 2.0 0.0 
6.5 0.0 0.0 0.0 0.0 0.0 0.0 3.3 4.7 3.4 4.1 4.2 1.6 0.0 
7.0 0.0 0.0 0.0 0.0 0.0 0.0 5.1 8.7 5.9 1.9 3.9 3.7 3.6  

Table 6 
The difference in energy outputs of measurements against SWAN (HWANG35) outputs for 8513 h time duration in location B4, in MWh for OEBuoy.   

Tp (s) 

Hm0 (m)  4 5 6 7 8 9 10 11 12 13 14 15 16 
1.0 − 0.7 − 1.6 − 1.4 − 1.8 − 8.2 − 8.1 − 1.9 − 2.8 − 1.8 1.3 0.3 − 0.2 0.0 
1.5 − 1.4 − 5.0 − 3.0 1.5 − 9.1 − 9.6 37.1 19.6 5.2 22.5 9.9 4.0 0.7 
2.0 − 0.7 − 6.3 − 11.8 − 5.1 0.7 − 3.6 32.3 8.8 8.3 42.1 18.8 3.6 1.2 
2.5 0.0 − 2.6 − 9.1 − 22.1 − 15.2 − 3.9 1.5 − 19.2 − 14.7 29.9 24.7 5.5 1.1 
3.0 0.0 − 1.0 − 8.1 − 29.3 − 24.2 0.3 − 4.2 − 22.7 − 18.4 11.5 21.8 16.0 4.7 
3.5 0.0 0.0 − 1.7 − 14.3 − 20.2 − 8.3 5.1 − 7.0 − 8.8 8.7 10.9 10.6 3.8 
4.0 0.0 0.0 − 0.2 − 4.1 − 12.5 − 12.7 11.6 − 0.4 − 13.7 3.1 6.7 6.4 2.8 
4.5 0.0 0.0 0.0 − 1.3 − 5.7 − 9.5 − 5.3 − 14.8 − 8.5 16.0 18.1 5.7 0.0 
5.0 0.0 0.0 0.0 0.0 − 1.4 − 5.1 − 2.6 − 14.4 − 19.4 1.0 14.4 9.9 1.8 
5.5 0.0 0.0 0.0 0.0 − 1.7 − 4.5 0.8 0.0 − 2.4 3.5 0.0 − 1.7 1.3 
6.0 0.0 0.0 0.0 0.0 0.0 − 1.1 − 0.9 − 11.1 − 15.0 − 5.6 0.0 2.7 1.6 
6.5 0.0 0.0 0.0 0.0 0.0 0.0 − 2.2 − 3.7 − 1.7 0.0 2.5 5.6 2.5 
7.0 0.0 0.0 0.0 0.0 0.0 0.0 − 5.1 − 8.7 − 3.9 0.9 − 1.9 4.6 2.2  
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energy as a potential renewable energy source. To that end, a large 
number of studies have been conducted to assess the wave potential 
through numerical modeling. However, many of these studies offer only 
a rough estimation of wave resources due to the challenges faced in 
implementing the model. One such challenge is the lack of available data 
for forcing and calibrating the numerical model in the area of interest. 

This study aimed to assess the influence of different numerical set-up 
parameters for the spectral wave model SWAN (ST6 physics package) on 
the uncertainty of the energy production of three case-study WECs – 
OEBuoy, WaveBob, and Pontoon – at 10 different areas along the 
Atlantic coast of the Iberian Peninsula. To calibrate the model, the study 
considered different wind drag formulations and wind scaling factors of 
the SWAN-ST6 package. 

The study found that the HWANG wind drag formulation and a wind 

scaling factor of 35 provided the best validation results. Regarding the 
estimation of the energy production of the three case-study WECs, the 
study found that adjustments to the SWAN model resulted in a maximum 
observed difference in energy production for OEBuoy in location B9, 
ranging between − 29.35% (FAN28) and − 1.90% (HWANG35); for 
WaveBob in location B2, ranging between − 17.78% (FAN28) and 
+16.58% (HWANG35); and for Pontoon in location B2, ranging between 
− 27.93% (FAN28) and +7.84% (HWANG35). 

