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Abstract— The shape of the submerged body on a two-body wave 

energy converter is studied in this paper. For this study, varying 

shapes and sizes of the submerged body are investigated to see 

the influence the submerged body has on the absorption power of 

a two-body system. Three different submerged body shapes are 

investigated; plate, cylinder and sphere. The hydrodynamic 

parameters for the varying shapes and sizes of the submerged 

body are calculated using boundary element method software 

(WAMIT). The two-body dynamics are modelled in WEC-Sim. 

Simulations were completed for both regular and irregular wave 

conditions. It is found that the maximum power for each shape 

will occur at a certain mass ratio. It is also found that for small to 

no viscous effects, the power of the two-body system can exceed 

that of a single body system. Small viscous effects however 

become unrealistic with increasing submerged body size. 

Simulations show the cylinder performing the best, the sphere 

performing slightly worse than the cylinder, and the plate 

performing the worst. 

 

Keywords— wave energy conversion; two-body point absorber; 

shape optimization; mass ratio; drag 

I. INTRODUCTION 

One method of developing a resonant wave energy 

converter (WEC) is a two-body point absorber. The two-body 

WEC uses the relative motion between a floating buoy and a 

submerged body to capture energy. Advantages of a two-body 

WEC include easier ocean implementation (mooring, 

generator instalment, etc.) and dynamic performance 

(parameter optimization). Different two body devices use 

different submerged body designs however. Reference Model 

3 (RM3), sponsored by the U.S. Department of Energy (DOE) 

to benchmark marine hydrokinetic technology performance 

and costs, uses a heave plate to maintain a relatively stationary 

position [1]. This design is advantageous for easy ocean 

implementation; however, it is designed to keep the 

submerged body stationary, meaning its maximum capable 

power is that of a single-body WEC. Other designs, such as 

the Wavebob, use a streamlined submerged body to achieve a 

greater relative velocity between the two bodies [2].  

Beatty et al. [3] conducted experimental and numerical 

comparisons of two self-reacting point absorbers, modelled 

after the Wavebob [2] and PowerBuoy [4], which was the 

inspiration for the RM3 device [1]. Their experimental results 

for added mass and excitation force matched very well with 

the numerical BEM simulations, however the total damping 

coefficients were much larger in the experiment. The damping 

component found for the heave plate design (PowerBuoy) was 

significantly larger than that of the streamlined design 

(Wavebob), indicating that viscosity plays a significant role in 

the submerged body design. After applying viscous damping 

to their numerical model, their heave RAOs were able to 

match the experimental RAOs very well. 

Further, a study by Liang [5] found that power could be 

optimized through the mass ratio of the submerged body and 

flouting buoy. Using linear wave theory and incorporating a 

linear viscous drag force into the two-body dynamics, Liang 

found closed-form solutions for both an optimal (using both a 

restoring spring and damper) and suboptimal (using only a 

damper) power takeoff (PTO) design. While [5] found that the 

optimal design performed better in regular waves, the 

suboptimal design performed slightly better in irregular waves. 

In this paper, only the suboptimal design is considered. 

A simple way to achieve an optimal mass ratio is to 

manipulate the submerged body’s added mass, which can be 

achieved by increasing its cross sectional area. However, 

viscous force is proportional to cross section area. The other 

method would be to increase the dry mass of the submerged 

body, however one has to take into consideration the 

buoyancy of the overall system. For this study, varying shapes 

and sizes of the submerged body, with neutrally buoyant 

properties, are investigated to see the influence the submerged 

body has on the absorption power of a two-body system. 

Three shapes are considered (plate, cylinder and sphere) with 

varying sizes to achieve similar mass ratios.  

II. DYNAMIC ANALYSIS OF A TWO-BODY WAVE ENERGY 

CONVERTER 

The two-body wave energy converter, shown in Fig. 1, 

consists of two axisymmetric masses, a floating buoy and a 

submerged body, subjected to an incident wave. The floating 

buoy and submerged body are connected through a linear 
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power takeoff device (PTO). Energy is extracted from the 

relative motion of both masses. The hydrodynamic parameters 

are calculated using linear wave theory. For this system, it is 

assumed that the submerged body is far enough away from the 

top buoy that the hydrodynamically coupled radiation terms 

are negligible. As well, for a realistic system, additional 

viscous forces are included by means of a loss resistance [6].  

