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Abstract: This study focuses on the determination of optimum layout configurations for a linear array
of identical mutually interacting truncated cylinders. Optimum configurations correspond to those
that maximize either the total heave exciting force acting on all cylinders of the array or the heave
exciting force applied on pairs of cylinders within the array. For achieving this goal, we developed and
applied an efficient optimization numerical process (ONP), where a robust hydrodynamic numerical
model, capable of solving the diffraction problem of the examined multi-body arrangement in the
frequency domain, was appropriately coupled with a genetic algorithm solver in an integrated
computational environment. Initially, the efficiency of the ONP is demonstrated by comparing
results with those of other investigations that resulted from the deployment of classical optimization
methods. Then, ONP is applied for a linear array of nine cylinders for determining the optimum
layout configurations under the action of the head and perpendicular to the array waves, and for
different maximum allowable array lengths. The resulting optimum configurations correspond
to a random positioning of the cylinders within the array. Nevertheless, they are characterized
by the formation of clusters of closely-positioned cylinders, which induce positive hydrodynamic
interactions in terms of maximizing the exciting forces.

Keywords: truncated cylinders; wave diffraction; wave-structure interaction; linear array;
hydrodynamic loads; optimization

1. Introduction

Arrays of truncated cylinders can be utilized in various marine applications either as: (i) structural
elements of multi-column floating structures (e.g., semi-submersibles and tension-leg platforms,
ocean bridges, etc.) or (ii) as multi-body configurations for energy extraction (e.g., arrays of wave
energy converters operating as point absorbers). In principle, the applications connected with items (i)
and (ii) require minimization and maximization of the heave exciting forces, respectively. For ocean
platforms utilized in the oil and gas industry for instance, the minimization of the environmental
loading is the path to safety, while wave energy converters are designed to exploit the maximum
percentage of the available energy. Clearly, the energy conversion into mechanical power is maximized
in proportion with the maximization of the induced heaving forces.

In relevant situations, intense hydrodynamic interactions between the cylinders of the array are
introduced as a result of multiple wave scattering, which can have a direct impact on the exciting
forces applied on the cylinders and, thus, on the performance indicators connected with the required
functionality of the cylinders. For a given geometry, number of cylinders within the array and specific
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incident wave characteristics, the aforementioned interactions and exciting forces depend strongly
upon the layout configuration of the array; namely, the arrangement of the cylinders (e.g., linear
arrangement with one row of cylinders, rectangular grid with multiple rows and columns of cylinders,
and circular arrangement) and the center-to-center distance between the adjacent cylinders. Ultimately,
an optimum layout configuration can be determined in terms of maximizing or minimizing the
exciting forces applied on the cylindrical bodies within the array, in accordance with the relevant
performance requirements.

For realizing such an optimum layout configuration, the multiple wave scattering problem of
the mutually interacting truncated cylinders of the array should be solved in a robust and accurate
way. This problem has been extensively and effectively tackled in the past by many researchers,
who developed and applied relevant analytical and numerical methods aiming at: (a) the direct
evaluation of the exciting forces applied on the cylinders for a specific predefined array (e.g., [1–4]),
or (b) the assessment of the effect of different layout configurations on the exciting forces (e.g., [5])
or, finally, (c) the investigation of the mode trapping phenomena (e.g., [6]) and their effect on the
cylinders’ exciting forces (e.g., [7–10]). It should be noted that in all of the above studies the cylinders
were placed at either symmetrical locations relative to the direction of the incident waves or at equally
spaced positions within the examined configuration. Moreover, in [8] it was emphasized that an array
of closely spaced cylinders can result in a large increase of both the free-surface elevation and the wave
exciting forces, while for the case of a linear array, Chatjigeorgiou et al. [10] demonstrated that the
change of the center-to-center spacing between the cylinders of the array has a significant effect on the
induced surge and heave exciting forces.