The study concluded that there is remarkable uncertainty in the 
estimated energy production of the three case-study WECs. The cali
brated model corrected the mean energy output value of all 10 locations: 
11.22% for OEBuoy, 9.84% for WaveBob, and 10.87% for Pontoon, 
compared to the SWAN default settings. The uncertainty may be due to 
the lower accuracy of Tp estimations in the SWAN model compared to 

Table 7 
The total energy output of OEBuoy (in MWh) for 10 different locations in the study area and 9 different SWAN settings against matched measurements 
for every location. The best estimations are highlighted in blue text. 

Location T (YEAR) ECMWF32  ECMWF35 FAN28 FAN32 FAN35 HWANG32  HWANG35 ST6-DEF SWAN-DEF  REAL-MEAS 
B1 1923.65 
B2 908.62 
B3 599.54 
B4 1742.31 
B5 1392.66 
B6 1974.70 
B7 3588.56 
B8 395.21 
B9 867.58 
B10 596.22 

Mean 0.56 1261.54 1358.72 1123.91 1228.17 1319.47 1323.16 1439.21 1323.69 1281.61 1404.25 

Table 8 
Energy output difference in percentage (%) of OEBuoy for 10 different locations and 9 different SWAN settings against measurements. The difference 
percentages are color-scaled for every row separately (the closest values to zero are in green and the farthest values are in red). The closest value to 
zero represents the best model setting. 

Location T (YEAR) ECMWF32 ECMWF35 FAN28 FAN32 FAN35 HWANG32 HWANG35 ST6-DEF SWAN-DEF 
B1 -3.67 
B2 0.39 
B3 0.16 
B4 -1.88 
B5 0.61 
B6 -3.16 
B7 0.84 
B8 3.33 
B9 -1.90 
B10 -0.98 

Mean 0.56 -10.16 -3.24 -19.96 -12.54 -6.04 -5.77 2.49 -5.74 -8.73 

Table 9 
Energy output difference in percentage (%) of WaveBob for 10 different locations and 9 different SWAN settings against measurements. The difference 
percentages are color-scaled for every row separately (the closest values to zero are in green and the farthest values are in red). The closest value to 
zero represents the best model setting. 

Location T (YEAR) ECMWF32 ECMWF35 FAN28 FAN32 FAN35 HWANG32 HWANG35 ST6-DEF SWAN-DEF 
B1 -7.02 
B2 2.38 
B3 -7.50 1.65 
B4 -0.80 
B5 0.01 
B6 -6.97 
B7 2.04 
B8 -1.45 
B9 -0.63 

B10 0.63 
Mean 0.56 -9.21 -2.98 -18.01 -11.36 -5.51 -5.34 2.16 -5.28 -7.68 
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Tm02 and Te. Therefore, the study suggested that a power matrix, which 
is a function of Tm02 or Te, may reduce the uncertainty in the estimation 
of the electricity production of a WEC. 

Furthermore, the study suggests that various SWAN adjustments may 
be necessary for different locations. The estimated energy outputs for 
the three case-study WECs highlight the importance of assessing the AEP 
of WECs using output data from different model settings while imple
menting WEC technology. It is crucial to optimize WECs for each loca
tion of interest, as WEC technologies perform differently in different 
areas. Doing so may help to reduce uncertainty and enhance the quality 
of a WEC energy output estimation. 
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Appendix A. The power matrices of the considered WECs  

Table A.1 
The Power matrix for the full scale of the OEBuoy wave energy converter (kW).   

TP (s) 

4 5 6 7 8 9 10 11 12 13 14 15 16 

Hm0 (m) 1.0 8 17 27 42 56 59 52 44 40 38 40 38 30 
1.5 17 39 61 96 126 132 117 99 89 87 89 85 66 
2.0 30 69 108 170 224 235 208 177 159 154 159 151 118 
2.5 47 108 169 266 350 368 324 276 249 241 248 236 185 

(continued on next page) 

Table 10 
Energy output difference in percentage (%) of Pontoon for 10 different locations and 9 different SWAN settings against measurements. The difference 
percentages are color-scaled for every row separately (the closest values to zero are in green and the farthest values are in red). The closest value to 
zero represents the best model setting. 

