

# Value Metrics and Global Impact Potential of Wave Energy

Wednesday September 14, 2022

Rebecca McCabe, Maha Haji

Symbiotic Engineering and Analysis Lab

**Cornell University** 

Motivation: design convergence, strategic impact

 Design convergence is necessary for wave energy to achieve impact on a climate-relevant magnitude and timescale

• R&D in the next decade must strategically and systematically consider global impact to ensure effort aligns with intent

### Questions we want to answer

#### Ultimate question:

What **designs** should the wave energy community converge to, and what is the most effective **R&D pathway** to get there?

#### Interim question:

What **metrics** should we use to evaluate different designs and R&D priorities? How do different **markets** influence the selection of designs and R&D priorities?

### **Metrics and Markets**

#### Metrics

• Consider environmental, social, economic impacts (triple bottom line)

#### Markets

- How do value metrics for PBE markets compare to those for utility markets?
- Will design convergence optimized for PBE markets result in a suitable design for utility markets?



# Types of Metrics

Good optimization metrics are independent, measurable, predictive, relevant

|                 |                                                    |                                         | Economic                               | Environmental                               | Social                                  |  |
|-----------------|----------------------------------------------------|-----------------------------------------|----------------------------------------|---------------------------------------------|-----------------------------------------|--|
| Lagging Leading |                                                    | Exploration stage: proxies              | ACE = ACCW / CCE<br>[m/\$]             | Marine operations [#/yr]                    | Energy equity program funds [\$]        |  |
|                 |                                                    | Project stage: LCOE [\$/kWh]<br>netrics |                                        | Global warming potential<br>[kg CO2e / kWh] | Energy projects in low-income areas [#] |  |
|                 | Monitoring stage: Energy price [\$/kWh] indicators |                                         | Atmospheric CO2<br>concentration [ppm] | Energy disparities by income [%]            |                                         |  |







| +                                             | lı Iı                                                  | npu                                                                                                               | its and Outputs of Framework                      |                  |                          |                               |                                                       |                                  |                             |  |
|-----------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------|--------------------------|-------------------------------|-------------------------------------------------------|----------------------------------|-----------------------------|--|
| Operating pr<br>control scher<br>geometry, P1 | inciple,<br>ne,<br><sup>-</sup> O,                     |                                                                                                                   |                                                   |                  |                          |                               |                                                       |                                  |                             |  |
| Device<br>design                              | Device<br>Simulations<br>Technology<br>Learning Curves |                                                                                                                   | Device<br>metrics                                 | Blue e<br>growth | economy<br>n forecasting | Industry<br>growth<br>metrics | Blue                                                  | economy<br>ct model              | Global<br>impact<br>metrics |  |
| R&D plan<br>\$ for each<br>device metric      |                                                        | LCOE, LCOX<br>LVOE, NVO<br>profitability<br>payback pe<br>non-energy<br>NPV, ACE, E<br>ecological<br>footprint, G | c,<br>E,<br>/,<br>riod,<br>value,<br>ROI,<br>GWP, | # devi<br>in eac | ces deployed<br>h market |                               | UN SDG india<br>Legatum pro-<br>index<br>Gross nation | ators<br>sperity<br>al happiness |                             |  |

[1] Mai, Trieu, Matthew Mowers, and Kelly Eurek. 2021. Competitiveness Metrics for Electricity System Technologies. Golden, CO: National Renewable Energy Laboratory. NREL/TP-6A20-72549. <u>https://www.nrel.gov/docs/fy21osti/72549.pdf</u>.

[2] Scott Jenne. Economics of Marine Renewable Energy Systems. 3rd Annual Ocean Energy Conference, UMass Dartmouth. https://www.nrel.gov/docs/fy21osti/78328.pdf.

# Wave Energy Value Proposition

#### Temporal

- Seasonal variation
- Overall variation

#### Spatial

- Proximity to population centers
- Proximity to offshore blue economy devices

-ilities

- Flexibility
- Reliability
- Resilience

#### Functional

• Wave environment damping





Engineering simulations (Waves-to-wire, multidisciplinary, cost modeling) Product family and platform design Life cycle analysis

# Technology Learning Curve Module



#### Technology roadmapping

Parameter sensitivities from device simulation module









Predictive Impact Modeling Social Life Cycle Analysis

## **Potential Future Work**

- Further develop value metrics and requirements for PBE markets
- Evaluate metric suite for independence and similarity across markets
- Implement modules (likely bottleneck: blue economy growth forecasting)
- Use optimization to find design family and research priorities
- Complete sensitivity study and use results to inform industry trajectory

# **Questions for Discussion**

What challenges do you see in the implementation and application of this framework?

Can the framework be simplified while remaining meaningful? Must more complexity be added before the framework is representative?

What other methods can be leveraged to improve the framework?

How can we encourage researchers to consider the systemic impact of their work and prioritize strategically?



Rebecca McCabe rgm222@cornell.edu

## Funding Sources:

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE–2139899, and the Cornell Engineering Fellowship. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors(s) and do not necessarily reflect the views of the National Science Foundation.





Industry growth affects economies of scale

Feedback can likely be eliminated/mitigated with careful module scoping