Although numerous methods have been developed so far for solving the hydrodynamic problem
of truncated cylinders within arrays, little attention has been given to the determination of an optimum
layout configuration that maximizes or minimizes the exciting forces applied on the aforementioned
bodies. In this context, the authors refer to the study by Kagemoto [11], who developed the inverse
hydrodynamic interaction theory by coupling the hydrodynamic interaction theory of [2] the descent
method for finding minima [12] and the sequential unconstraint minimization technique [13], in order
to determine the optimum layout configuration of an array of truncated cylinders, which leads to
the minimization of the total surge exciting force applied on them. Kagemoto [11] concluded that for
specific wave frequencies, a non-equally spaced array configuration leads to ten times smaller total
surge exciting forces, compared to the equally spaced array. It should be noted that the deployment of
the aforementioned classical optimization techniques requires extensive analytical calculations to solve
the optimization problem and it might impose constraints on the maximum number of independent
design variables that can be considered.

For overcoming these drawbacks, alternative optimization methods can be applied, such as the
evolutionary methods [14], which by utilizing an initial population of random solutions and mimicking
the evolution principle of nature, result in a stochastic search. Genetic algorithms (GAs), introduced
by [15], correspond to an evolutionary algorithm method inspired by the selection process of nature,
where in a competition the stronger individuals survive. Selected individuals that have better scores
of the objective function of the physical problem, have a better chance for reproduction and creation
of offspring. Consequently, the fit individuals gradually increase the population size of the possible
solutions of the optimization problem. Considering the wider area of hydrodynamics, GAs have
been extensively and efficiently used by many researchers to solve numerous optimization problems,
including—(a) the shape geometry optimization of a ship [16], (b) minimization of the scattered
wave energy and, thus, reduction of the drift force applied on a truncated cylinder surrounded by
multiple cylindrical bodies by optimizing the layout or the geometrical characteristics of the outer
bodies [17,18], (c) minimization of the drift force applied on a truncated cylinder by optimizing the
flexural rigidity of a concentric annular plate [19], (d) optimum hydroelastic design of flexible floating
structures [20,21], and (e) determination of optimum layout configurations of wave energy converters
in terms of maximizing absorbed power [22,23] or minimizing costs [24].
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In the present paper, by utilizing GAs we developed an optimization numerical process (ONP)
for determining the optimum layout configuration of a linear array of identical mutually interacting
truncated cylinders. The term “optimum” refers to layout configurations that maximize either the
total heave exciting force acting on all cylinders of the array or the heave exciting force acting on
appropriately selected pairs of cylinders within the array. The developed ONP consists of two
distinctive numerical components, appropriately coupled in an integrated computational environment.
The first one corresponds to a hydrodynamic model (HM), which solves the diffraction problem of
the examined multi-body arrangement in the frequency domain in an accurate and computationally
efficient manner, by utilizing the matched eigenfunction expansion technique and the “direct” solution
methodology for the numerical implementation [10,25]. Accordingly, it calculates the linear heave
exciting forces of the cylinders. The second component corresponds to a GAs solver (GAS), aiming at
solving the aforementioned constraint optimization problems. The efficiency and the accuracy of the
developed ONP is demonstrated, initially, by comparing results with those of Kagemoto [11]. Then,
the ONP is applied for a linear array of nine cylinders and extended results are presented focusing on
the optimum layout configurations of the array and the maximum heave exciting forces for head and
perpendicular to the array waves, as well as for various maximum allowable lengths of the array.

2. Problem’s Definition

A linear array of Q mutually interacting, identical, truncated cylinders of radius b and of draft
h2 is placed in an area of finite and constant water depth h (Figure 1). The cylinders of the array are
distributed non-uniformly along a length larray defined as (Figure 1a):

larray =

q=Q−1∑
q=1

lq + 2lout, (1)

where lq denotes the center-to-center spacing between two adjacent cylinders q and q + 1, while lout is
the distance of the external cylinders of the array from the fictitious boundaries employed for imposing
an upper limit on the length of the array.
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The array is subjected to the action of monochromatic incident waves of linear amplitude A and
of circular frequency ω that propagate at angle β, relative to the horizontal O axis. All cylinders are
assumed to be restrained in waves; accordingly, only the diffraction problem is considered.

