06/10/2014

Ocean Power Technologies PowerBuoy®: System-level Design, Development and Validation Methodology OMAE 2014

Mike Mekhiche Kathleen A. Edwards James G. Bretl

OPT Proprietary

Ocean Power Technologies, Inc. 1590 Reed Road Pennington, NJ 08534-5003

Outline

Objective: Window into design approach at a WEC company

- Describe the product (PowerBuoy)
 - Aspects that design must consider
- Design approach
 - Structure
 - Power Takeoff (PTO)
- Examples drawn from past projects

Company Overview

Commenced Operations:	1994	
Incorporation:	Delaware, USA	
Operating Locations:	Pennington, NJ, USA; Warwick, UK; Melbourne, Australia	
Total Employees:	30	
Intellectual Property:	68 US patents issued or	pending
Cash and Investments:	\$19.6 million (as of Janu	uary 31, 2014)
Public Listing:	Nasdaq (OPTT)	
Company Focus:	Design, manufacture, se power from ocean wave	ell systems to generate s
Project Locations: OPT Proprietary	North America, Europe,	Japan, Australia

PowerBuoy Description

- Moored system
- Float moves vertically along spar; relative motion drives thrust rod to rack and pinion system. Generator rotates, creating power.
- Power delivered to local payload ("autonomous") or to grid ("utility")

Schematic of PowerBuoy for utility project. Compliant mooring not shown.

OPT Proprietary

Stages of Design Process

- Define requirements
- Structure design
 - Concept generation and evaluation
 - Wave tank testing of concepts
 - Down-selection of concepts
- PTO design
 - Concept generation and evaluation
 - Component and subsystem testing

These steps will be illustrated with examples from projects a couple projects that were funded by DOE and internal funding in the following slides

Requirements

- Requirement source
 - Customer generated: preferred but not always possible
 - Internally generated: customer feedback, market research, past experience
- Information included in requirements
 - Performance targets
 - Output power, efficiency, operating voltages and currents, mechanical and electrical interfaces, data monitoring and acquisition
 - Cost targets
 - o Define cost metrics
 - o Estimate capital and operational costs
 - Physical parameters
 - o Weight, volume, transportation considerations
 - Site conditions
 - o MetOcean: wave climate, survival conditions, water depth, seabed slope and type
 - o Logistics: Deployment, on-site maintenance and support, recovery for service
 - System functions
 - o Mechanical
 - o Electrical

OPT Proprietary

PB-Max Functional Specification Title:

Ocean Power Technologies, Inc

1690 Reed Road, Pennington, New Jersey 08534, USA

Revision: Rev 2

TABLE OF CONTENTS

	oontento	
Table of C	ontents	2
1 Introdu	uction	6
1.1 0	/erview	6
1.2 Bu	isiness Context	6
1.3 GI	ossary	6
2 Gener	al Description	7
2.1 Pr	oduct / System Core Characteristics	7
2.2 Co	onstraints	7
3 Gener	al Requirements Specification	8
3.1 Sa	lfety	8
3.1.1	Description	8
3.1.2	Criticality	8
3.1.3	Technical issues	8
3.1.4	Dependency with other requirements	8
3. <u>1.5</u>	Other aspects	8
3.2 Co	ost of Energy requirements	9
3.2.1	Description	9
3.2.2	Criticality	9
3.2.3	technical issues	9
3.2.4	Dependency with other requirements	10
3.2.5	Other aspects	10
3.3 De	esign Life Requirements	10
3.3.1	Description	10
3.3.2	Criticality	10
3.3.3	technical issues	10
3.3.4	Dependency with other requirements	11
3.3.5	Other aspects	11

OPT Proprietary

Information contained in the presentation may not be used without the express permission of Ocean Power Technologies, Inc.

7

Proprietary Information This document & Information contained herein is the sole property of Ocean Power Technologies (OPT), & may not be reproduced or used for any purpose other than which it was intended without permission from OPT. Ocean Power Technologies Ltd Warwick Innovation Centre, Gallows Hill, Warwick, CV34 6UW, UK Unless otherwise specified this document is CONTROLLED only when viewed in the form of electronic media from a CONTROLLED source. Once printed, it becomes an UNCONTROLLED document & users shall verify the correct revision.

OPT Proprietary

Information contained in the presentation may not be used without the express permission of Ocean Power Technologies, Inc.

Document No: SPC-300-0003 Page 3 of 67 Title: PB-Max Functional Specification Revision: Rev 2 3.4.13.4.2 343 3.4.4 3.5 Reliability and Availability.. 3.5.1 3.5.2 Criticality..... 353 3.5.4 3.6 Maintenance Requirement 3.6.2 Criticality 15 3.6.3 3.6.4 3.7.13.7.2 3.7.3 3.7.4 Description..... 3.8.1 3.8.2 Criticality..... 3.8.3 3.8.4 385 3.9 Proprietary Information This document & information contained herein is the sole property of Ocean Power Technologies (OP & may not be reproduced or used for any purpose other than which it was intended without permission from OPT Ocean Power Technologies Ltd oton, New Jersey 08634, USA Warwick Innovation Centre, Gallows Hill, Warwick, CV34 6UW, UK

ectied this document is CONTROLLED only when viewed in the form of electronic media from a CONTROLLED source.