 

 
Fig. 1  Schematic and equivalent dynamic model of a two-body wave energy 

converter 

The simplified equations of motion of the two-body system 

oscillating in heave are: 

    1_211_1111111 ePTOhPTO fxcxkxbcxAm            (1) 

    2_122_22_222222 ePTOhvisPTO fxcxkxbbcxAm      (2) 

where x1 and x2 are the heave displacements of the floating 

buoy and submerged body, m1 and m2 are the masses of the 

floating buoy and submerged body, Aij and bij (i, j = 1, 2) are 

the frequency dependent added mass and radiation damping 

coefficients of the i-th body induced by the motion of the j-th 

body (1 and 2 represent the floating buoy and submerged body, 

respectively), kh_1 and kh_2 are the hydrostatic stiffness’s of the 

floating buoy and submerged body, fe_1 and fe_2 are frequency 

dependent excitation forces on the floating buoy and 

submerged body, and cpto is the damping coefficient for the 

PTO. Reference [5] shows that power can be optimized 

through the mass ratio of the submerged body and floating 

buoy. Closed-form solutions for both an optimal (using both a 

restoring spring and damper) and a suboptimal (using only a 

damper) PTO design exist. In regular wave analysis, the 

optimal design performed the best, as it can always achieve a 

damped natural frequency that matches the wave excitation 

frequency. However, in irregular wave analysis, the 

suboptimal design performed slightly better, which is why cpto 

is only considered in our model. A viscous damping 

coefficient for the submerged body, bvis_2, is added to the 

dynamic model for practicality. From [4], experimental data 

shows that damping on the top buoy is dominated by the 

radiation damping and drag has minimal effects, thus it is left 

off of our dynamic model. 

Under regular wave excitation, the exciting force can be 

expressed as the following harmonic function: 

tj

e eFtf 
11_ )(  , tj

e eFtf 
22_ )(           (3), (4) 

Using the method of undetermined coefficients, we assume 

that the particular solution takes the same form as the forcing 

function. That is: 
tjeXtx 

11 )(  , tjeXtx 
22 )(             (5), (6) 

Plugging Eqs. 3 – 6 into Eqs. 1 and 2 results in the 

frequency domain equations of motion, which can be written 

in matrix form as: 

  FXKCM   j2                       (7) 

where: 
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A linear PTO is assumed in this model, and the power 

extracted is from the relative motion of the two bodies: 
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To maximize the power, we want to maximize the 

amplitude of displacement, which occurs at resonance. To 

achieve resonance, the damped natural frequency must match 

the regular wave excitation frequency. To calculate the natural 

frequencies and damped natural frequencies, the complex 

eigenvalues can be solved by setting the determinant of Eq. 7 

to zero. The solution will result in two complex conjugate 

pole pairs, of which the complex magnitudes correspond to 

the two natural frequencies, and the imaginary terms 

correspond to the two damped natural frequencies. 

As shown in [5], the damped natural frequencies of this 

system decrease with increasing submerged body mass. 

Typical wave periods from a field station offshore the port 

of Keelung (nearby National Taiwan Ocean University), 

which will be our experimental test site in the future, are 6 – 

10 s [7]. For a single-body design, to achieve natural 

frequencies similar to the wave excitation frequencies (0.63 – 

1.05 rad/s), the total mass (dry mass and added mass) must be 

the same order of magnitude as the hydrostatic stiffness. It is 

difficult to achieve a natural frequency similar to the wave 

frequency by way of the top buoy design, as to increase mass, 

the volume must also increase to maintain positive buoyancy. 

It is much simpler to design a submerged body to achieve a 

damped natural frequency similar to the wave frequency.  

While the top buoy design can be optimized to produce a 

wider bandwidth for wave energy conversion, this paper 

focuses solely on the submerged body design and its effect on 

matching the damped natural frequency with the wave 

excitation frequency. The top buoy and PTO column remain 

the same sizes for each submerged body design. 

III. SUBMERGED BODY DESIGN 

The optimal mass ratio of the WEC can be achieved 

through the hydrodynamic added mass and the dry mass of the 

submerged body. This study examines three submerged body 
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shapes; a plate, a cylinder and a sphere. The plate will achieve 

an optimal mass ratio through its added mass by increasing the 

diameter while maintaining a constant thickness.  The cylinder 

will achieve an optimal mass ratio through its dry mass by 

increasing the height while maintaining a constant diameter. 