Location T (YEAR) ECMWF32 ECMWF35 FAN28 FAN32 FAN35 HWANG32 HWANG35 ST6-DEF SWAN-DEF 
B1 -22.37 
B2 -0.07 
B3 -0.37 
B4 -12.05 
B5 -6.76 
B6 -21.68 
B7 -12.63 
B8 -0.56 
B9 -12.45 
B10 0.68 

Mean 0.56 -21.44 -15.24 -30.35 -23.42 -17.68 -17.38 -10.49 -17.40 -21.36 

Table 11 
Comparison of the usual calibrated SWAN model with the calibration settings 
suggested by considering the case study WECs for 10 different locations in the 
study area.  

Location T 
(Year) 

Best model settings 

Calibration OEBuoy 
output 

WaveBob 
output 

Pontoon 
output 

B1 0.57 HWANG35 HWANG35 HWANG35 HWANG35 
B2 0.30 HWANG35 FAN35 FAN35 ECMWF35 
B3 0.25 HWANG35 FAN32 FAN32 ST6-DEF 
B4 0.97 HWANG35 HWANG35 HWANG35 HWANG35 
B5 0.69 FAN35 ECMWF35 ST6-DEF HWANG35 
B6 0.57 HWANG35 HWANG35 HWANG35 HWANG35 
B7 1.00 FAN35 HWANG35 HWANG35 HWANG35 
B8 0.13 FAN35 FAN32 FAN28 ECMWF32 
B9 0.78 HWANG35 HWANG35 HWANG35 HWANG35 
B10 0.29 HWANG35 SWAN-DEF HWANG32 HWANG32  
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Table A.1 (continued )  

TP (s) 

4 5 6 7 8 9 10 11 12 13 14 15 16 

3.0 68 155 244 383 504 530 467 398 358 347 357 340 266 
3.5 93 212 332 521 686 721 636 542 487 472 486 463 362 
4.0 121 276 433 680 896 942 831 708 636 616 634 605 473 
4.5 154 350 548 861 1130 1190 1050 896 805 780 803 765 599 
5.0 190 432 677 1060 1400 1470 1300 1110 994 963 991 945 739 
5.5 0 523 819 1290 1690 1780 1570 1340 1200 1170 1200 1140 894 
6.0 0 622 975 1530 2020 2120 1870 1590 1430 1390 1430 1360 1060 
6.5 0 730 1140 1800 2370 2490 2190 1870 1680 1630 1670 1600 1250 
7.0 0 847 1330 2080 2750 2880 2540 2170 1950 1890 1940 1850 1450   

Table A.2 
The Power matrix for the full scale of the WaveBob wave energy converter (kW).   

TP (s) 

4 5 6 7 8 9 10 11 12 13 14 15 16 

Hm0 (m) 1.0 6 11 19 25 30 44 50 53 44 34 22 20 17 
1.5 13 25 43 55 68 90 102 92 91 66 65 65 45 
2.0 24 45 65 100 121 153 175 151 122 126 87 61 58 
2.5 0 65 104 141 191 179 243 255 190 181 135 99 83 
3.0 0 96 137 205 244 357 293 353 260 248 184 137 120 
3.5 0 0 192 254 291 431 385 424 324 285 239 222 172 
4.0 0 0 256 366 403 551 536 531 473 420 289 268 179 
4. 0 0 327 418 574 678 708 665 509 415 386 244 249 
5.0 0 0 358 514 658 824 828 618 638 512 453 384 333 
5.5 0 0 0 610 774 880 936 905 805 603 456 397 311 
6.0 0 0 0 711 952 974 1000 838 886 648 501 503 396 
6.5 0 0 0 788 1000 1000 1000 979 1000 727 577 435 424 
7.0 0 0 0 871 1000 1000 1000 1000 1000 959 748 574 478   

Table A.3 
The Power matrix for the full scale of the Pontoon wave energy converter (kW).   

