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Abstract

Wave energy converter (WEC) design optimization has traditionally focused on minimizing the Levelized Cost of
Energy (LCOE) or similar proxies. However, this approach overlooks the reality of energy system planning, where
capacity installation decisions are made to minimize total grid cost. Grid system cost does not necessarily align with
LCOE due to the complex temporal and spatial relationship between energy generation and demand. Additionally,
conventional WEC optimization neglects broader climate and electrification goals, where the reduction of lifetime
equivalent CO2 emissions is the key metric. To bridge this gap, the authors previously proposed a system-level techno-
economic and environmental WEC optimization framework that integrates capacity expansion modeling (CEM) and
life cycle analysis (LCA) into the design objective. This approach provides a more comprehensive assessment of wave
energy’s net value proposition beyond conventional cost metrics. In this work, we implement this methodology in a
new open-source multidisciplinary design optimization framework. Our implementation leverages the GenX CEM,
the PowerGenome energy data interface, the Idemat LCA dataset, and the MDOcean WEC model. A surrogate model
of the CEM reduces computation time compared to the naive CEM-in-the-loop approach, leveraging a reduced order
model to shrink the relevant design space from 18 dimensions to just 5. A second order pole-zero reduced order model
is compared to the nonlinear dynamics simulation and found to be valid only at frequencies at and below resonance.
An alternative hydrodynamics-informed reduced order model is proposed to capture the full dynamics with lower
order, but is not yet implemented. We present preliminary CEM results for the Reference Model 3 (RM3) WEC,
demonstrating that a 30% reduction in WEC capacity cost can lead to a 10% reduction in grid system cost and a 20%
reduction in CO2 emissions for the Northeast grid. The LCA model also suggests that to be environmentally viable,
each MWh of energy the WEC generates must displace around 0.1-0.2 MWh of fossil fuels, a target which the nominal
RM3 does not achieve.Full design optimization results are pending and will demonstrate the impact of optimizing for
new value-driven economic and environmental system metrics compared to the standard LCOE.
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1 Introduction

Advances in wave energy converter (WEC) multidisciplinary design optimization show potential to reduce Levelized
Cost of Energy (LCOE) by > 50% [1]. However, LCOE does not fully capture WEC value [2, 3]. Alternative metrics
include payback period for off-grid contexts [4], net value of energy and profitability in single-technology economic
evaluation [2, 5], and grid system cost and CO2 emissions in energy system planning and climate change mitigation
[3]. Prior WEC grid studies reveal benefits of reduced curtailment, higher capacity factor, and improved grid reliability
due to seasonal complementarity with solar, proximity to coastal load, and wave resource consistency [6, 7, 8].

Considering energy system factors in the early design phase can steer WEC development to leverage this value,
maximizing climate benefit. Recent studies for other technologies incorporate design considerations into grid opti-
mization [9, 10], grid considerations into design optimization [11], and combined grid and environmental considera-
tions into design optimization [12, 13]. This study is the first to apply integrated design and grid optimization to WECs,
and is a methodological improvement over similar work. Specifically, a surrogate capacity expansion model (CEM)
within a nonlinear design optimization more fully captures design-grid coupling and is computationally efficient.

2 Methodology

2.1 Optimization problem formulation

The WEC being optimized is the Reference Model 3 (RM3) point absorber [14]. We utilize MDOcean [15], an open-
source WEC design optimization framework, with the same design variables and constraints as [1]. The twelve design
variables include five bulk geometric dimensions (float and spar diameter and height, and float-spar vertical clearance),
two generator ratings (power and force), and five structural dimensions (float, spar, and damping plate material thick-
nesses, and float and damping plate stiffener height). See [1] for variable ranges and rationales. Constraints include
pitch stability, hydrostatic balance, structural survival, and dynamic amplitude limits. New in this study, the primary
optimization objective is CEM grid cost. To avoid flatness, the objective becomes the margin to viability if the WEC
is not economically viable. To capture system environmental impacts, we add a second new objective of net eco-value
per energy. Figure 1 depicts the optimization structure in an xDSM diagram [16], with design variables on the top,
objectives and constraints in the rightmost two columns, and simulation modules along the diagonal.

