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Ocean waves offer a substantial source of renewable energy

2
National Renewable Energy Laboratory overview of U.S. marine energy resource [1]

[1] L. Kilcher, M. Fogarty, and M. Lawson, “Marine Energy in the United States: An Overview of Opportunities,” 2021. Available: 
https://www.nrel.gov/docs/fy21osti/78773.pdf 

• Wave power availability in the US: 1400 TWh/yr [1]
• Sufficient for 130 million homes

• 55 TWh/yr on East Coast alone
• Underutilized source of renewable energy
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• Wave energy converters (WECs): Generate usable work from wave energy
• Point absorbers: Buoy heaves up and down due to ocean wave motion to drive a power take-off element

[2] N. Santhosh, V. Baskaran, A. Amarkarthik, “A review on front end conversion in ocean wave energy converters,” Front. Energy, vol. 9, no. 3, pp. 297-310, Oct. 2015, doi: 10.1007/s11708-015-0370-x.
[3] M. Mekhiche and K. Edwards, “Ocean Power Technologies PowerBuoy: System-Level Design, Development and Validation Methodology,” in Proc. 2nd Marine Energy Tech. Symposium, Seattle, WA, USA, Apr. 15-18, 2014. [Online]. 

Available: http://hdl.handle.net/10919/49232

PowerBuoy point absorber [3]
[2]

• Wave power availability in the US: 1400 TWh/yr [1]
• Sufficient for 130 million homes

• 55 TWh/yr on East Coast alone
• Underutilized source of renewable energy

Ocean waves offer a substantial source of renewable energy

http://hdl.handle.net/10919/49232
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4[4] B. Guo, T. Wang, S. Jin, S. Duan, K. Yang, and Y. Zhao, “A Review of Point Absorber Wave Energy Converters,” Journal of 
Marine Science and Engineering, vol. 10, no. 10, p. 1534, Oct. 2022, doi: https://doi.org/10.3390/jmse10101534.

Mass-spring-damper representation of a point absorber [4]

• Point absorber dynamics are analogous to mass-spring-damper systems
o Resonant period: Best performance at one particular driving period
o Narrowband response: Displacement falls off away from the resonant period
o Most are tuned to one driving period

A fundamental limitation of point absorbers: narrowband response

𝑇𝑇𝑑𝑑 =
2𝜋𝜋

𝒌𝒌
𝑚𝑚 − 𝑐𝑐2

4𝑚𝑚2

Td
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Motivation for developing an adaptive-stiffness point absorber
• Ocean wave periods vary significantly with time

o Example: Wave periods off Oregon Inlet vary from 3 – 10 seconds (Mean = 5.54 s, 𝜎𝜎 = 1.22 s)
• WECs cannot perform optimally much of the time

o Capacity factor = Actual energy output over time
Theoretical maximum energy output over time

• Performance would improve by adjusting resonant period dynamically to match driving waves
o Focus of this work: Control mooring stiffness to improve WEC performance with a “hose-pump”

Data collection location: CDIP 
Station 192 [5][5] Coastal Data Information Program, 

https://cdip.ucsd.edu/m/products/?stn=192p1



Intelligent Structures and Systems Research Lab
Carson McGuire • cmmcguir@ncsu.edu

Hose-pump material: Fluidic flexible matrix composite (F2MC) 

6

• F2MC pump: 
o Helically braided fiber mesh tube embedded in a 

rubber elastomer matrix
o Fiber kinematics produce volume change when 

stretched/relaxed

Buoy forced 
up and down 
by waves

Water 
outlet (to 
turbine)

Water inlet 
from ocean

Tie-off to 
anchor

Check valves 
to direct flow

Elastomeric 
tubing/bladder

Working fluid

Helical fiber 
reinforcement 

mesh

Actual prototype 
hose-pump used 
for testing!
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Hose-pump material: Fluidic flexible matrix composite (F2MC) 

7

• F2MC pump: 
o Helically braided fiber mesh tube embedded in a 

rubber elastomer matrix
o Fiber kinematics produce volume change when 

stretched/relaxed
• Useful property: F2MC axial stiffness is strongly 

dependent on internal fluid pressure

Buoy forced 
up and down 
by waves

Water 
outlet (to 
turbine)
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from ocean