The sphere will achieve an optimal mass ratio through both 

added mass and dry mass by increasing the diameter. Fig. 2 

shows the configurations of the three WECs. 

 
Fig. 2  Configurations of the point absorber using three different submerged 

body shapes; a plate, a cylinder and a sphere. The top buoy is the same for all 

three configurations. 

Table 1 shows the sizes that were simulated in the time 

domain for each shape and configuration. 

TABLE I 

SHAPE SIZES FOR TIME DOMAIN SIMULATIONS 

Diameter Mass Height Mass Diameter Mass

(in.) Ratio (in.) Ratio (in.) Ratio

60 7 30 12 45 5

75 12 60 18 60 11

90 20 90 24 75 22

95 23 105 26 80 26

100 27 120 29 85 31

105 31 135 32 87.5 34

110 36 150 35 90 37

111 37 165 37 92.5 40

115 41 180 40 95 44

120 46 200 44 100 51

125 51 220 48 105 59

135 64 260 55 120 88

180 146 400 81 200 405

Plate Cylinder Sphere

 

IV. TIME DOMAIN SIMULATIONS 

Time domain simulations were completed using the open-

source simulation tool, WEC-Sim [8]. WEC-Sim is a code 

developed by Sandia National Laboratories and the National 

Renewable Energy Laboratory to model WECs subjected to 

operational waves in the time domain. WEC-Sim was 

developed in MATLAB/Simulink to solve the WECs 

governing equations using the Cummins time-domain impulse 

response function formulation in 6DOF (12DOF for two-

bodies) [9]. In this study, we constrained the system to 2DOF, 

constraining the overall system in heave, and allowing 

translation between the two bodies. The convolution integral 

calculation, based on the Cummins equation, is used to 

include the memory effect on the system. The radiation force, 

which were previously determined as Aij and bij (i, j = 1, 2), 

can be calculated by: 

     dxtKxAF

t

rad
   

0

                   (9) 

where A∞ is the infinite frequency added mass and K is the 

radiation impulse response function. WEC-Sim models drag 

using the quadratic damping force:  

  2121 xxxxACF Ddv
                      (10) 

where Cd is the coefficient of drag, ρ is the fluid density, and 

AD is the characteristic area [8]. This is a more accurate 

version of the viscous damping coefficient, bvis_2, that was 

used in [5] and [6] to find a closed form solution. 

Eqs. 1 and 2 can be re-written in the time-domain as: 

      1_211_1

0

11111 ePTOh

t

PTO fxcxkdxtKxcxAm      

 (11) 

        2_122_2

0

222_222 ePTOh
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(12) 

The frequency dependent hydrodynamic parameters used in 

WEC-Sim are calculated using the commercial BEM software, 

WAMIT [8]. Simulations were run for both regular and 

irregular waves. All simulations were run using a water depth 

of 30m. 

V. REGULAR WAVES RESULTS 

In this section, the simulation results of the two-body WEC 

are presented under regular wave excitation using a wave 

period and wave height of 6s and 1.5m, respectively. The 

system parameters for the two-body WEC are shown in Fig. 3. 

Varying sizes, shown in Table 1, for each submerged body 

shape were analyzed to achieve a wide range of mass ratios. 

While the size of each shape changes, the distance between 

the top buoy and the submerged body remained a constant 

200in (5.1m). The top buoy remained the same size for each 

simulation as well. Figures 4 – 6 show the average power vs. 

mass ratio results for the plate, cylinder and sphere, 

respectively. Here, the mass ratio is defined as the total mass 

of the submerged body (M2 = m2 + A22), divided by the dry 

mass of the top buoy (m1). Due to unrealistic WEC motion 

(close to exceeding the water depth) around resonance, as well 

as for clarity of other simulation data, the average power is 

limited to 5 kW.   

When there is no drag damping on the submerged body (Cd 

= 0), all three shapes have similar profiles. They each reach 

resonance conditions at a mass ratio of approximately 35. The 
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power at that mass ratio exceeds the maximum power of a 

single body WEC (using the same top buoy as the two-body 

WEC). As the mass ratio increases past resonance, the power 

decreases below the maximum power of the single body WEC 

and becomes steady. As the submerged bodies mass increases, 

its motion converges to the surrounding particle velocity, 

which is why the power does not converge to the maximum 

power of the single body WEC. 

