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Abstract

Floating body hydrodynamics are typically solved numerically using the boundary element method. The
associated code is computationally costly, scaling with the number of mesh panels, and can have accuracy issues at
specific frequencies and for thin bodies. In this work, we instead implement a previously-developed matched
eigenfunction expansion method to semi-analytically solve the linear potential flow radiation problem for
axisymmetric bodies. This method first establishes distinct fluid regions based on the body geometry and expresses
the velocity potential as a function of vertical and radial basis functions (eigenfunctions) with unknown coefficients.
Eigenfunctions are chosen to automatically enforce several boundary conditions of the problem. The coefficients are
found by truncating and solving an infinite linear system representing the matching of potential and radial velocity
across fluid region boundaries. This yields a solution for the 3D potential and the hydrodynamic coefficients. We
compare the results and computational complexity of the matched eigenfunction expansion method with that of the
standard boundary element method. Benefits of the former include 10x faster solve time and lack of meshing, which
are particularly appealing in optimization workflows. Our framework will be released as an open-source python
package to enable future integration with design tools, implementation of gradients, and democratization of this
efficient method. This is a meaningful contribution because prior relevant implementations of the matched
eigenfunction expansion method are, to the authors’ knowledge, private and not available open-source or even
commercially. Future work will extend this formulation to different kinds of bodies and arrays.

Keywords: semi-analytical hydrodynamics; matched eigenfunction expansion method; numerical methods; open-
source software

1. Introduction

Semi-analytical solutions to hydrodynamic boundary value problems can outperform numerical solutions in both
accuracy and computationally cost, but implementation complexity and a lack of available solvers limits their practical
use. This work replicates an existing semi-analytical model and releases the code open source in MATLAB and
Python. We discuss implementation details which the original publications omit, propose a roadmap for extensions,
and provide an implementation to enable future benchmarking and application of the method.
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2. Methods
2.1. Linear Hydrodynamics and Eigenfunctions

The dynamics of a floating body in water waves are well-described by linear potential flow theory, a simplification
of the Navier-Stokes equation. This theory states that the fluid velocity field ¥ is the gradient of some complex
potential ¢, ¥ = V¢, and ¢ satisfies the Laplace equation, V2¢ = 0. Adding the free surface condition, far-field or
incident waves, and body surface and sea-bed conditions detailed in [1] yields a boundary value problem. When
boundary conditions correspond to the heave radiation problem (body moving vertically, no incident waves), solving
for the potentlal ¢(r, 8, z) determines the heave added mass and damplng ;133 and 455, hereafter “hydro coefficients”:

Hzs +—— h3ff¢—dA
(€

For appropriate geometries, the PDE is separable and ¢ can be expressed
as the product of radial, vertical, and circumferential basis functions
called eigenfunctions. In cylindrically symmetric problems, the radial
eigenfunctions are a family of transcendental functions called Bessel
functions. The fluid is then divided into cylindrical regions. Arbitrarily
many fluid regions can exist, so the method applies to any axisymmetric
geometry, including multiple concentric bodies that oscillate
Figure 1: fluid domain and body dimensions independently. Here, two concentric cylinders and thus three
fluid regions are demonstrated. Extension to many regions is discussed in section 3.4. Figure 1 illustrates the regions
and dimensions: two internal regions 77 and 72, and an external region e extending to infinity.

The potential in each region is split into a homogeneous part for the unforced solution and a particular part due to
body motion: ¢ = ¢, + ¢,,. Boundary conditions dictate ¢,, and the eigenfunctions for ¢, in each region, which the
textbook [1] describes in detail. Table 1 shows the equations originally presented in [2], [3] for the potential and
eigenfunctions in each region, which include infinitely many unknown eigencoefficients Cf%, C#2,, Ci,, and BE. By
construction, this potential obeys all boundary conditions except for zero radial velocity on radial body surfaces. The
unknown coefficients must be computed to enforce this final condition as well as continuity across regions, which
will be the subject of section 2.2.