Tie-off to 
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Actual prototype 
hose-pump used 
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Image modified from NOAA

Observers 
monitor for 
acoustic noise

Reinforced hoses have been proven reliable for mooring use

8

• Woods Hole Oceanographic Institute (WHOI) has developed 
high-compliance reinforced rubber hoses as moorings

• Acoustically quiet
• Active deployments include:

• OOI Coastal Pioneer Array
• Robots4Whales whale monitoring buoys

- Paul, Walter HG. "Hose elements for buoy moorings: Design, fabrication and mechanical properties." (2004).
- Baumgartner, Mark F., et al. "Persistent near real‐time passive acoustic monitoring for baleen whales from a moored buoy: System description and evaluation." Methods in Ecology and 
Evolution 10.9 (2019): 1476-1489.
- https://www2.whoi.edu/site/mooringops/projects/
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• Additional potential benefits:
o In rough seas, stiffness can be 

reduced to mitigate shock loads
o Unlike piston pumps, there are no 

high precision sliding seals
o Hose pump is corrosion resistant and 

can be fully coated to inhibit 
biofouling

o Easy to transport and deploy
 Hose pump can be coiled on a spool

o Low environmental risk
 Working fluid can captive freshwater

o Reduced risk of entanglement for 
marine mammals

Proposed adaptive-stiffness hydraulic PTO system architecture

9

• Coupling hose-pump output to a hydraulic turbine and generator can create 
electrical output
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reduced to mitigate shock loads
o Unlike piston pumps, there are no 
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o Hose pump is corrosion resistant and 

can be fully coated to inhibit 
biofouling

o Easy to transport and deploy
 Hose pump can be coiled on a spool

o Low environmental risk
 Working fluid can captive freshwater

o Reduced risk of entanglement for 
marine mammals

Proposed adaptive-stiffness hydraulic PTO system architecture
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• Coupling hose-pump output to a hydraulic turbine and generator can create 
electrical output

• Pressure (and thus, stiffness) control: Add multi-speed gearing (such as a 
CVT) between the turbine and generator

o Changing gear ratio alters torque-speed relationship, internal pressure-output 
flow rate relationship
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Project objectives for 2024-25
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Objective 1: Develop an open-source dynamic
model of an adaptive stiffness WEC to: (a) assess
adaptation strategies, (b) inform system sizing
decisions, and (c) perform design case studies, all
using historical wave data.

Objective 2: Design, fabricate, and component-
test a lab-scale adaptive stiffness WEC.

Objective 3: Perform an experimental campaign
in the CSI wave tank to demonstrate changes in
WEC system dynamics when the PTO hydraulic
impedance is adapted.

Inform buoy and 
hose-pump sizing

Fabricate 
integrated system 
for testing

Refine model based 
on experimental data
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Project objectives for 2024-25
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Objective 1: Develop an open-source dynamic
model of an adaptive stiffness WEC to: (a) assess
adaptation strategies, (b) inform system sizing
decisions, and (c) perform design case studies, all
using historical wave data.

Objective 2: Design, fabricate, and component-
test a lab-scale adaptive stiffness WEC.

Objective 3: Perform an experimental campaign
in the CSI wave tank to demonstrate changes in
WEC system dynamics when the PTO hydraulic
impedance is adapted.
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Objective 1: Dynamic modeling framework for the F2MC WEC

13

 Gear ratio setting modulates water pressure
Water pressure changes hose-pump stiffness and damping
 Hose-pump stiffness and damping augments buoy resonant motion
 Actively tune system performance via CVT gear ratio setting

Hose-pump 
model

Reaction plate 
dynamics model

Pressurized water from 
hose-pump Turbine-generator 

with CVT System power

Buoy motion stretches 
hose-pump

Hose-pump stiffness and 
damping affects buoy 
resonant dynamics

Water pressure affects 
hose-pump stiffness

Water

Wave height and period from historical data

Gear ratio setting

Tether to anchor

WEC-Sim 
buoy 

model
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Objective 1: Dynamic modeling framework for the F2MC WEC
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 Hose-pump stiffness and damping augments buoy resonant motion
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Objective 1: Quasistatic fluid flow modeling of hose-pump system
Assumptions:
• Ideal pantograph network
• Negligible mass
• No flow effects from check 

valves

𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜 =
−𝑑𝑑𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑑𝑑𝑑𝑑