2.2 Modeling

MDOcean integrates hydrodynamic, structural, control, and economic models, detailed in [1]. This study introduces
new “grid” and “environment” modules to MDOcean. Grey lines in Figure 1 show module connections. As [17]
proposes, we perform CEM optimizations before the design optimization for a wide set of inputs that reflect the range
of possible WEC designs and parameters. The grid module of the design optimization captures CEM results in a
surrogate model to reduce computation time, enabled by a reduced order dynamics model. Using a CEM rather than
historical grid data correlations means that we accurately account for marginal generators, unlike prior work [12, 13].
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2.2.1 Capacity expansion model (CEM)

The GenX CEM [18] is an open-source linear program that determines the installed capacity of each generator to
minimize the total grid system cost while meeting demand and emissions constraints. It indirectly enforces economic
equilibrium since it is optimal to only install generators that cost less than the value they provide. This implies that
NVOE (net value of electricity), a metric which [2, 17] suggest, is always zero in a CEM. The CEM grid system
cost metric captures more effects than NVOE, such as costs and avoided costs of non-WEC generators, storage, and
transmission required to balance the grid given the WEC power profile. GenX requires detailed input data on the
cost, hourly profile, and existing infrastructure of all generation, transmission, storage, and load on the grid. This is
managed by the PowerGenome package [19], which consolidates data from multiple sources including scenarios for
reference, moderate, and high levels of electrification. PowerGenome also allows control over a grid-wide maximum
CO2 constraint. Figure 2 depicts the data flow for the CEM runs prior to design optimization and documents the grid
data sources. Grid costs and emissions are found for each input combination of WEC cost, grid scenario, location, and
WEC dynamics (damping ratio and natural frequency). Orange outlines indicate code implemented in this work rather
than an existing package. PowerGenome does not provide WEC data, so we use the MHKit interface [20] to NREL
hindcast power densities [21, 22] along with design-dependent capture width information to generate the WEC hourly
power profiles. Temporal and spatial resolution and scope are set to hourly energy profiles for one year each decade
for a Northeast grid scenario with three load zones.
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Figure 2: CEM data flow
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Figure 3: Second order Bode fit

2.2.2 Reduced order model and lookup table

The two WEC inputs to the CEM are capacity cost and power profile (hourly energy density times capture width CW
at matching wave heights and periods). Cost can be swept easily, but CW(Hs, Te) depends on 15 additional inputs. A
16-dimensional sweep is computationally prohibitive, so we use a reduced order model (ROM) to collapse the WEC
design space into a few key features and a surrogate model to predict CEM outputs from the reduced space. The ROM
is used only to capture the effect of WEC design on the hourly CEM variability profile, not to calculate energy.

First we nondimensionalize to reduce the design space. The CW(Hs, Te) equation has 18 quantities: CW, Hs, Te, 6
design variables, and 9 parameters. The Buckingham-π theorem reduces this to 15 dimensionless variablesΠ1 without
approximation (see Appendix A). To further reduce, we leverage rigid body dynamics, which dictates the following:

CW
CWmax

=
4DηPTO

G
ω2

gk
ℜ(Ẑh(Π1))ℜ(Ẑu(Π1))∣∣∣Ẑh(Π1) + Ẑu(Π1) + Ẑd(Π1)

∣∣∣2 (1)

where complex impedances Ẑ have subscript u for control, h for hydrodynamic radiation, and d for drag. D is defined
in the appendix. The ROM seeks to approximate the three functions Ẑ(Π1) as functions of a reduced set of values Π2.
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Before the design optimization, the CEM is run for all combinations of Π2. During design optimization, we perform
a least-squares fit over an error model to find the reduced groups Π2 at each iteration, and then use a surrogate model
to find CEM outputs as a function of Π2. Currently, the surrogate model is a lookup table with linear interpolation.
Future work could develop a mechanistic surrogate model to understand CEM driving factors and allow extrapolation
to different grid scenarios.

Two approaches are possible in selecting Π2 and the corresponding error model: a pole-zero description of the
dynamics to obtain a low-order transfer function, or a hydrodynamics-informed curve fit. A pole-zero description,
Π2,pz, is easy to implement via standard system identification tools, but may require a high order to adequately capture
the dynamics. A variety of existing WEC models use this [23] or similar approaches [24]. Appendix A shows the
equation for an arbitrary number of poles and zeros. Alternatively, a custom hydrodynamics curve fit, Π2,hyd, offers
more accuracy at lower order using deep mechanistic understanding of the physics. Appendix A shows a fit to describe
radiation impedance Ẑh as a function of kh using only two parameters.

This study evaluates a second-order pole-zero model Π2,pz = (ζ, ωn) to fit the closed loop system compliance,
X̂/F̂ = 1/(iω(Ẑh + Ẑu + Ẑd)), but finds a poor fit. Specifically, Figure 3 shows that for the nominal RM3, the model is
valid only at frequencies at and below resonance. Capturing behavior above resonance would require a higher order
model such as one with five poles, two standard zeros, and two right half plane zeros to capture the abrupt increase
in phase. This is similar to another study where a point absorber intrinsic impedance Ẑh + Ẑd was fit with three poles
and one right half plane zero [23]. However, sweeping this many dynamic inputs to the CEM is impractical, and high
frequencies are less common in the ocean, so here we maintain a second order model and exclude frequencies with
ω > 0.6 from the fit (shown in grey). Fitting each wave height separately lets the model capture drag nonlinearities,
which manifest as a roughly locally linear dependence of ζ and ωn on wave height. Figure 4 shows this relation
when fitting magnitude and phase separately. The magnitude fit depends significantly more on Hs than the phase fit.
Mismatch of magnitude and phase fits at low Hs is evidence of a nonminimum phase system, and the larger mismatch
at high Hs is due to drag nonlinearities. While it doesn’t affect the shape of Ẑ(ω), stiffness K also shows nonlinearity.