Let the X coordinates of the centers of the cylinders in the global OXYZ coordinate system
(Figure 1a) Xq, q = 1, . . . , Q, denote the locations of the cylinders within the linear array. We sought to
find the optimum values of the design variables Xq, q = 1, . . . , Q, along the length larray (Equation (1))
or the equivalent optimum layout configuration of the cylinders for two different problems. The first
problem aims at maximizing the total heave exciting force, Ftot

Z , acting on all cylinders of the array,
while the second one aims at maximizing the heave exciting force, Fsubtot

Z , acting on appropriately
selected pairs of cylinders. The maximization of the objective functions, Ftot

Z and Fsubtot
Z , of the two

aforementioned constrained optimization problems is mathematically expressed as:

maximize Ftot
Z

(
X1, . . .Xq, . . . , XQ

)
, (2)

maximize Fsubtot
Z

(
X1, . . .Xq, . . . , XQ

)
, (3)

while, additionally, for both problems the design variables, Xq, q = 1, . . . , Q, are subjected to the
following constraints:

Xq −Xq−1 ≥ 2b, q = 2, . . . , Q, (4)

0 ≤ X1 ≤ lout, (5)

0 ≤ larray −XQ ≤ lout, (6)

Xq ∈
[
0, larray

]
. (7)

Equation (4) mathematically expresses the avoidance of overlapping between two adjacent
cylinders, while Equations (5) and (6) impose restrictions on the placement of the two external
cylinders, so that Equation (1) can be satisfied.

For solving the two aforementioned optimization problems, a suitable optimization numerical
process (ONP) is developed and applied. ONP consists of two distinctive numerical components
appropriately coupled in an integrated computational environment. The first component corresponds
to a hydrodynamic model (HM) that solves the diffraction problem of the examined multi-body
arrangement, taking into account all hydrodynamic interactions between the cylinders, and, accordingly,
it calculates the heave exciting forces applied on the cylinders. The second component corresponds to a
GAs solver (GAS) that solves the optimization problem for the pre-defined design variables, objective
function, and relevant constraints. In the following section, the two numerical components of the
developed ONP as well as their coupling procedure are described.

3. Numerical Modeling

3.1. Hydrodynamic Model

The hydrodynamic analysis of the array is conducted in the frequency domain and it is based
on the 3D linear wave diffraction theory. The fluid is assumed to be inviscid and incompressible,
and the flow to be irrotational. Accordingly, the velocity potential is introduced for describing the
fluid motion. The first-order (linear) boundary value problem is formulated and solved by utilizing
the matched eigenfunction expansion technique, combined with the “direct” solution methodology for
the numerical implementation. This semi-analytical approach was developed and described in [10,25].
For making this study self-contained, we briefly present the main aspects of the approach taken
in [10,25].

Each cylinder q = 1, . . . , Q in the array defines two liquid regions—the outer region A extending to
infinity and containing all other cylinders j , q of the array, and the lower region B situated below each
cylinder. A local polar coordinate system

(
rq,θq, z

)
fixed on the center of each cylinder q is introduced
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with the vertical z coordinate common for all cylinders, being fixed at the bottom and pointing
vertically upwards. The regions A and B are then contained within

(
rq ≥ b, 0 ≤ θq ≤ 2π, 0 ≤ z ≤ h

)
and(

0 ≤ rq ≤ b, 0 ≤ θq ≤ 2π, 0 ≤ z ≤ h1
)
, respectively, where h1 denotes the vertical distance between the

bottom of each cylinder and the sea bottom (Figure 1a). The complex spatial velocity potential φ with
respect to the local polar coordinate system

(
rq,θq, z

)
of each cylinder q should satisfy the boundary

value problem consisting of the following set of equations:

∇
2φ = 0, rq ≥ b, 0 ≤ θq ≤ 2π, 0 ≤ z ≤ h, (8)

−Kφ+
∂φ

∂z
= 0, rq ≥ b, 0 ≤ θq ≤ 2π, z = h, (9)

∂φ

∂z
= 0, rq ≥ b, 0 ≤ θq ≤ 2π, z = 0, (10)

∂φ

∂rq
= 0, rq ≥ bq, 0 ≤ θq ≤ 2π, h1 ≤ z ≤ h, (11)

∇
2φ = 0, 0 ≤ rq ≤ b, 0 ≤ θq ≤ 2π, 0 ≤ z ≤ h1, (12)

∂φ

∂z
= 0, 0 ≤ rq ≤ b, 0 ≤ θq ≤ 2π, z = 0, (13)

∂φ

∂z
= 0, 0 ≤ rq ≤ b, 0 ≤ θq ≤ 2π, z = h1, (14)

where∇2 denotes the 3D Laplace operator and K = ω2/g, with g denoting the gravitational acceleration.
Equations (8) and (12) are the Laplace equations, Equation (9) corresponds to the linearized boundary
condition on the undisturbed free-surface, while Equations (10) and (13) are the bottom boundary
conditions. Moreover, Equation (11) is the Neumann body condition on the wetted area of the qth

cylinder and Equation (14) expresses the zero velocity condition on the bottom of each cylinder.
As mentioned above, for each cylinder two liquid regions were defined. Denoting by φA and φB,

the discrete potentials of the wave fields in regions A and B, respectively, it is straightforward that
φA and φB should satisfy Equations (8)–(11) and Equations (12)–(14). Accordingly, the uniqueness
of the solution requires matching the potentials φA and φB in the mutual surface boundary rq = b,
0 ≤ θq ≤ 2π and 0 ≤ z ≤ h1. The associated continuity relations read:

∂φA

∂rq
=
∂φB

∂rq
, rq = b, 0 ≤ θq ≤ 2π, 0 ≤ z ≤ h1, (15)

φA = φB, rq = b, 0 ≤ θq ≤ 2π, 0 ≤ z ≤ h1. (16)

Equation (15) expresses the continuity of the velocities, while Equation (16) expresses the continuity
of the linear pressures (or potentials).

The velocity potentialφA consists of the incident wave componentφI and the scattered components
originating from all cylinders in the array. By utilizing the linear superposition principle, the total
velocity potential in the outer region A is given as:

φA = φI +

Q∑
j=1

φ
( j)
S = φI + φ

(q)
S +

Q∑
j,q

φ
( j)
S , (17)

where the sum term on the right-hand side describes the scattered wave field induced by all cylinders
in the array, except cylinder q, and it should be regarded as an incident wave field with complicated
structure that hits the cylinder q. It is noted that Equation (17) combines all local polar coordinate
systems

(
r j,θ j

)
, j = 1, . . . , Q.
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Assuming a local Cartesian coordinate system
(
xq, yq

)
fixed on the symmetrical axis of the qth

cylinder and a global Cartesian coordinate system (X, Y) fixed on the sea bottom, the incident wave
potential φI with respect to

(
xq, yq

)
is expressed as:

φI = −i gA
ω

cosh(k0z)
cosh(k0h)Λqeik0(xq cos β+yq sin β)

= −i gA
ω

cosh(k0z)
cosh(k0h)Λq

∞∑
m=−∞

eim(π/2−β) Jm
(
k0rq

)
eimθq

(18)

where k0 is the wavenumber, Jm is the Bessel function of the first kind with integer order m, i =
√
−1,

and Λq = eik0(Xq cos β+Yq sin β), where Xq and Yq are the X and Y coordinates of the origin of
(
xq, yq

)
in

the global coordinate system. In the following, all velocity potentials are considered to be normalized
by −igA/ω.