Flow rate of an ideal hose-pump [6]: 

𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜 =
𝐷𝐷𝜔𝜔1
2𝜋𝜋

Simple hydraulic turbine with gearing: 

𝑃𝑃 =
2𝜋𝜋
𝐷𝐷 𝜏𝜏1

𝜏𝜏1𝜔𝜔1 = 𝜏𝜏2𝜔𝜔2

𝐺𝐺 =
𝜔𝜔2

𝜔𝜔1

𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝜋𝜋𝑟𝑟𝑢𝑢2𝑙𝑙𝑢𝑢
− 1 + 𝑥𝑥

𝑙𝑙𝑢𝑢

3

𝑡𝑡𝑡𝑡𝑡𝑡2(𝑎𝑎𝑢𝑢) +
1 + 𝑥𝑥

𝑙𝑙𝑢𝑢
𝑠𝑠𝑠𝑠𝑠𝑠2(𝑎𝑎𝑢𝑢)

𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝜋𝜋𝑟𝑟𝑢𝑢2𝑃𝑃
3 1 + 𝑥𝑥

𝑙𝑙𝑢𝑢

2

𝑡𝑡𝑡𝑡𝑡𝑡2(𝑎𝑎𝑢𝑢) −
1

𝑠𝑠𝑠𝑠𝑠𝑠2(𝑎𝑎𝑢𝑢)

𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 =
𝑑𝑑𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑑𝑑𝑑𝑑

Force and stiffness due to internal pressure 
of an ideal hose-pump [1]:

[6] B. Tondu, “Modelling of the McKibben artificial muscle: A review” Journal of Intelligent Material Systems and Structures, vol. 23, no. 3. p. 225-253, Mar. 2012.
[7] Paul, Walter HG. "Hose elements for buoy moorings: Design, fabrication and mechanical properties." (2004).

x

Fexternal

Input check valve

Reservoir

Output check valve

Turbine-
gearing-

generator

Lab-
scale 

system

[7]

Reinforcing fiber
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Objective 1: Dynamic modeling framework for the F2MC WEC

 Gear ratio setting modulates water pressure
Water pressure changes hose-pump stiffness and damping
 Hose-pump stiffness and damping augments buoy resonant motion
 Actively tune system performance via CVT gear ratio setting

Reaction plate 
dynamics model

Pressurized water from 
hose-pump Turbine-generator 

with CVT System power

Buoy motion stretches 
hose-pump

Hose-pump stiffness and 
damping affects buoy 
resonant dynamics

Water pressure affects 
hose-pump stiffness

Water

Gear ratio setting

Tether to anchor

Hose-pump 
model

16

Wave height and period from historical dataWEC-Sim 
buoy 

model
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Buoy

• Buoy is constrained to move in 3DOF
o Surge, heave, pitch
o This captures the principal motions of the system

• For small-scale (based on CSI wave-tank capabilities):
o Wave height = 80-120 mm
o Wave period = 0.75 – 2 sec.

Objective 1: WEC-Sim Simulink model of integrated system

Hose-pump 
equations

17
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Project objectives for 2024-25
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Objective 1: Develop an open-source dynamic
model of an adaptive stiffness WEC to: (a) assess
adaptation strategies, (b) inform system sizing
decisions, and (c) perform design case studies, all
using historical wave data.

Objective 2: Design, fabricate, and component-
test a lab-scale adaptive stiffness WEC.

Objective 3: Perform an experimental campaign
in the CSI wave tank to demonstrate changes in
WEC system dynamics when the PTO hydraulic
impedance is adapted.
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Objective 2: Lab-scale buoy/hose-pump integrated system in water

19

Point-absorber 
buoy

Check valves

Plumbing lines

Connection hardware 
(eyebolts, shackles)

Stretchable hose-pump

Wave direction

~3
5.

