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Abstract 

Floating body hydrodynamics are typically solved numerically using the boundary element method. The 
associated code is computationally costly, scaling with the number of mesh panels, and can have accuracy issues at 

specific frequencies and for thin bodies. In this work, we instead implement a previously-developed matched 

eigenfunction expansion method to semi-analytically solve the linear potential flow radiation problem for 

axisymmetric bodies. This method first establishes distinct fluid regions based on the body geometry and expresses 

the velocity potential as a function of vertical and radial basis functions (eigenfunctions) with unknown coefficients. 

Eigenfunctions are chosen to automatically enforce several boundary conditions of the problem. The coefficients are 

found by truncating and solving an infinite linear system representing the matching of potential and radial velocity 

across fluid region boundaries. This yields a solution for the 3D potential and the hydrodynamic coefficients. We 

compare the results and computational complexity of the matched eigenfunction expansion method with that of the 

standard boundary element method. Benefits of the former include 10x faster solve time and lack of meshing, which 

are particularly appealing in optimization workflows. Our framework will be released as an open-source python 
package to enable future integration with design tools, implementation of gradients, and democratization of this 

efficient method. This is a meaningful contribution because prior relevant implementations of the matched 

eigenfunction expansion method are, to the authors’ knowledge, private and not available open-source or even 

commercially. Future work will extend this formulation to different kinds of bodies and arrays. 

Keywords: semi-analytical hydrodynamics; matched eigenfunction expansion method; numerical methods; open-
source software 

1. Introduction

Semi-analytical solutions to hydrodynamic boundary value problems can outperform numerical solutions in both 

accuracy and computationally cost, but implementation complexity and a lack of available solvers limits their practical 

use. This work replicates an existing semi-analytical model and releases the code open source in MATLAB and 

Python. We discuss implementation details which the original publications omit, propose a roadmap for extensions, 

and provide an implementation to enable future benchmarking and application of the method. 

* Corresponding author
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2. Methods 

2.1. Linear Hydrodynamics and Eigenfunctions 

The dynamics of a floating body in water waves are well-described by linear potential flow theory, a simplification 

of the Navier-Stokes equation. This theory states that the fluid velocity field 𝑣⃗ is the gradient of some complex 

potential 𝜙, 𝑣⃗ = 𝛻𝜙, and 𝜙 satisfies the Laplace equation, 𝛻2𝜙 = 0. Adding the free surface condition, far-field or 

incident waves, and body surface and sea-bed conditions detailed in [1] yields a boundary value problem. When 

boundary conditions correspond to the heave radiation problem (body moving vertically, no incident waves), solving 

for the potential 𝜙(𝑟, θ, 𝑧) determines the heave added mass and damping 𝜇33 and 𝜆33, hereafter “hydro coefficients”: 

μ33 +
i𝜆33

ω
= ρh3 ∬ ϕ

∂ϕ

∂zΓ

dA 

(1)  

For appropriate geometries, the PDE is separable and 𝜙 can be expressed 

as the product of radial, vertical, and circumferential basis functions 

called eigenfunctions. In cylindrically symmetric problems, the radial 

eigenfunctions are a family of transcendental functions called Bessel 

functions. The fluid is then divided into cylindrical regions. Arbitrarily 

many fluid regions can exist, so the method applies to any axisymmetric 

geometry, including multiple concentric bodies that oscillate 

independently. Here, two concentric cylinders and thus three 

fluid regions are demonstrated. Extension to many regions is discussed in section 3.4. Figure 1 illustrates the regions 

and dimensions: two internal regions i1 and i2, and an external region e extending to infinity. 