Table 1. Equations for potential (homogeneous and particular) and eigenfunctions (radial and vertical) for each region.
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Variables in Table 1 are: /1;‘1 = ﬁ for j={n,m}, q={1,2}; m, tanh(myh) = w?/g; m, tan(m, h) = —w?/g,k = 1;
sinh(2mgh) I sin(2myh)

1 1
N0=5(1+ 2mgyh );Nk=5(1+ 2mph
and 1M and 2M mean body 1 and 2 are moving respectively, while 1S and 2S mean each is stationary.

),k > 1. lo, Ko, and HY are different Bessel functions of order zero;

2.2. Matching Across Fluid Boundaries

The eigencoefficients must be selected to enforce the radial velocity body boundary condition and the matching of
the potentials and radial velocities at the edges of each region, earning this technique the name Matched Eigenfunction
Expansion Method (MEEM). The radiation problem was first solved this way for a floating cylinder in 1980 [4].

First, the infinite sums in ¢, must be truncated. Assuming truncation to Ntermsin 77, Mterms in i2, and Kterms
in ¢, the total number of eigencoefficients to solve for is N+2M+K. For a 3-region problem, there are 2 boundaries.
Thus there are four matching equations: (1) potential at a;, (2) potential at az, (3) velocity at az, and (4) velocity at az.
As-is, this is not enough equations (4 < N+2M+K). We must leverage eigenfunction orthogonality to get enough
equations. The first equation will turn into N equations; the second and third each give M; the fourth K. The
transformation uses the following property of orthogonality. Consider a generic function Y(x) expressed as a series
with coefficients a and basis functions e(x): Y(x) = X; a;e;(x). If e;(x) is orthogonal to e;(x) from x = ato b, then:

b
f Y(x)ej(x)dx =(b—a)<Y,eg>=(b—a) < Zai e, e; >=(b— a)Zai <epe >=(b-— a)Zai(Sij = (b - a)g;

L L L

where <-,-> is inner product and &;; is Kronecker’s delta. In the current hydrodynamics problem, the basis functions
are the vertical eigenfunctions Zi!,Zi2, and Z¢. Orthogonality of each eigenfunction can be verified with the inner
product. In the first region, for example, < Zi}l,Zi,lz >= 6,,n,- Note that eigenfunctions of different domains are not
orthogonal, and their inner products will be expressed as coupling integrals in section 2.3.

For each of the four matching equations, the property of orthogonality applies only
after multiplying by the appropriate eigenfunction and integrating over appropriate bounds. [:
For the potential matching equations, multiply both sides by the eigenfunction of the region I
with smaller fluid height (so Zi! at a, and Zi? at a,). Then integrate over that fluid height (z=- Small :
h to -di at a;, and -h to -d at az). For velocity matching, multiply instead by the eigenfunction Iu
corresponding to the larger region, while still integrating over the smaller region. In velocity  figyye 2: small and
matching, an extra step is required to incorporate the boundary condition of zero radial velocity large fluid regions
along the radial surface of the body. Since it is zero-valued, the integral of this velocity may be added to one side of
the equation (the one corresponding to the velocity of the larger region) to change the integration bounds only on that
side. This manifests in the bounds of the coupling integrals to be presented in section 2.3. Other combinations of
eigenfunction multiplication or integration besides those described above are not useful since they result in integrating
a quantity on a region where it is undefined, or a form unsuitable for the application of the orthogonality property.