75
”

15
”

Pressurized water line 
routed out of tank

Connection to tank floor
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Objective 2: Lab-scale buoy/hose-pump integrated system in water
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Point-absorber 
buoy

Check valves

Plumbing lines

Connection hardware 
(eyebolts, shackles)

Stretchable hose-pump

Wave direction

~3
5.

75
”

15
”

Pressurized water line 
routed out of tank

Connection to tank floor

Pressure sensor

Hydraulic 
impedance

Flowrate sensor

Return water to 
tank

Data collection
Power supply

Adjustable check 
valve or regulator
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Project objectives for 2024-25
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Objective 1: Develop an open-source dynamic
model of an adaptive stiffness WEC to: (a) assess
adaptation strategies, (b) inform system sizing
decisions, and (c) perform design case studies, all
using historical wave data.

Objective 2: Design, fabricate, and component-
test a lab-scale adaptive stiffness WEC.

Objective 3: Perform an experimental campaign
in the CSI wave tank to demonstrate changes in
WEC system dynamics when the PTO hydraulic
impedance is adapted.
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• Captured side-view videos of wave-tank testing in addition to flow rate and pressure data
• Captured data and videos were used to fine-tune WEC-Sim model parameters

Objective 3: First point absorber buoys (July, Oct. 2024)


Create videos with https://clipchamp.com/en/video-editor - free online video editor, video compressor, video converter.





Intelligent Structures and Systems Research Lab
Carson McGuire • cmmcguir@ncsu.edu

Objective 3: Streamlined point absorber buoy (Feb. 2025)

23

Feb. 18-21, 2025
• Streamlined point-absorber buoy (Plunger 3)
• Adjustable check valve (ACV) to set hydraulic impedance
• Measured outflow rate and pressure 

 Calculate hydraulic power

Point-absorber 
buoy (Plunger 3)

Check valves

Plumbing lines

Connection hardware 
(eyebolts, shackles)

Stretchable hose-
pump

Wave 
direction

Pressurized water 
line routed out of tank

Connection to 
tank floor
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Objective 3: Streamlined point absorber buoy (Feb. 2025)
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Objective 3: Streamlined point absorber buoy (Feb. 2025)
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Best performance

Each wave period has a best-choice for outflow hydraulic 
impedance setting to maximize hydraulic power

Feb. 18-21, 2025
• Streamlined point-absorber buoy (Plunger 3)
• Adjustable check valve (ACV) to set hydraulic impedance
• Measured outflow rate and pressure 

 Calculate hydraulic power
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Thank you for your 
attention!

Questions?
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Application case study: Passive acoustic monitoring of marine mammals

28Image modified from NOAA

Observers 
monitor for 
acoustic noise

Woods Hole Oceanographic 
Institute:
• Robots4Whales
• 10 moored buoys on East 

Coast
• 2 mobile observers along 

East Coast

Stretch hoses on existing moorings 
can be adapted for powering ocean 

monitoring sensors
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Application case study: Passive acoustic monitoring of marine mammals
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• Simulations of PAM buoy stretch hose WEC
o Actual buoy system offshore of Norfolk, VA
o Driven by historical sea-state data
o Capacity factor increases by 1.55x with adaptive stiffness
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Hydro turbine hose-pump system architecture

30

• Philen et al. 2018: Coupling an F2MC hose-pump output to a hydraulic turbine and generator can 
create electrical output

• Axial stretch from heaving buoy Internal volume decreases, pressurized water jets through turbine

[1] M. Philen, C. Squibb, L. Groo, G. Hagerman, “Wave energy conversion using fluidic flexible matrix composite power take-off pumps,” Energy 
Conversion and Management, vol. 171, p. 1773-1786, Sept. 2018, doi: https://doi.org/10.1016/j.enconman.2018.06.102.

F2MC pumping WEC system [1]Functionality of an F2MC pump [1]
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Wave energy converter (WEC) design: Point absorbers

31

• Wave energy converters (WECs): Generate usable work from wave energy
• Point absorbers: Buoy heaves up and down due to ocean wave motion to drive a power take-off element 

(omnidirectional)

[2] N. Santhosh, V. Baskaran, A. Amarkarthik, “A review on front end conversion in ocean wave energy converters,” Front. Energy, vol. 9, no. 3, 
pp. 297-310, Oct. 2015, doi: 10.1007/s11708-015-0370-x.