 

The potential in each region is split into a homogeneous part for the unforced solution and a particular part due to 

body motion: 𝜙 = 𝜙ℎ + 𝜙𝑝. Boundary conditions dictate 𝜙𝑝 and the eigenfunctions for 𝜙ℎ in each region, which the 

textbook [1] describes in detail. Table 1 shows the equations originally presented in [2], [3] for the potential and 

eigenfunctions in each region, which include infinitely many unknown eigencoefficients 𝐶1𝑛
𝑖1 , 𝐶1𝑚

𝑖2 ,  𝐶2𝑚
𝑖2 , and 𝐵𝑘

𝑒. By 

construction, this potential obeys all boundary conditions except for zero radial velocity on radial body surfaces. The 

unknown coefficients must be computed to enforce this final condition as well as continuity across regions, which 

will be the subject of section 2.2. 

 

Table 1. Equations for potential (homogeneous and particular) and eigenfunctions (radial and vertical) for each region. 

Region i1 i2 e 

Homog. 

potential 

𝜙ℎ(𝑟, 𝑧) 

∑ 𝐶1𝑛
𝑖1 𝑅1𝑛

𝑖1 (𝑟)𝑍𝑛
𝑖1(𝑧)

∞

𝑛=0

 ∑ (𝐶1𝑚
𝑖2 𝑅1𝑚

𝑖2 (𝑟) + 𝐶2𝑚
𝑖2 𝑅2𝑚

𝑖2 (𝑟)) 𝑍𝑚
𝑖2(𝑧)

∞

𝑚=0

 ∑ 𝐵𝑘
𝑒𝛬𝑘(𝑟)𝑍𝑘

𝑒(𝑧)

∞

𝑘=0

 

Partic. 

potential 

𝜙𝑝(𝑟, 𝑧) 
{

1

2(ℎ−𝑑1)
[(𝑧 + ℎ)2 −

𝑟2

2
] , 1𝑀

0,                                         1𝑆
  {

1

2(ℎ−𝑑2)
[(𝑧 + ℎ)2 −

𝑟2

2
] ,     2𝑀

0,                                            2𝑆
  0 

Radial 

eigen-

functions 

𝑅1𝑛
𝑖1 (𝑟) = {

1

2
,              𝑛 = 0

𝐼0(λ𝑛
𝑖1𝑟)

𝐼0(λ𝑛
𝑖1𝑎2)

, 𝑛 ≥ 1
  

𝑅1𝑚
𝑖2 (𝑟) = {

1

2
,                   𝑚 = 0

𝐼0(𝜆𝑚
𝑖2𝑟)

𝐼0(𝜆𝑚
𝑖2𝑎2)

,    𝑚 ≥ 1
  

𝑅2𝑚
𝑖2 (𝑟) = {

1

2
ln (

𝑟

𝑎2
) ,    𝑚 =  0

𝐾0(𝜆𝑚
𝑖2 𝑟)

𝐾0(𝜆𝑚
𝑖2 𝑎2)

,  𝑚 ≥ 1
  

Λ𝑘(𝑟) = {

𝐻0
1(𝑚0𝑟)

𝐻0
1(𝑚0𝑎2)

,   𝑘 =  0

𝐾0
1(𝑚𝑘𝑟)

𝐾0
1(𝑚𝑘𝑎2)

,   𝑘 ≥ 1
  

Vertical 

eigen-

function 

𝑍𝑛
𝑖1(𝑧) =

{
            1,                        𝑛 = 0

√2 cos(𝜆𝑛
𝑖1(𝑧 + ℎ)), 𝑛 ≥ 1

  
𝑍𝑚

𝑖2(𝑧) = {
            1,                        𝑚 = 0

√2 cos(𝜆𝑚
𝑖2(𝑧 + ℎ)), 𝑚 ≥ 1

  

𝑍𝑘
𝑒(𝑧)  =

 {
𝑁0

1/2
cosh ( 𝑚0(𝑧 + ℎ)), 𝑘 = 0

𝑁𝑘
1/2

cos ( 𝑚𝑘(𝑧 + ℎ)), 𝑘 ≥ 1
  

Figure 1: fluid domain and body dimensions 
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Variables in Table 1 are: 𝜆𝑗
𝑖𝑞

=
𝑗𝜋

ℎ−𝑑𝑞
 for j={n,m}, q={1,2}; 𝑚0 tanh(𝑚0ℎ) = 𝜔2/𝑔; 𝑚𝑘 tan(𝑚𝑘ℎ) = −𝜔2/𝑔, 𝑘 ≥ 1; 

𝑁0 =
1

2
(1 +

sinh(2𝑚0ℎ)

2𝑚0ℎ
) ; 𝑁k =

1

2
(1 +

sin(2𝑚𝑘ℎ)

2𝑚𝑘ℎ
) , 𝑘 ≥ 1. I0, K0, and H0

1 are different Bessel functions of order zero; 

and 1M and 2M mean body 1 and 2 are moving respectively, while 1S and 2S mean each is stationary. 

