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Motivation

* Semi-analytic (mesh-free) solutions for simple geometries
e Faster than boundary element method, no irregular frequencies
* Easily extendable to yield derivatives

* Use cases:
* Design optimization, sensitivity analysis, control co-design
* Benchmarking for numerical methods

 Decades-old method, but code not available for broad use




Problem Setup

* Geometry
- Two axisymmetric cylinders
- Oscillating independently

* Separable Laplace PDE

- Linear potential flow
- Boundary conditions
- Separate fluid regions

* Potential is the infinite sum of
a linear combination of
unknown eigen-coefficients
and known orthogonal




Continuity Across Fluid Boundaries

* 4 matching equations .
* Match potential at r=a, dEI
* Match potential at r=a, o
* Match radial velocity at r=a,
* Match radial velocity at r=a,

* Truncate infinite summations to N, M, K
terms in regionsil, i2, e respectively

e 4 equations become N+2M+K equations by v
using eigenfunction orthogonality property

e Results in complex linear system for the
unknown eigen-coefficients
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Complex Linear System t [ T
e Ax=b “ .
* Ais complex sparse block matrix G -
- Elements computed with Bessel functions

and trigonometric integrals M| . .
- High condition number (>1e14) if N,M high | | - -

* bis real vector from particular solution L e e e e .

P

* Linear solve for eigen-coefficients (x) |

* Hydro coefficients are a linear
combination of eigen-coefficients with
geometric ratios

o -

A-matrix sparsity for N=M=K=4
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Validation
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Convergence at Boundaries

Potential converges faster than velocity

potential Matching
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Convergence of Hydro Coefficients

 Benchmark geometry converges to
within 0.25% with only N=M=K=4

- RM3 geometry requires N=M=K>11

- Damping converges better at low
frequencies

- Added mass converges similarly
across frequencies
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Runtime and Computational Cost Scaling

* Most time spent on Bessel

function evaluations Hydro coeffs (50%) -

e 10x faster than Capytaine
for 1% convergence

(31 vs 323 ms) Eigen coeffs (50%) -

* Possible speedup: change
numeric integration to

: 0% 50% 100%
analytic

B mk solve m linear solve mintegral overhead m Bessel

il




Future Work

Extend to other modes of motion

More fluid domains: model arbitrary axisymmetric geometries

Study of truncation terms and their convergence for each domain

 Compute gradients with respect to geometry and wave

timjzer for design optimization I !

arameters



Code Accessibility

 MATLAB code (open source with MIT license):
https://github.com/symbiotic-
engineering/MDOcean/blob/main/mdocean/simulation/modules/ME
EM/run MEEM.m

* Python code: coming soon, intended as primary
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Appendix: Equations for Potential & Eigenfunctions
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Appendix:

Block Matrix Structure

A matrix
b vector
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Appendix: Potential and Velocity Fields
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