Once printed, it becomes an UNCONTROLLED document & users shall verify the correct revision

8

OPT Proprietary

Information contained in the presentation may not be used without the express permission of Ocean Power Technologies, Inc.

Document No: SPC-300-0003 Page 4 of 67 PB-Max Functional Specification Title: Rev 2 Revision: 3.9.2 Criticality 3.9.3 Technical Issues 18 Dependency with other Requirements 394 3.9.5 3.10 3.10.1 Description 20 3.10.2 Criticality 3.10.3 3.10.4 3 10 5 Other aspects ... 3.11 Description 3.11.1 3112 Criticality 21 3.11.3 3.11.4 3.11.5 other aspects 3.12 3.12.1 Description 22 3.12.2 Criticality 22 3 12 3 technical issues 22 3.12.4 Dependency with other requirements..... 23 3.12.5 Other aspects23 3.13.1 3 13 2 Criticality 25 3133 Technical issues 25 3.13.4 Dependency with other requirements..... Other senerts 3 13 5 26 Power Quality Requirment 3.14 .27 3.14.1 3 14 2 Criticality. 3.14.3 Technical Issues . 27 Proprietary Information This document & Information contained herein is the sole property of Ocean Power Technologies (OPT) & may not be reproduced or used for any purpose other than which it was intended without permission from OPT. Ocean Power Technologies Ltd Ocean Power Technologies, Inc.

wise specified this document is CONTROLLED only when viewed in the form of electronic media from a CONTROLLED source

Once printed, it becomes an UNCONTROLLED document & users shall verify the correct revision

Warwick Innovation Centre, Gallows Hill, Warwick, CV34 6UW, UK

ed Road, Pennington, New Jersey 08634, USA

9

Document No:	SPC-300-0003	Page 5 of 67
Title:	PB-Max Functional Specification	
Revision:	Rev 2	
3.14.4	Dependency with other Requirements	27
3.14.5	other aspects	27
3.15 Qu	ality Requirement	27
3.15.1	Description	27
3.15.2	Criticality	
3.15.3	Technical Issues	
3.15.4	Dependency with other Requirements	
3.15.5	other aspects	
3.16 Sy	stem Architecture	
4 Function	al Requirements	30
4.1 Powe	erBuoy System requirements	
4.1.1 H	Hydrodynamic Loads	
4. <u>1.2</u>	Powerbuoy control algorithm	
4.2 Mech	nanical System RequirEments	
4.2.1	Mooring and Fixing system	
4.2.2	Mechanical PTO system	
4.2.3	Mechanical Structural system	45
4.2.4 E	Electrical packaging system	
4.2.5	Mechanical Locking system	51
4. <mark>2.6</mark>	Thermal Management system	53
4.3 Elect	trical System Requirements	54

OPT Proprietary

Information contained in the presentation may not be used without the express permission of Ocean Power Technologies, Inc.

Proprietary Information This document & Information containated hereit is here sole property of Occaen Power Technologies (OPT), & may not be reproduced or used for any purpose other then which it was intended without permission from OPT. Occaan Power Technologies, Inc 1690 Read Road, Pennington, New Jacray 08634, USA Warwick Innovation Centro, Gallows Hill, Warwick, CV34 6UW, UK Unless otherwise specified this document is CONTROLLED only when viewed in the form of dechnic mole form a CONTROLLED source. Once philds, It becomes an UNCONTROLLED and users is used in the form of dechnic relation.

Structure Design Overview

- Concept generation and evaluation
- Wave tank testing of concepts
- Down-selection of concepts

Structure: Concept Generation and Evaluation

- Example tradeoff of 3 floats and 3 moorings
- Down-selected from wider range of geometries
 - Frequency domain modeling
- Concepts compared based on power output and loads
- Analysis tools
 - Simulations performed with OrcaFlex and/or in-house code (time domain modeling, Matlab)
 - Survival and operational wave tank tests (2 rounds)

Initial conceptual PowerBuoy configurations

		Symmetric			Cylinder w/Plate			Rhombus								
	5.5				500-600	420-500				750-1000	510-600				550-750	550-750
Ξ	3.5			180-270		120-210			380-470		200-210			280-370		180-210
Hs (2			50-100					150-160					80-140		
	1	5-30	5-30	5-30			15-55	15-55	30-40			5-30	5-30	5-30		
		5	6	7	9	12	5	6	7	9	12	5	6	7	9	12
		T _a (s)			T _a (s)				T _a (s)							