2.2. Matching Across Fluid Boundaries 

The eigencoefficients must be selected to enforce the radial velocity body boundary condition and the matching of 

the potentials and radial velocities at the edges of each region, earning this technique the name Matched Eigenfunction 

Expansion Method (MEEM). The radiation problem was first solved this way for a floating cylinder in 1980 [4]. 

First, the infinite sums in 𝜙ℎ must be truncated. Assuming truncation to N terms in i1, M terms in i2, and K terms 

in e, the total number of eigencoefficients to solve for is N+2M+K. For a 3-region problem, there are 2 boundaries. 

Thus there are four matching equations: (1) potential at a1, (2) potential at a2, (3) velocity at a1, and (4) velocity at a2. 

As-is, this is not enough equations (4 < N+2M+K ). We must leverage eigenfunction orthogonality to get enough 

equations. The first equation will turn into N equations; the second and third each give M; the fourth K. The 

transformation uses the following property of orthogonality. Consider a generic function Y(x) expressed as a series 

with coefficients 𝛼 and basis functions e(x): Y(x) = ∑ αiei(x).i  If 𝑒𝑗(𝑥) is orthogonal to 𝑒𝑖(𝑥) from x = a to b, then: 

∫ 𝑌(𝑥)𝑒𝑗(𝑥)𝑑𝑥
𝑏

𝑎

= (𝑏 − 𝑎) < 𝑌, 𝑒𝑗 >= (𝑏 − 𝑎) < ∑ 𝛼𝑖

𝑖

𝑒𝑖 , 𝑒𝑗 >= (𝑏 − 𝑎) ∑ 𝛼𝑖

𝑖

< 𝑒𝑖 , 𝑒𝑗 >= (𝑏 − 𝑎) ∑ 𝛼𝑖𝛿𝑖𝑗

𝑖

= (𝑏 − 𝑎)𝛼𝑗 

where <⋅,⋅> is inner product and δij is Kronecker’s delta. In the current hydrodynamics problem, the basis functions 

are the vertical eigenfunctions Zn
i1, Zm

i2, and Zk
e. Orthogonality of each eigenfunction can be verified with the inner 

product. In the first region, for example, < Zn1
i1 , Zn2

i1 >= δn1n2
. Note that eigenfunctions of different domains are not 

orthogonal, and their inner products will be expressed as coupling integrals in section 2.3. 

For each of the four matching equations, the property of orthogonality applies only 

after multiplying by the appropriate eigenfunction and integrating over appropriate bounds. 

For the potential matching equations, multiply both sides by the eigenfunction of the region 

with smaller fluid height (so 𝑍𝑛
𝑖1 at 𝑎1 and 𝑍𝑚

𝑖2 at 𝑎2). Then integrate over that fluid height (z=-

h to -d1 at a1, and -h to -d2 at a2). For velocity matching, multiply instead by the eigenfunction 

corresponding to the larger region, while still integrating over the smaller region. In velocity 

matching, an extra step is required to incorporate the boundary condition of zero radial velocity 

along the radial surface of the body. Since it is zero-valued, the integral of this velocity may be added to one side of 

the equation (the one corresponding to the velocity of the larger region) to change the integration bounds only on that 

side. This manifests in the bounds of the coupling integrals to be presented in section 2.3. Other combinations of 

eigenfunction multiplication or integration besides those described above are not useful since they result in integrating 

a quantity on a region where it is undefined, or a form unsuitable for the application of the orthogonality property. 