Large

2.3. Block Matrix Structure

Once orthogonality is applied, the matching equations create a linear system AX = b where 4 is a complex sparse
(N+2M+K) x(N+2M+K) square matrix corresponding to the homogeneous case, X = [C{}l,C{fn,Cz%fn,B_,f] is the

complex eigencoefficient vector, and b is the real boundary condition vector corresponding to the particular case. We
elaborate on the block structure of the A-matrix and b-vector, an implementation detail that prior discussion of MEEM
overlooks. The A-matrix and b-vector block structures are shown in Table 2 and 3 respectively. They are written in
compact notation using row vectors of basis functions, so R}, = [R{}J, R, ..., R{l(N_l)] and so on. Each basis function
is evaluated at the radius described to the left of its row in the table. 0;; and 1;; are the 7x; matrices of zeros and ones
respectively; diag(-) constructs a diagonal matrix from a vector; and © is the Hadamard (element-wise) product. Of
the sixteen blocks that make up the matrix, six are diagonal, four are zero, and six are dense, resulting in the sparsity
pattern shown in Figure 3. The dense blocks contain coupling integrals | of the vertical eigenfunctions:
b = o = [ 25T Zdz, e = 1o = [ 27 Zdz

@3]
These coupling integrals are definite integrals of cos and cosh, and can be solved analytically with symbolic math.
Once the linear system is solved for X, obtain potential from Table 1, then plug into (1) to get the hydro coefficients.
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Table 2. A-matrix

Equation r |size N M M K
q)Ll — ¢l2 a, N (h dl) dlag (Rll) Lim 0 1N1R12 Lim 0) 1N1R12 Onk
P2 =¢° |a,| M Omn (h— d;) diag(RE3,) | (h—d,) diag (Rlz ) | Ik © Lua Ay
a ; a ;
0 = 0] [ M| © R (0 ) g (R ) |~ d g (75,)| O
a ; a . 0 —
Sz =2¢e || K Ok ~lom © Lir 3= RZ: | ~len © Lia 3R, | hdiag(5=Ay)
Table 3. b-vector )
N —dq N ! —gddeq Mass.
. . | ——Damping
| (8¢ — o7 e s | B
M _ ¢12212T dz “i
= -
M “dig A2 o, 2 |
— il 72T, — iz Z12T d s \
K f 2 d)zzZeT = \ -----------------
—h |, . . 0
Figure 3: A-matrix sparsity 0 “favenumher r:l) 6
3. Results pattern, shown for N=M=K=4.  Figure 4: validation against [3]
MEEM solution in shallow water
3.1. Validation

Hydro coefficient results are validated by comparing to a benchmark shallow-
water concentric-cylinder MEEM solution in [3]. Excellent agreement is observed,
shown in Figure 4. Authors of [3] also experimentally validate their results in [5].
Then, results are compared to WAMIT results for the RM3 point absorber in deep
water. RM3 is not a perfect concentric cylinder, since the float has a conical bottom
and the spar has a damping plate. The N=M=K=11 case is shown in Figure 5.

Reasonable agreement is observed, with the greatest error at low frequencies.

3.2. Convergence and Other Numerical Notes
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Figure 5: validation against WAMIT
for RM3 geometry in deep water

As N,M,K — ==, matching quality improves, and hydro coefficients converge toward their true values. Previous
MEEM papers use N=M=K=50 to obtain 4-digit matching accuracy without elaborating on convergence properties
[3]. We observe that potential matching converges faster than velocity matching. Figure 6 shows the matching
behavior for N=M=K=11, where potential matches well but velocity still has noticeable mismatch. Hydro coefficient
convergence depends on the geometry: the benchmark shallow-water geometry of [3] converges to within 0.25% with
only N=M=K=4, but RM3 requires N=M=K>10, shown in figure 7. There, damping converges well at low frequencies
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Figure 7: matching for N=M=K=11 for benchmark geometry N=M=K=/3,5,10,20} for RM3

potential Matching

09 08 07 06 05

z

25

Radial Velocity Matching

1

Nofux BCat st
No flux BC at a2

|Radial Velocity!
o

Dk
D

0
04 03 D2 12 1 08 46

z

04

but requires more

Added mass| harmonics at higher

go.s \ frequencies,  while
g \ added mass has
£061 — ] similar convergence
- - across frequencies. At
g"-“ D high N or M, the A-
goz e TR matrix is _|II—
S B P 1 conditioned  since
| Damping| modified  Bessel

2 o 0 1 2 3« 5 functions of the first
Figure 6: convergence for kind lo grow



McCabe | Proceedings of UMERC+METS 2024 5

exponentially. Condition numbers of >1e14 were observed. Scaling the highest rows of the A-matrix and b-vector
reduced the condition number by an order of magnitude and minimally affected eigencoefficients, so the result was
deemed tentatively acceptable with further investigation warranted. A final numerical subtlety worth discussing is

finite precision effects in calculating my. Bounds of 180° - [k - % k] are placed on myh in a root-finding algorithm
to ensure the kth root is identified, where degrees are used instead of radians so asymptotes occur at rational values.