TP (s) 

4 5 6 7 8 9 10 11 12 13 14 15 16 

Hm0 (m) 1.0 180 166 153 171 125 87 72 65 85 85 37 29 16 
1.5 223 195 157 148 261 192 223 139 155 155 74 67 46 
2.0 0 0 214 227 396 335 237 235 172 138 115 104 70 
2.5 0 0 0 440 598 514 379 342 204 169 142 128 95 
3.0 0 0 0 681 801 735 594 486 199 174 151 134 121 
3.5 0 0 0 904 1035 949 788 617 239 209 183 164 146 
4.0 0 0 0 1131 1269 1163 982 743 285 248 216 195 175 
4.5 0 0 0 1358 1488 1374 1187 869 330 287 250 225 201 
5.0 0 0 0 1585 1712 1585 1392 988 380 334 285 263 226 
5.5 0 0 0 1812 1937 1798 2138 1107 429 381 323 301 261 
6.0 0 0 0 2040 2162 2010 2884 1234 439 416 361 336 295 
6.5 0 0 0 2267 2386 2221 3143 1360 449 450 406 372 329 
7.0 0 0 0 2494 2611 2433 3619 1483 506 464 451 408 363  

Appendix B. The definition of the statistical error parameters considered in the study 

Because merely one or two statistical error parameters might lead to a misinterpretation of a model’s results, it is vital to use a combination of 
different statistical error methods to make a proper judgment on the quality of a model. So, MAE, RMSE, bias, SI, and correlation coefficient, are 
utilized to verify the outputs of the model. Eq. (B.1) is used for the computation of the mean absolute error (MAE) [34,35]. 

MAE =
1
n
∑n

i=1
|Yi − Xi| (B.1)  

Where Yi represents the model output values, Xi is the observation values and n is the number of the temporally matched data. The root-mean-square 
error (RMSE) is computed by Eq. (B.2). 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(Xi − Yi)

2

√

(B.2) 
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The variables in Eq. B.2 are the same as in Eq. B.1. BIAS, the mean difference is calculated by Eq. (B.3). 

BIAS=(X − Y) (B.3)  

Where X and Y are the mean values of the measurements and model, respectively, the scatter index SI is also calculated using Eq. (B.4). 

SI =
RMSE

X
(B.4) 

The closest value to zero represents greater performance for all of the considered error indices. Eq. (B.5) calculates the correlation coefficient (R) 
demonstrating the connection between the model dataset and measurements. 

R=

∑n

i=1
(Xi − X)(Yi − Y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(Xi − X)2 ∑n

i=1
(Yi − Y)2

√ (B.5)  
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[37] V. Ramos, M. López, F. Taveira-Pinto, P. Rosa-Santos, Performance assessment of 
the CECO wave energy converter: water depth influence, Renew. Energy 117 
(2018) 341–356, https://doi.org/10.1016/J.RENENE.2017.10.064. 

[38] D. Silva, P. Martinho, C. Guedes Soares, Wave energy distribution along the 
Portuguese continental coast based on a thirty three years hindcast, Renew. Energy 
127 (2018) 1064–1075, https://doi.org/10.1016/J.RENENE.2018.05.037. 

[39] L. Castro-Santos, D. Silva, A.R. Bento, N. Salvação, C.G. Soares, Economic 
feasibility of wave energy farms in Portugal, Energies 11 (2018) 3149, https://doi. 
org/10.3390/EN11113149, 11 (2018) 3149. 

[40] A. Akpınar, B. Bingölbali, G.Ph Van Vledder, Wind and wave characteristics in the 
Black Sea based on the {SWAN} wave model forced with the {CFSR} winds, Ocean 
Eng. 126 (2016) 276–298, https://doi.org/10.1016/j.oceaneng.2016.09.026. 

A.G. Majidi et al.                                                                                                                                                                                                                               