2.3. Block Matrix Structure 

Once orthogonality is applied, the matching equations create a linear system Ax⃗⃗ = b⃗⃗ where A is a complex sparse 

(N+2M+K) x(N+2M+K) square matrix corresponding to the homogeneous case, 𝑥 = [𝐶1𝑛
𝑖1⃗⃗⃗⃗ ⃗⃗⃗, 𝐶1𝑚

𝑖2⃗⃗ ⃗⃗ ⃗⃗⃗⃗ , 𝐶2𝑚
𝑖2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝐵𝑘

𝑒⃗⃗ ⃗⃗ ⃗] is the 

complex eigencoefficient vector, and b⃗⃗ is the real boundary condition vector corresponding to the particular case. We 

elaborate on the block structure of the A-matrix and b-vector, an implementation detail that prior discussion of MEEM 

overlooks. The A-matrix and b-vector block structures are shown in Table 2 and 3 respectively. They are written in 

compact notation using row vectors of basis functions, so 𝑅1𝑛
𝑖1⃗⃗ ⃗⃗ ⃗⃗ ⃗ = [𝑅10

𝑖1 , 𝑅11
𝑖1 , . . . , 𝑅1(𝑁−1)

𝑖1 ] and so on. Each basis function 

is evaluated at the radius described to the left of its row in the table. 0𝑖𝑗  and 1𝑖𝑗  are the i xj  matrices of zeros and ones 

respectively; diag(∙) constructs a diagonal matrix from a vector; and ⊙ is the Hadamard (element-wise) product. Of 

the sixteen blocks that make up the matrix, six are diagonal, four are zero, and six are dense, resulting in the sparsity 

pattern shown in Figure 3. The dense blocks contain coupling integrals I of the vertical eigenfunctions: 

𝐼𝑛𝑚 = 𝐼𝑚𝑛
𝑇 = ∫ 𝑍𝑛

𝑖1 𝑇⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗−𝑑1

−ℎ
𝑍𝑚

𝑖2⃗⃗ ⃗⃗ ⃗⃗ 𝑑𝑧,          𝐼𝑚𝑘 = 𝐼𝑘𝑚
𝑇 = ∫ 𝑍𝑚

𝑖2 𝑇⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗−𝑑2

−ℎ
𝑍𝑘

𝑒⃗⃗⃗⃗⃗𝑑𝑧 

(2) 

These coupling integrals are definite integrals of cos and cosh, and can be solved analytically with symbolic math. 

Once the linear system is solved for 𝑥, obtain potential from Table 1, then plug into (1) to get the hydro coefficients. 

Figure 2: small and 
large fluid regions 
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Table 2. A-matrix 

   𝐶1𝑛
𝑖1⃗⃗⃗⃗ ⃗⃗⃗ 𝐶1𝑚

𝑖2⃗⃗ ⃗⃗ ⃗⃗⃗⃗  𝐶2𝑚
𝑖2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝐵𝑘

𝑒⃗⃗ ⃗⃗ ⃗ 

Equation r size N M M K 

ϕ𝑖1 = ϕ𝑖2 𝑎1 N (ℎ − 𝑑1) diag (𝑅1𝑛
𝑖1⃗⃗ ⃗⃗ ⃗⃗ ⃗) −𝐼𝑛𝑚 ⊙ 1𝑁1𝑅1𝑚

𝑖2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  −𝐼𝑛𝑚 ⊙ 1𝑁1𝑅2𝑚
𝑖2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  0𝑁𝐾  

ϕ𝑖2 = ϕ𝑒 𝑎2 M 0𝑀𝑁 (ℎ − 𝑑2) diag (𝑅1𝑚
𝑖2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) (ℎ − 𝑑2) diag (𝑅2𝑚