 

 
Fig. 3  Overall two-body WEC design with a spherical submerged body 

Without experimental results, it is difficult to determine an 

accurate drag coefficient. Therefore, various drag coefficients 

(Cd = 0.5, 1 & 2) were selected to investigate the effect of the 

drag coefficient on the system response and power absorption.  

Adding drag damping to the submerged body decreases the 

power significantly. The average power of the plate design, 

Fig. 4, does not exceed the single body maximum power for 

any of the drag cases. From Eq. 10, not only does the drag 

coefficient increase the viscous drag force, the characteristic 

area increases it as well. As the size of the plate increases, the 

drag force will increase with it. 

Unlike the plate, the cylinder’s characteristic area remains 

constant. The average power of the cylinder design, Fig. 5, 

achieves a greater average power than the single body design 

for all drag cases. It is also evident that the damped natural 

frequency decreases with drag, as the optimal mass ratio 

increases with an increasing drag coefficient. 

While the average power of the sphere design, Fig. 6, 

exceeds the single body power at low drag coefficients, it 

behaves more like the plate than the cylinder. To increase the 

mass of the sphere, the characteristic area must also increase, 

which increases the drag force even greater. 

From the regular wave results, it can be concluded that a 

cylindrical submerged body, where most of the total mass is 

from the dry mass, is the optimal shape for a two-body wave 

energy converter. The cylinder, modelled as a bluff body with 

a drag coefficient of 2, has an equal maximum average power 

as the sphere with a drag coefficient of 0.5. Future work for 

modelling a streamlined cylinder can be done to increase the 

accuracy of the model, as well as increase the power further. 

 

 
Fig. 4  Regular wave simulations using a plate submerged body 

 
Fig. 5  Regular wave simulations using a cylindrical submerged body 

 
Fig. 6  Regular wave simulations using a spherical plate submerged body 
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VI. IRREGULAR WAVES RESULTS 

To see if our conclusion applies to real wave scenarios, 

irregular wave simulations using a Pierson-Moskowitz 

spectrum with a peak period and significant wave height of 6s 

and 1.5m, respectively, were conducted. The case for no drag 

is not analyzed, as it is not realistic and there is no resonance 

condition to observe due to the spectrum of the irregular wave. 

 
Fig. 7  Irregular wave simulations using a plate submerged body 

Fig. 8  Irregular wave simulations using a cylindrical submerged body  

 
Fig. 9  Irregular wave simulations using a spherical submerged body 

While the maximum average power decreases in irregular 

waves, the same trends that appeared in the regular wave 

analysis are present. The cylinder design, Fig. 8, has the 

greatest maximum average power, though it only exceeds the 

single body power for a drag coefficient of 0.5. The mass 

ratios are also decreased for irregular wave simulation, the 

optimal value being in the low to mid 20s. 

VII. CONCLUSION 

The shape of the submerged body on a two-body wave 

energy converter is studied in this paper. For this study, 

varying shapes and sizes of the submerged body were 

investigated to see the influence the submerged body has on 

the absorption power of a two-body system. Three different 

submerged body shapes were investigated; plate, cylinder and 

sphere. Simulations were completed for both regular and 

irregular wave conditions. It was found that the maximum 

power for each shape will occur at an optimal mass ratio. For 

the wave energy converter in this paper, the optimal mass 

ratio in regular waves (period of 6s and wave height of 1.5m) 

occurs at approximately 35. It is also found that when 

viscosity is not accounted for, the power of the two-body 

system will achieve resonance. However, not accounting for 

viscous effects is unrealistic, as the response of the system 

becomes unstable. Various drag coefficients were selected to 

investigate the effect of the drag coefficient on the system 

response and power absorption. It was found that when 

viscosity is included in the model, the cylinder design 

performs the best, exceeding the power of the sphere and plate 

for all drag cases. To see the performance in real waves, 

irregular wave simulations using a Pierson-Moskowitz 

spectrum were completed. While the maximum average power 

was decreased in irregular waves, the same trends that 

appeared in the regular wave analysis were present. Again, the 

cylinder design performed the best. The optimal mass ratios 

were also decreased to approximately 20 – 25. From these 

results, it can be concluded that a cylindrical submerged body, 

where most of the total mass is from the dry mass, is the 

optimal shape for a two-body wave energy converter. Future 

work for modelling and designing a streamlined cylinder can 

be done to further decrease the drag coefficient, which will 

increase the accuracy of the model, as well as the average 

absorbed power. 
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