https://www.eea.europa.eu/policy-documents/com-2019-640-final
https://www.eea.europa.eu/policy-documents/com-2019-640-final
https://doi.org/10.1016/J.RSER.2020.110608
https://doi.org/10.1016/J.RSER.2020.110608
https://doi.org/10.1016/J.RENENE.2019.10.014
https://doi.org/10.1016/J.RENENE.2019.10.014
https://doi.org/10.1016/J.RSER.2011.04.032
https://doi.org/10.1016/J.RENENE.2012.01.101
https://doi.org/10.3390/JMSE10121989
https://doi.org/10.3390/JMSE10121989
https://doi.org/10.1016/J.RENENE.2018.12.081
https://doi.org/10.1016/J.RENENE.2018.12.081
https://doi.org/10.1016/J.ENERGY.2017.07.114
https://doi.org/10.1016/J.ENERGY.2017.07.114
https://doi.org/10.1016/j.apor.2019.01.014
https://doi.org/10.1016/j.apor.2019.01.014
https://doi.org/10.1016/j.oceaneng.2016.12.023
https://doi.org/10.1016/J.RENENE.2021.01.057
https://doi.org/10.1016/J.DYNATMOCE.2022.101311
https://doi.org/10.1016/J.DYNATMOCE.2022.101311
https://doi.org/10.1016/J.APOR.2021.102785
https://doi.org/10.1016/J.OCEANENG.2021.109936
https://doi.org/10.1175/2010JTECHO812.1
https://doi.org/10.1175/JCLI-D-11-00621.1
https://doi.org/10.1175/1520-0485(1988)018
https://doi.org/10.1175/1520-0485(1988)018
http://refhub.elsevier.com/S0960-1481(23)00672-9/sref18
http://refhub.elsevier.com/S0960-1481(23)00672-9/sref18
https://doi.org/10.1175/JTECH-D-11-00092.1
https://doi.org/10.1175/JTECH-D-11-00092.1
https://www.emec.org.uk/standards/
https://www.emec.org.uk/standards/
https://doi.org/10.3390/JMSE4030053
https://doi.org/10.3390/JMSE4030053
https://scholar.google.com/scholar_lookup?title=Wave+and+Tidal+Energy+Yield+Uncertainty&amp;author=Livermore,+S.&amp;publication_year=2015
https://scholar.google.com/scholar_lookup?title=Wave+and+Tidal+Energy+Yield+Uncertainty&amp;author=Livermore,+S.&amp;publication_year=2015
https://scholar.google.com/scholar_lookup?title=Wave+and+Tidal+Energy+Yield+Uncertainty&amp;author=Livermore,+S.&amp;publication_year=2015
https://doi.org/10.1016/J.RENENE.2014.02.046
http://refhub.elsevier.com/S0960-1481(23)00672-9/sref24
http://refhub.elsevier.com/S0960-1481(23)00672-9/sref24
https://doi.org/10.1016/J.RENENE.2012.10.040
http://refhub.elsevier.com/S0960-1481(23)00672-9/sref26
http://refhub.elsevier.com/S0960-1481(23)00672-9/sref26
http://refhub.elsevier.com/S0960-1481(23)00672-9/sref26
http://refhub.elsevier.com/S0960-1481(23)00672-9/sref26
http://refhub.elsevier.com/S0960-1481(23)00672-9/sref27
http://refhub.elsevier.com/S0960-1481(23)00672-9/sref27
http://refhub.elsevier.com/S0960-1481(23)00672-9/sref27
https://doi.org/10.1016/J.ENERGY.2016.04.053
https://doi.org/10.1016/J.ENERGY.2016.04.053
https://doi.org/10.1177/1475090217731671
https://doi.org/10.1177/1475090217731671
http://refhub.elsevier.com/S0960-1481(23)00672-9/sref30
http://refhub.elsevier.com/S0960-1481(23)00672-9/sref30
http://www.opentelemac.org/index.php/presentation?id=20
http://www.opentelemac.org/index.php/presentation?id=20
http://refhub.elsevier.com/S0960-1481(23)00672-9/sref32
http://refhub.elsevier.com/S0960-1481(23)00672-9/sref32
http://refhub.elsevier.com/S0960-1481(23)00672-9/sref33
https://doi.org/10.1016/J.ENERGY.2020.119705
https://doi.org/10.1016/J.RENENE.2020.12.092
https://doi.org/10.1016/J.ENERGY.2017.06.080
https://doi.org/10.1016/J.RENENE.2017.10.064
https://doi.org/10.1016/J.RENENE.2018.05.037
https://doi.org/10.3390/EN11113149
https://doi.org/10.3390/EN11113149
https://doi.org/10.1016/j.oceaneng.2016.09.026


Renewable Energy 212 (2023) 415–429

429

[41] K. Amarouche, A. Akpınar, R.E. Çakmak, F. Houma, N.E.I. Bachari, Assessment of 
storm events along the Algiers coast and their potential impacts, Ocean Eng. 210 
(2020), 107432, https://doi.org/10.1016/j.oceaneng.2020.107432. 