3.3. Runtime and Computational Cost Scaling

The runtime of the MEEM method is the time required to find the eigencoefficients, then obtain the hydrodynamic
coefficients from eigencoefficients. Generating the A-matrix and b-vector for the eigencoefficients involves running
a nonlinear root-finding algorithm K times to generate the m, inputs, then evaluating Bessel functions 2N+8M+2K
times. The cost of evaluating coupling integrals (2) is negligible since they are trigonometric. Linear solves scale
almost cubically with matrix size, so this step scales with (N+2M+K)3. Obtaining hydrodynamic coefficients via
integral (1) results in new coupling integrals over the radial eigenfunctions. These coupling integrals can be simplified
symbolically and require 6M Bessel evaluations to find hydro
coefficients for the outer cylinder, and 2N for the inner cylinder [3].

The current implementation instead calculates the radial coupling Hydro coeffs (50%)

integrals numerically, which adds overhead, so future work should

use analytical solutions. For N=M=K=10, the simulation averages 31

ms on a Windows 10 laptop with a 2.5 GHz Intel i9 processor. Figure  _ )

8 shows the time breakdown, split remarkably evenly between Eigen coeffs (50%) .

computing eigencoefficients and hydro coefficients. For both, the

dominant cost is Bessel evaluation, so future code optimization 0% 50%

should focus on speeding up Bessel evaluations, such as with lookup
tables. [3] proposes using the sparsity pattern to reduce matrix size
from N+2M+K to 2M, but this seems low impact since the linear
solve only takes 5% of compute time. On the other hand, matrix size
in a boundary element method solver is much larger (meshes may have 1000s of panels) and the linear solve drives
computation cost. On the same machine, Capytaine boundary element method for the same geometry takes an average
of 323 ms for a 710 panel mesh (1% convergence). Thus, MEEM achieves a 10x time reduction over Capytaine.

B mk solve M linear solve W integral overhead

3.4. Discussion and future work

The method has been implemented in both MATLAB (available with MIT license at https://github.com/symbiotic-
engineering/MDOcean/blob/main/mdocean/simulation/modules/MEEM/run_ MEEM.m) and Python (to be released
open-source soon). The MATLAB version uses symbolic algebra to automatically generate the A-matrix and b-vector
from matching equations, then substitutes geometric values and solves numerically. Symbolics were chosen over a
purely numeric approach to reduce formulation mistakes, expedite future extension to other geometries, and
potentially yield analytic gradients. The latter was unsuccessful because on a machine with 64GB RAM, the symbolic
engine runs out of memory attempting to differentiate the linear system for any reasonable values of N, M, and K.
With the structure of the A-matrix verified in MATLAB, the Python version implements this structure purely
numerically to reduce computation time. Based on the open-source nature and growing popularity of Python for
hydrodynamics, the Python version is intended as primary, and will be released as a package to facilitate integration
with other modules such as WecOptTool. Results presented here were obtained with the MATLAB version.

Future work is required to obtain gradients, for example via adjoints or algorithmic differentiation. While the
method is fast enough that a finite difference approach may suffice, the oscillatory nature of Bessel functions can
make finite difference inaccurate. Additionally, planned future work involves extending the package to other modes
of motion, as in [4], and other geometries. For example, the method can be extended to axisymmetric bodies with
arbitrary piecewise-constant profiles, as in [6]. This would enable rapid shape optimization and control co-design.
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