𝑖2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) −𝐼𝑚𝑘 ⊙ 1𝑀1Λ𝑘
⃗⃗ ⃗⃗ ⃗ 

∂

∂𝑟
ϕ𝑖1 =

∂

∂𝑟
ϕ𝑖2  𝑎1 M −𝐼𝑚𝑛 ⊙ 1𝑀1

∂

∂𝑟
𝑅1𝑛

𝑖1⃗⃗ ⃗⃗ ⃗⃗ ⃗  (ℎ − 𝑑2) diag (
∂

∂𝑟
𝑅1𝑚

𝑖2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ )  (ℎ − 𝑑2) diag (
∂

∂𝑟
𝑅2𝑚

𝑖2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ )  0𝑀𝐾 

∂

∂𝑟
ϕ𝑖2 =

∂

∂𝑟
ϕ𝑒  𝑎2 K 0𝐾𝑁 −𝐼𝑘𝑚 ⊙ 1𝐾1

∂

∂𝑟
𝑅1𝑚

𝑖2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   −𝐼𝑘𝑚 ⊙ 1𝐾1
∂

∂𝑟
𝑅2𝑚

𝑖2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   ℎ diag (
∂

∂𝑟
Λ𝑘
⃗⃗ ⃗⃗ ⃗)  

 

Table 3. b-vector 

N 
∫ (ϕ𝑝

𝑖2 − ϕ𝑝
𝑖1)𝑍𝑛

𝑖1 𝑇⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
−𝑑1

−ℎ

𝑑𝑧 

M 
− ∫ ϕ𝑝

𝑖2𝑍𝑚
𝑖2𝑇⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗

−𝑑2

−ℎ

𝑑𝑧 

M 
∫

∂

∂𝑟
ϕ𝑝

𝑖1
−𝑑1

−ℎ

𝑍𝑚
𝑖2𝑇⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗𝑑𝑧 − ∫

∂

∂𝑟
ϕ𝑝

𝑖2
−𝑑2

−ℎ

𝑍𝑚
𝑖2𝑇⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗𝑑𝑧 

K 
∫

∂

∂𝑟
ϕ𝑝

𝑖2𝑍𝑘
𝑒𝑇⃗⃗ ⃗⃗ ⃗⃗ ⃗

−𝑑2

−ℎ

𝑑𝑧 

3. Results 

3.1. Validation 

Hydro coefficient results are validated by comparing to a benchmark shallow-

water concentric-cylinder MEEM solution in [3]. Excellent agreement is observed, 

shown in Figure 4. Authors of [3] also experimentally validate their results in [5]. 

Then, results are compared to WAMIT results for the RM3 point absorber in deep 

water. RM3 is not a perfect concentric cylinder, since the float has a conical bottom 

and the spar has a damping plate. The N=M=K=11 case is shown in Figure 5. 

Reasonable agreement is observed, with the greatest error at low frequencies. 

3.2. Convergence and Other Numerical Notes 

As 𝑁, 𝑀, 𝐾 →∞, matching quality improves, and hydro coefficients converge toward their true values. Previous 

MEEM papers use N=M=K=50 to obtain 4-digit matching accuracy without elaborating on convergence properties 

[3]. We observe that potential matching converges faster than velocity matching. Figure 6 shows the matching 

behavior for N=M=K=11, where potential matches well but velocity still has noticeable mismatch. Hydro coefficient 

convergence depends on the geometry: the benchmark shallow-water geometry of [3] converges to within 0.25% with 

only N=M=K=4, but RM3 requires N=M=K>10, shown in figure 7. There, damping converges well at low frequencies 

but requires more 
harmonics at higher 

frequencies, while 

added mass has 

similar convergence 

across frequencies. At 

high N or M, the A-

matrix is ill-

conditioned since 

modified Bessel 

functions of the first 

kind I0 grow 

Figure 3: A-matrix sparsity 
pattern, shown for N=M=K=4. 