[42] B. Bingölbali, A. Akpınar, H. Jafali, G.P. Van Vledder, Downscaling of wave climate 
in the western Black Sea, Ocean Eng. 172 (2019) 31–45, https://doi.org/10.1016/ 
J.OCEANENG.2018.11.042. 

[43] P.A. Umesh, P.K. Bhaskaran, K.G. Sandhya, T.M. Balakrishnan Nair, An assessment 
on the impact of wind forcing on simulation and validation of wave spectra at 
coastal Puducherry, east coast of India, Ocean Eng. 139 (2017) 14–32, https://doi. 
org/10.1016/J.OCEANENG.2017.04.043. 

[44] S. Myslenkov, A. Chernyshova, Comparing wave heights simulated in the Black Sea 
by the SWAN model with satellite data and direct wave measurements, Russ. J. 
Earth Sci. 16 (2016), https://doi.org/10.2205/2016ES000579. 

[45] N. Booij, R.C. Ris, L.H. Holthuijsen, A third-generation wave model for coastal 
regions: 1. Model description and validation, J Geophys Res Oceans 104 (1999) 
7649–7666, https://doi.org/10.1029/98JC02622. 

[46] M.W. Dingemans, Water Wave Propagation over Uneven Bottoms, World Scientific 
Publishing Company, London, 1997, https://doi.org/10.1142/1241. 

[47] G.B. Whitham, T.C.T. Ting, Linear and nonlinear waves, J. Appl. Mech. 43 (1976) 
190, https://doi.org/10.1115/1.3423786. –190. 

[48] M. Zijlema, Computation of wind-wave spectra in coastal waters with SWAN on 
unstructured grids, Coast. Eng. 57 (2010) 267–277, https://doi.org/10.1016/j. 
coastaleng.2009.10.011. 

[49] SWAN Team, Swan Scientific and Technical Documentation, Swan Cycle Iii Version 
SWAN, Scientific and Technical Documentation, 2020. SWAN Cycle III version 
41.31A. 

[50] S. Aijaz, W.E. Rogers, A.V. Babanin, Wave spectral response to sudden changes in 
wind direction in finite-depth waters, Ocean Model. 103 (2016) 98–117, https:// 
doi.org/10.1016/J.OCEMOD.2015.11.006. 

[51] I.R. Young, A.V. Babanin, Spectral distribution of energy dissipation of wind- 
generated waves due to dominant wave breaking, J. Phys. Oceanogr. 36 (2006) 
376–394, https://doi.org/10.1175/JPO2859.1. 

[52] M.A. Donelan, A.V. Babanin, I.R. Young, M.L. Banner, M.A. Donelan, A.V. Babanin, 
I.R. Young, M.L. Banner, Wave-follower field measurements of the wind-input 
spectral function. Part II: parameterization of the wind input, J. Phys. Oceanogr. 36 
(2006) 1672–1689, https://doi.org/10.1175/JPO2933.1. 

[53] SWAN ST6 Physics. https://swanmodel.sourceforge.io/online_doc/swanuse/node 
28.html. (Accessed 3 May 2023). 

[54] F. Ardhuin, A. Roland, The development of spectral wave models: coastal and 
coupled aspects, in: Proceedings of Coastal Dynamics, vol. 2013, 2013, June, p. 7. 

[55] H. Hersbach, B. Bell, P. Berrisford, G. Biavati, A. Horányi, J. Muñoz Sabater, J. 
N. Thépaut, ERA5 hourly data on single levels from 1979 to present, Copernicus 
climate change service (c3s) climate data store (cds) 10 (10) (2018) 24381. 

[56] H. Hersbach, B. Bell, P. Berrisford, S. Hirahara, A. Horányi, J. Muñoz-Sabater, 
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S. Keeley, P. Laloyaux, P. Lopez, C. Lupu, G. Radnoti, P. de Rosnay, I. Rozum, 
F. Vamborg, S. Villaume, J.N. Thépaut, The ERA5 global reanalysis, Q. J. R. 
Meteorol. Soc. 146 (2020) 1999–2049, https://doi.org/10.1002/QJ.3803. 

[57] E.M. Dias, A. Cristi, N. Pinto, A. Palmeira, R. Libonati, Estimativa dos períodos de 
retorno da velocidade e rajada do vento e altura significativa das ondas no 
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