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Motivation

e Multidisciplinary design optimization (MDO) can reduce LCOE >50%
- Strategy: derate PTO to get more consistent, less peaky power profile

* LCOE doesn’t capture temporal/spatial value of WECs on the grid
- Consistent vs peaky tradeoff depends on battery cost, transmission, seasonal
complementarity (winter deficits with solar and/or electrified heat)

* Climate impact: WECs should displace fossil fuels, not other renewables

* Solution: perform MDO to minimize cost and emissions on the grid



Methods: Alternative Value Metrics

Standard: LCOE Better: NVOE Best: Grid Cost
Project levelized cost Project levelized viability System levelized cost
(min revenue to offset costs) (if revenue offsets costs) (cost sum for all projects)



Methods: Optimization Structure

Existing MDOcean simulation =
Computationally intensive!

Solution: reducedevwderadules

onstraints




Methods: Grid Capacity Expansion Model
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Methods: Reduced Order Model
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Methods: Environment Module

* Net eco-value compares levelized Component

Value

environmental benefits and harms Stecl

* Calculate eco-cost from material Fiberglass

use and maintenance fuel emission

Distance from shore

* Calculate eco-value from avoided |
Social cost of CO,

grid emissions

0.192 $/kg
6.950 $/m?
65.88 $/mile

0.145 $/kgCO,



WEC Fractional Power Limit

Results: Capacity Expansion Model
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Future Work

* Sweep remaining design parameters for comprehensive CEM results
* |nvestigate time-series results to understand where WEC value is

derived
* Examine CEM sensitivity to date and location to avoid overfitting

* Obtain design optimization results over various grid scenarios to
determine effect of optimizing for different metrics
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Connect

* Code is open-source and user-friendly!
 https://github.com/symbiotic-engineering/MDOQOcean optimization

* https://github.com/symbiotic-engineering/WEC-DECIDER capacity
expansion
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Appendix: PowerGenome Data Details
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Appendix: Reduced Order Model Details

Symbol Description
CcCwW Capture width
H, Significant wave height
T, Wave energy period
Tim Generator force limit
Piimn Generator power limit
Dy Float diameter
D, Spar diameter
Ty Float draft
T Spar draft
Dy Damping plate diameter
tg or hy Damping plate thickness
nero PTO efficiency
Cas Float drag coefficient
Ca.s Spar drag coefficient
C Damping vs. reactive control type
h Water depth
p Water density
g Gravitational acceleration
CWmazx Max radiative capture width = Gg/w?
k Wavenumber
w Wave angular frequency
Frnax Force at CW,;
Pras Power at CWiax
I, Set of 15 dimensionless groups
CorWnp Damping ratio and natural frequency of poles
Carwp Damping ratio and natural frequency of zeros
Tpy Tx Real pole/zero time constants
Cp,Cy,Rp, Rz Number of complex/real poles and zeros
kDy Non-dimensional float diameter
Bj Effective radiation damping coefficient
H, Hankel function (order zero)
No Eigenfunction term
By, Hydrodynamic damping (Haskind relation)
D Depth function in By
A Added mass (Kramers-Kronig relation)
pu. Cauchy principal value
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Appendix: CEM Cost Sweep for Nominal Variability
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Appendix: Preliminary Design Optimization Results
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