Difficulty capturing high-frequency behavior is expected from the model structure. A second-order system has
equivalent damping B = ℜ(F̂/(iωX̂)) = 2ζ/ωn, which is constant across frequency, and equivalent reactance K − (m+
A)/ω2 = ℜ(F̂/X̂) ∼ 1 − ω2/ω2

n, which only permits added mass frequency-dependence of the form A = A∞ + A0/ω
2

[25]. This does not align with the true shape of Ẑh(ω), in which B decreases (perhaps after an initial increase) and A
often has local minima and maxima. Future work should better explore hydrodynamic curve fits Π2,hyd.
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2.2.3 Life cycle analysis (LCA)

LCA in the early design phase is challenging due to uncertainties in materials, manufacturing, and transportation [26].
Fortunately, optimization only requires modeling effects that meaningfully scale with design variables. This includes
material use (steel, fiberglass) but not aquatic habitat disruption or hydraulic fluid toxicity since they are not captured
in MDOcean’s low design fidelity. Although the present study holds distance from shore constant, the environmental
model includes offshore transportation (diesel fuel) so future work can evaluate the tradeoff between better energetics
but worse survivability, operating cost, and maintenance emissions for WECs further offshore.

MDOcean’s geometry module calculates WEC material masses and the environment module multiplies by ap-
propriate weighting coefficients from the Idemat LCA dataset [27]. These are scope 3 eco-cost coefficients [28] that
express diverse lifetime environmental impacts (i.e. water, emissions, pollution) of various materials and processes
in monetary units (see Table 1). We convert Euros to USD via the March 2024 exchange rate of 1.09 $/€. MDO-
cean then offsets the eco-cost with the eco-value of CEM avoided grid emissions using the social cost of carbon.
Finally, it normalizes by CEM WEC grid energy production to obtain the net eco-value per unit energy ($/kWh).

Component Value

Steel 0.192 $/kg

Fiberglass 6.950 $/m2

Dist. from shore 65.88 $/mile

Social cost of CO2 0.145 $/kgCO2

Table 1: Eco-cost coefficients

The nominal RM3 eco-cost is $134,800 per WEC. 95% is from steel,
5% from fiberglass, and <1% from transportation. Using the social cost of
carbon, each WEC must displace >930 tonnes of CO2 emissions on the grid
over its lifetime to “break even" (achieve a net positive eco-value). With an
annual energy production of 500 MWh and 20 year lifetime, it must displace
0.093 tonnes of CO2 per MWh. Typical natural gas and coal plants emit
around 0.5 and 1.0 tonnes of CO2 per MWh respectively. Therefore, for each
MWh of energy that RM3 generates, it must displace at least 0.18 MWh of
natural gas or 0.09 MWh of coal to have a positive net eco-value.

3 Results and conclusions

It took 20 minutes to run the 15 CEM optimizations on an Ubuntu 20.04 server with Intel(R) Core(TM) i9-10940X
CPU @ 3.30GHz, using up to 28 threads for each optimization and executing successive optimizations in series.
Of this time, only around half is spent in GenX, since PowerGenome takes 35 seconds per case. Figure 5 shows
the normalized grid cost, CO2 emissions, and capacity from the CEM for a WEC with ζ = 0.05, ωn = 0.4, and
Bu = 105ωe−ω

2
(a Rayleigh distribution: an alternative model to the one in Appendix A) in the Northeast. As the WEC

gets cheaper (moving from right to left), the grid cost, emissions, and capacity of other renewables reduce as expected,
and WEC capacity increases. Capacity behaves nonlinearly: cheaper WECs first displace wind, then batteries, then
solar. The different “cut-in costs” to displace each technology likely reflect both capital costs and power profiles.
The x-axis width of the cut-in reflects the heterogeneity of each resource. For example, the batteries displaced are
very homogeneous, with all sites having a cut-in cost of 675-700 $k/MW, but wind and solar have a wide range of
cut-in costs due to resource variation across sites. Unlike capacity, system cost varies linearly with WEC cost. The
slope has a useful sensitivity interpretation: for every 30% WEC cost reduces, system cost reduces 10%. Meanwhile,
emission reduction is moderately linear with WEC cost, but appears more strongly linear with WEC capacity. The
most expensive designs have a ratio of fossil fuel energy displaced to WEC energy produced of 0.075, below the 0.09-
0.18 requirement. Even if RM3 was economically viable, it does not avoid enough emissions to be environmentally
viable. This shows the importance of both economic and environmental considerations in design optimization.