[3] M. Mekhiche and K. Edwards, “Ocean Power Technologies PowerBuoy: System-Level Design, Development and Validation Methodology,” 
in Proc. 2nd Marine Energy Tech. Symposium, Seattle, WA, USA, Apr. 15-18, 2014. [Online]. Available: http://hdl.handle.net/10919/49232

PowerBuoy point absorber [3][2]

http://hdl.handle.net/10919/49232
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Proposed adaptive-stiffness hydraulic PTO system architecture

32

• Coupling hose-pump output to a hydraulic turbine and generator can 
create electrical output

• Pressure (and thus, stiffness) control: Add multi-speed gearing (such 
as a CVT) between the turbine and generator

o Changing gear ratio alters torque-speed relationship, internal pressure-
output flow rate relationship

• Additional potential benefits:
o In rough seas, stiffness can be 

reduced to mitigate shock loads
o Unlike piston pumps, there are no 

high precision sliding seals
o Hose pump is corrosion resistant and 

can be fully coated to inhibit 
biofouling

o Easy to transport and deploy
 Hose pump can be coiled on a spool

o Low environmental risk
 Working fluid can captive freshwater

o Reduced risk of entanglement for 
marine mammals

Deadweight 
anchor or 

reaction plate

F2MC hose-
pump

Check valves

Turbine
Generator

Buoy

CVT

Control 
electronics

Accumulator
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Objective 1: WEC-Sim analysis of integrated system

https://wec-sim.github.io/WEC-Sim/main/introduction/overview.html

Wave Energy Converter SIMulator
(NREL/Sandia)
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Objective 1: WEC-Sim analysis of integrated system
Wave Energy Converter SIMulator

(NREL/Sandia)

SolidWorks geometry: Ansys Aqwa (BEM):

Buoy

Simulink Model:



Intelligent Structures and Systems Research Lab
Carson McGuire • cmmcguir@ncsu.edu

Objective 2: Hose-pump testing - Stiffness control from pressure control

35

LVDT

Check 
valve

F2MC 
pump

Adjustable 
check valve

Pressure 
transducer

Flow 
meter

• Adjustable check valve on outlet
o Direct control of internal pressure 

during stretch
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Objective 2: Hose-pump testing - Stiffness control from pressure control
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Photo credit: John McCord (CSI)

Objective 3: First point absorber buoys (July, Oct. 2024)
Jul. 16-17, 2024
• First experiments with point-absorber 

buoy (Plunger 1)
• Issues with pressure regulator (used to 

apply hydraulic impedance) 
• Buoy was undersized and could not 

adequately drive the hose-pump
• Failed to show benefits of adaptive 

stiffness
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Plunger 1:
• Mass: 7.5 kg (buoy + PTO)
• 𝐾𝐾ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = 77.2 𝑁𝑁/𝑚𝑚
• 𝐾𝐾𝑃𝑃𝑃𝑃𝑃𝑃 = 112 𝑁𝑁/𝑚𝑚
• 𝑇𝑇𝑛𝑛 = 1.25 𝑠𝑠
• Max. buoyancy force: 82.7 𝑁𝑁

Objective 3: First point absorber buoys (July, Oct. 2024)
Jul. 16-17, 2024
• First experiments with point-absorber 

buoy (Plunger 1)
• Issues with pressure regulator (used to 

apply hydraulic impedance) 
• Buoy was undersized and could not 

adequately drive the hose-pump
• Failed to show benefits of adaptive 

stiffness
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Plunger 1:
• Mass: 7.5 kg (buoy + PTO)
• 𝐾𝐾ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = 77.2 𝑁𝑁/𝑚𝑚
• 𝐾𝐾𝑃𝑃𝑃𝑃𝑃𝑃 = 112 𝑁𝑁/𝑚𝑚
• 𝑇𝑇𝑛𝑛 = 1.25 𝑠𝑠
• Max. buoyancy force: 82.7 𝑁𝑁

