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MOTIVATION

« Open-ocean test sites enable the testing and demonstration of wave energy converters
(WECs) and aid in advancement to commercialization

- Met-ocean data, complete with key IEC resource parameters, is needed for open-ocean WEC
test sites

- Wave energy resource characterization provides essential data for WEC design, test planning,
installation, operation, maintenance, and decommissioning

- Consistent modeling, data analysis, and presentation procedures are necessary for
commensurable comparison between test sites



INTRODUCTION

Reconnaissance

* International Electrotechnical Commission (IEC) provides >300 m

standards for marine energy systems Shr
= |[EC 62600-101: Marine Energy - Wave, Tidal and Other Water
Current Converters - Part 101: Wave Energy Resource
Assessment and Characterization o
Feasibility

— Methodology for consistent and accurate resource characterization and 20-500 krm

commensurable comparison among various sites 500m

3 hr
— Three resource assessment stages

— Suitable numerical models + model validation procedures

— Data analysis and presentation procedures

= |[EC 62600-2: Marine Energy - Wave, Tidal and Other Water
Current Converters - Part 2: Design Requirements for Marine
Energy Systems

e Decreasing Uncertainty

— Requires estimation of 1-, 5-, and 50-year extreme wave heights and
associated wave periods




STUDY OBJECTIVE

- Estimate and catalogue the wave climate at open-ocean WEC test sites following
international standards for analysis, characterization, and classification to enable
commensurable comparison between test sites

= Facilitates the selection of test sites that are most suitable for a developer’s needs and
objectives



METHODS & DATA

- Utilized validated, high-resolution 42-year hindcast data produced from a third-generation
spectral wave model [Allahdadi et al. 2019, Yang et al. 2023]

= Feasibility-level wave energy resource characterization
« |[EC 62600-101 specifies six key parameters for characterizing the wave energy resource

= J: Omnidirectional wave power

H,,,: Significant wave height

T.:. Energy period

€o. Spectral width

6,: Direction of maximum directionally resolved wave power

dg: Directionality coefficient
« |EC 62600-101 specifies how wave energy resource data should be presented

= E.g., Joint probability distribution plot showing frequency of occurrence of sea states

Allahdadi et al. (2019). Development and validation of a regional-scale high-resolution unstructured model for wave energy resource characterization along the US East Coast. Renewable Energy, 136, 500-511.
Yang et al. (2023). Multi-decade high-resolution regional hindcasts for wave energy resource characterization in US coastal waters. Renewable Energy, 212, 803-817.



ATLANTIC MARINE ENERGY CENTER WEC TEST SITES

"0 University of New Hampshire: A

* AMEC Isle of Shoals WEC Test Site l
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= Approximately 36 acres in size portSuliugh Interndfional Airport
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= Previously facilitated open-ocean WEC
testing for 10+ years

- AMEC Aquaculture & WEC Test Site

= Approximately 130 acres consisting of
two connected parcels

~ UNH New Castle Research Pier &
» US Coast Guard Station

AMEC Aquaculture & WEC Test Site

o'

AMEC Isle of Shoals WEC Test Site 42.9422 -70.632 47 1
AMEC Aquaculture & WEC Test Site NE Marker 429643  -70.703 33.1 9
AMEC Aquaculture & WEC Test Site SW Marker 42.9547 -70.715 33.2
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RESULTS | JOINT PROBABILITY DISTRIBUTIONS
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RESULTS | MONTHLY VARIATION OF IEC PARAMETERS

5 0.5 M 2
| ¢
0 ——— + t + — + +— 0 L L L L 1 I | 0 L L I I L L L L |
J F M A M J J A § O N D J F M A M J J A S O N D J F M A M J J A S O N D
Month Month Month
e — — — I — e — e
. <M>
0sl | 300 - 4 0.8 +/_———k/"_\\-
06} ] — 200 | 08¢
oy s 3
0.4¢ . = 0.4+ :
—— o o o — e o —o ,_e__e____e_—-e———e'"‘e_'—e\e—e_e_‘
00 T T~ Y o Tiean|
| M y L | —e— Mean |
0.2 0.2 e 10%
90%
0 : : . : . : 0 ‘ ‘ s s ‘ ‘ 0 ‘ s ‘ ‘ ‘ ‘
J F M A M ] J A S O N D J F M A M J J A S O N D J F M A M 1] J A S O N D
Month Month Month



RESULTS | SEASONAL CUMULATIVE DISTRIBUTIONS
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RESULTS | WEATHER WINDOWS
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RESULTS | ENVIRONMENTAL CONTOURS

- Extreme conditions for 1-, 5-, and 50-
year return periods

» Utilized OMAE 2020 method
[Haselsteiner et al. 2020, Neary et al.
2021]

4.0 6.0
6.0 8.5
6.0 15.3
4.0 16.8

*50-year contour values

Haselsteiner et al. (2020). Global hierarchical models for wind and wave contours: Physical interpretations of the dependence functions. In International Conference on Offshore Mechanics and Arctic Engineering (Vol. 84324, p. 1-10). American Society of Mechanical Engineers.
Neary et al. (2021) Design Load Case Generator: Web-based Tool to Support IEC 62600-2 Standard Design Load Case Analyses. Proceedings of 13th European Wave and Tidal Energy Conference Series (EWTEC 2021), 2095, 1-10.
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RESULTS | COMPARISON TO PACWAVE SOUTH WEC TEST SITE

| |——AMEC Isle of Shoals

—+— AMEC Isle of Shoals
——PacWave South

| | ——PacWave South
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Month Month
7 [kW/m]
AMEC Isle of Shoals 1.5-2.0 8-9 13.5
12 e - PacWave South 3.0-35 10-11 59.5

16\/- *Sea state contributing greatest % of wave power
gl ] 1-Year 5-Year 50-Year

= T T ] —=— AMEC i of Sl
= | AMEC Isle of Shoals 5.8 11.2 6.7 11.8 8.1 12.6
9l | PacWave South 9.5 13.5 10.8 14.0 12.6 14.6

0 L | *Sea state corresponding to peak H,,, value for n-year return period
JJFMAMUJJ A S OND
Vonth
AMEC Isle of Shoals [l [1(2) 11(2)120°
PacWave South I [1(4) 11(4)280°

*Wave resource classification [Ahn et al. 2022]

Ahn et al. (2022). Global wave energy resource classification system for regional energy planning and project development. Renewable and Sustainable Energy Reviews, 162, 112438.
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CONCLUSIONS & FUTURE WORK

- Estimated and catalogued the wave climate at the AMEC open-ocean WEC test sites following
international standards for analysis, characterization, and classification to enable
commensurable comparison between test sites

+ Presented preliminary commensurable comparison between AMEC and PacWave sites for
several key IEC parameters

 Future work will expand this estimation and cataloging to additional US WEC test sites
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APPENDIX | IEC PARAMETER EQUATIONS

- Omnidirectional wave power: ] = pg ¥.; i ¢4,:S:jAf;A0;

- Significant wave height: H,,, = 4ymy

- Energy period: T, = ==
mo
- Spectral width: e, = \/mr‘:?‘z —1
-1

- Direction of maximum directionally resolved wave power: 6;, value corresponding to maximum
value of]9,]9]

" Jo = pg 2ijCq,iSijAfiAbicos(6 — ;)6
- 6 = 1,cos(9 —Hj) >0
~ §=0,cos(6—6;)<0

Jo,

- Directionality coefficient: dg = -
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APPENDIX | PACWAVE SOUTH ENVIRONMENTAL CONTOURS
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