For Different Floats, Power Prediction (kW) vs. Sea State

For Different Floats, Annual Average Power Prediction (kW) at 3 Deployment Sites

	Float							
	Symmetric	w/Plate	Rhombus					
Site A	40-90	90-140	110-160					
Site B	70-120	90-140	130-180					
Site C	90-140	120-190	180-250					

Example Survival Load Simulations at Different Wave Periods

Mooring Load for Symmetric Float 1

OPT Proprietary

Structure: Concept Evaluation using Wave Tank Tests

Test Activities

	Test	Test Type							
	Survival	Operational							
	3 Floats	3 Floats							
Test 1	3 Moorings	3 Moorings							
	3 Drafts	3 Drafts							
	4 Floats								
Test 2	1 Mooring								
	1 Draft								
		2 Floats							
Test 3		1 Mooring							
		2 Controls							

Operational Test: Model Installation

Survival Test: Wave Calibration

- Operational tests
 - Evaluate power performance, fatigue
 - Tune hydrodynamic coefficients
- Survival tests
 - Estimate design loads
 - Tune hydrodynamic coefficients
- Tuned simulations used for posttest analysis

OPT Proprietary

Information contained in the presentation may not be used without the express permission of Ocean Power Technologies, Inc.

Simulation with Test-Tuned Coefficients

Example Simulation Evaluation

Structure: Down-Selection of Concepts

- Compare floats
 - Highest power for Rhombus
- Compare moorings
 - Highest power output for Monopile
 - Lowest loads for Tension Leg Platform
- Final decision then made by management based on these and other considerations (e.g. cost, deployment, customer preference)
- On to next stages of project

			Float					
			Symmetric	w/Plate	Rhombus			
ing		Site A	40-90	90-140	110-160			
oci	o o o o o o o o o o o o o o o o o o o	Site B	70-120	90-140	130-180			
ž		Site C	90-140	120-190	180-250			

Comparison of Moorings

Mananila	Dre								
wonopile	<u>Pro</u>								
	Highest power configuration of all cases studied; 600-610 kW mechanical power								
	Best agreement between predicted and measured								
	Con								
	Large float size								
	Estimated base moments (-5.5m survival)								
	550-750 MN.m @ 40m depth								
	750-1000 MN.m @ 50m depth								
	Float moment: 40-100 MN.m								
TLP	Pro								
	Second highest power studied								
	Avoid base moment load								
	Con								
	Large float size								
	High tether loads (15-60 MN) @ maximum operating sea state								

OPT Proprietary

PTO Design Overview

- Concept generation and evaluation
- Component and subsystem testing

PTO: Concept generation and evaluation

Tradeoff: Rack and Pinion vs. Belt Drive

- Table: Compatibility with PTO
- Other criteria (cost, reliability)
- Vendor input on designs; cost quotes

Vinning concep	t (RP#2) bu	uilt, tested, validated	RP#1	RP#2	Belt #1	Belt#2
for ocean den	lovment		Adjustable input rod	Fixed input rod	External rack on spar	Internal rack in float
ioi ocean dep			Option?	Option?	Option?	Option?
	Input Rod	Fixed Input Rod	*	✓	*	✓
	Input Kod	Wire Rope Adjustable Input Rod	✓	×	*	✓
		Gearbox	✓	✓	✓	✓
	Speed Increaser	Beltbox	✓	✓	✓	✓
		Chain drive	✓	✓	✓	✓
		External linear brake	✓	✓	✓	✓
	Brakas	Rotary spar to sheave	✓	×	×	✓
	Brakes	Internal linear rod lock	✓	✓	×	✓
		Internal rotary pinion caliper brake	✓	✓	✓	✓
	Looking Mashaniam	Latch	✓	✓	✓	✓
	LOCKING Mechanism	Shear pin	✓	✓	✓	✓
	Dinion	Vendor 1	✓	✓	✓	✓
	Pinion	Vendor 2	✓	✓	✓	✓
		Vendor 1	✓	×	×	✓
	wire Rope	Vendor 2	✓	×	×	✓
OPT Prop	rietarv	1			()PI	

Information contained in the presentation may not be used without the express permission of Ocean Power Technologies, Inc.

OCEAN POWER TECHNOLOGIES

PTO: Component and Subsystem Testing

- Generator/drive back-to-back test
 - Measurements: Power, thermal performance, motor constants (Kt, Ke)
- Active Front End (AFE) Inverter test
 - Validate interface between High Voltage DC bus and AC voltage on the Utility grid
 - Validate AFE control setup (precharge, synchronization, bidirectional power transfer)
- PTO endurance test
 - Represent real wave conditions
 - Measure efficiency, vibration
 - Validate control, HMI

OPT Proprietary

Information contained in the presentation may not be used without the express permission of Ocean Power Technologies, Inc.

Setup For Back-to-back Testing of Generator Drive

Conclusions

- Goal: Window into design process for wave energy converters
- Reviewed design process; examples from recent project
- Stages of design process
 - Concept generation and evaluation
 - Testing