Figure 5: validation against WAMIT 

for RM3 geometry in deep water  

Figure 4: validation against [3] 
MEEM solution in shallow water 

Added mass 

Damping 

Figure 7: matching for N=M=K=11 for benchmark geometry 
Figure 6: convergence for 

N=M=K={3,5,10,20} for RM3 
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exponentially. Condition numbers of >1e14 were observed. Scaling the highest rows of the A-matrix and b-vector 

reduced the condition number by an order of magnitude and minimally affected eigencoefficients, so the result was 

deemed tentatively acceptable with further investigation warranted. A final numerical subtlety worth discussing is 

finite precision effects in calculating mk. Bounds of 180o ⋅ [𝑘 −
1

2
, 𝑘] are placed on 𝑚𝑘ℎ in a root-finding algorithm 

to ensure the kth root is identified, where degrees are used instead of radians so asymptotes occur at rational values. 

3.3. Runtime and Computational Cost Scaling 

The runtime of the MEEM method is the time required to find the eigencoefficients, then obtain the hydrodynamic 

coefficients from eigencoefficients. Generating the A-matrix and b-vector for the eigencoefficients involves running 

a nonlinear root-finding algorithm K times to generate the 𝑚𝑘 inputs, then evaluating Bessel functions 2N+8M+2K 

times. The cost of evaluating coupling integrals (2) is negligible since they are trigonometric. Linear solves scale 

almost cubically with matrix size, so this step scales with (N+2M+K)3. Obtaining hydrodynamic coefficients via 

integral (1) results in new coupling integrals over the radial eigenfunctions. These coupling integrals can be simplified 

symbolically and require 6M Bessel evaluations to find hydro 

coefficients for the outer cylinder, and 2N for the inner cylinder [3]. 

The current implementation instead calculates the radial coupling 

integrals numerically, which adds overhead, so future work should 

use analytical solutions. For N=M=K=10, the simulation averages 31 

ms on a Windows 10 laptop with a 2.5 GHz Intel i9 processor. Figure 

8 shows the time breakdown, split remarkably evenly between 

computing eigencoefficients and hydro coefficients. For both, the 

dominant cost is Bessel evaluation, so future code optimization 

should focus on speeding up Bessel evaluations, such as with lookup 

tables. [3] proposes using the sparsity pattern to reduce matrix size 

from N+2M+K to 2M, but this seems low impact since the linear 

solve only takes 5% of compute time. On the other hand, matrix size 

in a boundary element method solver is much larger (meshes may have 1000s of panels) and the linear solve drives 

computation cost. On the same machine, Capytaine boundary element method for the same geometry takes an average 

of 323 ms for a 710 panel mesh (1% convergence). Thus, MEEM achieves a 10x time reduction over Capytaine. 

3.4. Discussion and future work 

The method has been implemented in both MATLAB (available with MIT license at https://github.com/symbiotic-

engineering/MDOcean/blob/main/mdocean/simulation/modules/MEEM/run_MEEM.m) and Python (to be released 

open-source soon). The MATLAB version uses symbolic algebra to automatically generate the A-matrix and b-vector 

from matching equations, then substitutes geometric values and solves numerically. Symbolics were chosen over a 

purely numeric approach to reduce formulation mistakes, expedite future extension to other geometries, and 

potentially yield analytic gradients. The latter was unsuccessful because on a machine with 64GB RAM, the symbolic 

engine runs out of memory attempting to differentiate the linear system for any reasonable values of N, M, and K. 

With the structure of the A-matrix verified in MATLAB, the Python version implements this structure purely 

numerically to reduce computation time. Based on the open-source nature and growing popularity of Python for 

hydrodynamics, the Python version is intended as primary, and will be released as a package to facilitate integration 

with other modules such as WecOptTool. Results presented here were obtained with the MATLAB version.  

Future work is required to obtain gradients, for example via adjoints or algorithmic differentiation. While the 

method is fast enough that a finite difference approach may suffice, the oscillatory nature of Bessel functions can 

make finite difference inaccurate. Additionally, planned future work involves extending the package to other modes 

of motion, as in [4], and other geometries. For example, the method can be extended to axisymmetric bodies with 

arbitrary piecewise-constant profiles, as in [6]. This would enable rapid shape optimization and control co-design. 
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0% 50% 100%
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Figure 8: bar graph showing computational time breakdown 
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