Plunger 2:
• Mass: 11.2 kg (buoy + PTO)
• 𝐾𝐾ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = 124.6 𝑁𝑁/𝑚𝑚
• 𝐾𝐾𝑃𝑃𝑃𝑃𝑃𝑃 = 112 𝑁𝑁/𝑚𝑚
• 𝑇𝑇𝑛𝑛 = 1.36 𝑠𝑠
• Max. buoyancy force: 126.9 𝑁𝑁

Objective 3: First point absorber buoys (July, Oct. 2024)

Oct. 9-11, 2024
• Point-absorber buoy was scaled up 

(Plunger 2)
• Used an adjustable check valve (ACV)
• Chosen ACV was too small and over-

throttled the flow
• Failed to show benefits of adaptive 

stiffness

Jul. 16-17, 2024
• First experiments with point-absorber 

buoy (Plunger 1)
• Issues with pressure regulator (used to 

apply hydraulic impedance) 
• Buoy was undersized and could not 

adequately drive the hose-pump
• Failed to show benefits of adaptive 

stiffness
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Typical buoys have:
• Large cross-sectional area 

at waterline
• Ballast mass low on body

Hydrostatic stiffness:
𝐾𝐾ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = 𝜌𝜌𝜌𝜌𝜌𝜌

 Larger CSA causes the 
buoy to move stiffer w.r.t the 
relative wave motion

In rough water, buoy more closely follows water surface  less likely to 
have waves crest over the buoy.

https://www.whoi.edu/press-room/news-release/ocean-observatories-initiatives-pioneer-
array-relocating-to-southern-mid-atlantic-bight/
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Typical buoys have:
• Large cross-sectional area 

at waterline
• Ballast mass low on body

Low ballast mass moves CG 
far below buoyancy center
 Buoy stays upright, even in 
heavy storm conditions

https://www.whoi.edu/know-your-ocean/ocean-topics/ocean-tech/moorings-buoys/

𝐹𝐹𝑔𝑔

𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

Center of gravity

Center of buoyancy
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For our point-absorber WEC, we want:
• A buoy that stays upright
 Keep a low CG

• A buoy that has a natural period longer than the 
maximum expected environmental wave period
o The hose-pump PTO can only ever add stiffness
o By adding stiffness, we shorten the overall WEC’s 

natural period
o Control the internal pressure of the PTO to add a 

certain amount of stiffness to target the 
instantaneous sea-state period

 We need a low buoyancy stiffness
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Result:
• Low CSA at the waterline to minimize buoyancy 

stiffness
• A large sub-sea compartment for ballast weight
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𝒌𝒌 = 𝐶𝐶𝑝𝑝𝑝
𝑘𝑘𝑡𝑡𝑘𝑘𝑒𝑒
𝐷𝐷2𝑅𝑅

𝑮𝑮𝟐𝟐
3 1 + 𝑥𝑥

𝑙𝑙𝑢𝑢

2

𝑡𝑡𝑡𝑡𝑡𝑡2(𝑎𝑎𝑢𝑢)
−

1
𝑠𝑠𝑠𝑠𝑠𝑠2(𝑎𝑎𝑢𝑢)

𝑥̇𝑥 + 𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

Stiffness increases with gear 
ratio, natural period decreases 

Parameter Value

kt 0.0108 Nm/A

ke 890 rpm/V

R 2.292 ohm

D 1 cm3/rev

WEC-Sim 
system
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• Resonant period controllable via gear ratio
• Output power from a particular driving wave depends on gear ratio
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Objective 1: WEC-Sim Simulink model of integrated system

https://wec-sim.github.io/WEC-Sim/main/introduction/overview.html

Wave Energy Converter SIMulator
(NREL/Sandia)

• Buoy geometry modeled 
in Solidworks
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Objective 1: WEC-Sim Simulink model of integrated system

https://wec-sim.github.io/WEC-Sim/main/introduction/overview.html

Wave Energy Converter SIMulator
(NREL/Sandia)

• Buoy geometry modeled 
in Solidworks

• Hydrodynamic coefficients 
pre-calculated using 
Ansys Aqwa

• Hydro data converted for 
use by WEC-Sim through 
BEMIO function
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