Further examination of the time-series results is required to understand if WECs in this system primarily derive
value from seasonal balancing, consistency, availability at peak times, or some other characteristic. Additionally,
sweeping all design parameters and grid scenarios remains necessary to populate the lookup table for design optimiza-
tion, and to more broadly understand the grid value of WECs’ unique temporal power profile and its dependence on
design. Future work could examine the sensitivity of CEM results to the resource and demand data year to avoid over-
fitting, especially since wave resource data is not aggregated across sites as PowerGenome does for wind and solar.
Finally, design optimization results will yield insight into whether and how the objective values and optimal design
features meaningfully vary when optimizing for LCOE, grid cost, or net eco-value across various grid scenarios.
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Appendix A. Reduced order model details

The CW(Hs, Te) equation initially involves 18 quantities: CW, Hs, Te, 6 design variables (generator ratings Flim

and Plim and float and spar diameters D f and Ds and drafts T f and Ts), and 9 parameters (damping plate diameter and
thickness Dd and hd, efficiency ηPTO, float and spar drag coefficient Cd, f and Cd,s, damping versus reactive control type
C, water depth h, water density ρ, and acceleration of gravity g). These span three physical dimensions (length, time,
and mass). By the Buckingham-π theorem, the relationship can be reduced to a function of 18− 3 = 15 dimensionless
groups [29]. Capture width is nondimensionalized by the maximum radiative capture width, CWmax = Gg/ω2, with
gain G (1 for heave, 2 for surge/pitch) and frequency ω [30]. Wave height is divided by water depth. Wave period is
captured as the product of wavenumber and water depth, kh. Generator force and power limits are nondimensionalized
by the force and power at the maximum capture width, Fmax and Pmax. The six dimensions are divided by each other
or the water depth.The efficiency, drag coefficients, and control type are already nondimensional. Thus, we have the
following Π1 dimensionless groups:

CW
CWmax

= f (Π1) = f
(

Hs

h
, kh,

Plim

Pmax
,

Flim

Fmax
,

D f

h
,

Ds

D f
,

T f

Ts
,

Ts

h
,

Dd

D f
,

td
Dd
, ηPTO,Cd, f ,Cd,s,C

)
(2)

Moving to the pole-zero ROM, a general model with CP complex pole pairs, CZ complex zero pairs, RP real poles,
and RZ real zeros has a total of 2CP + 2CZ + RP + RZ parameters and is expressed as:

Π2,pz =
(
ζp, ωn,p, ζz, ωn,z, τp, τz

)
,

X̂
F̂
=

RP∏
rp=1

RZ∏
rz=1

CP∏
cp=1

CZ∏
cz=1

1 + τz,rz iω
1 + τp,rp iω

×

1 −
(
ω
ωn,cz

)2
+ i2ζcz

ω
ωn,cz

1 −
(
ω
ωn,cp

)2
+ i2ζcp

ω
ωn,cp

(3)

The pole-zero ROM tested in the paper uses CP = 1,CZ = RP = RZ = 0.
Alternatively, the following custom hydrodynamics curve fits radiation impedance as a function of kh using only

two parameters, kD f and Be
0. The latter is approximated as constant, neglecting frequency and geometry dependence:

Π2,hyd = (kh, kD f , Be
0),

F̂
η
=

−4iρgh
√

N0Be
0

cosh(kh) H0(kD f /2)
, Bh =

kω |F̂/η|2

2Dρg2 , A =
1
πω

p.v.
∫ ∞

0

B(t)
t − kD f /2

dt (4)

The F̂/η equation leverages the eigenfunction form of the excitation coefficient for axisymmetric bodies, where H0

is the Hankel function and N0 =
1
2

(
1 + sinh(2kh)

2kh

)
[31]. The Bh equation applies the Haskind relation to obtain the

damping, whereD = tanh(kh)+ kh(1− tanh2(kh)) [31]. The A equation applies the Kramers-Kronig relation to obtain
the added mass, where p.v. is Cauchy principal value [32]. Note that (4) only yields a fit for Ẑh and does not attempt
to capture the effect of drag nonlinearities (Ẑd) or impedance mismatch due to force limit, power limit, or damping
control (Ẑu), although it is expected that mechanistic curve fits for these effects could be developed using only 2-3
additional parameters, as opposed to the 5 such groups in Π1.
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