Continuing with the scattered components of the total velocity potential (Equation (17)),
these quantities should satisfy the Sommerfeld far-field radiation condition for outgoing waves

at infinity. Accordingly, the scattered wave component φ(q)
S associated with the qth cylinder is given by:

φ
(q)
D =

∞∑
m=−∞

∞∑
n=0

C(q)
mneimπ/2G(q)

mnKm
(
anrq

)Zn(z)
Zn(h)

eimθq (19)

In Equation (19), G(q)
mn = I′m(anb)/K′m(anb), where Im and Km denote the modified Bessel functions

of the first and the second kind, respectively, while the prime denotes differentiation with respect to
the argument. The eigenvalues an are obtained from the solution of the well-known transcendental
equation, which reads:

K + an tan(anh) = 0 (20)

The eigenfunctions Zn(z) that are associated with an and are orthogonal in z ∈ [0, h] (with the
normalization constant equal to h) are given by:

Zn(z) =



{
1
2

[
1 + sin h(2k0h)

2k0h

]}−1/2
cosh(k0z), n = 0,

{
1
2

[
1 + sin(2αnh)

2αnh

]}−1/2
cos(anz), n = 1, 2, 3, . . . ,

(21)

Finally, in Equation (19), C(q)
mn, q = 1, . . . , Q, are the unknown expansion coefficients. It could be

noted that Equation (19) unifies the solution of the scattered wave component by incorporating both
the wavenumber and the evanescent modes, assuming a0 = −ik0. Moreover, Equation (19) satisfies
Equations (8)–(10), as well as the Sommerfeld radiation condition, since the second independent radial
solution depending on Im

(
anrq

)
was omitted.

Coming back to the unknown expansion coefficients of Equation (19), C(q)
mn, q = 1, . . . , Q,

these quantities are obtained by employing the Neumann condition described by Equation (11),
and the continuity relations given by Equations (15) and (16). This, however, requires the expression of
the scattered components for j , q, in the local coordinate system

(
rq,θq

)
of the randomly selected

cylinder q in the array, rather than in the local system
(
r j,θ j

)
, j , q. For this purpose, Graf’s addition

theorem is employed for the modified Bessel function of the second kind and for the Hankel function
of the first kind, in Equation (19) (more details can be found in [10,25]).
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Combining all of the above, the wave field outside the random cylinder q is given by the following
extended form of Equation (17):

φA =
∞∑

m=−∞

∞∑
n=0

C(q)
mneimπ/2G(q)

mnKm
(
anrq

)Zn(z)
Zn(h)

eimθq

+
Q∑

j,q

∞∑
m=−∞

∞∑
s=−∞

∞∑
n=0

eimπ+isπ/2C( j)
sn G( j)

sn Ks−m
(
anR jq

)
×Im

(
anrq

)
ei(s−m)β jq Zn(z)

Zn(h)
eimθq

+
Z0(z)
Z0(h)

Λq
∞∑

m=−∞
eim(π/2−β) Jm

(
k0rq

)
eimθq .

(22)

where R jq is the radial distance between the centers of cylinders j and q and β jq is the angle formed
between the distance R jq and the horizontal in the center of the jth cylinder.

Continuing with the velocity potential in the lower region B, a proper solution of φB for the
examined boundary value problem has the form:

φB =
∞∑

m=−∞

∞∑
n=0

εnF(q)
mn

Im
(nπrq

h1

)
Im

(
nπb
h1

) cos
(

nπz
h1

)
eimθq . (23)

where ε0 = 1 and εn = 2, n = 1, 2, . . ., while, F(q)
mn, q = 1, . . . , Q, denote the unknown expansion

coefficients that aer calculated together with C(q)
mn, q = 1, . . . , Q, by employing Equation (11) (Newman

condition) and Equations (15) and (16) (continuity relations).
The aforementioned expression of φB clearly satisfies the Laplace equation (Equation (12)),

while the satisfaction of the boundary conditions given by Equations (13) and (14) is ensured by
the eigenfunctions cos(nπz/h1). As also required, φB is bounded in the origin rq = 0 (the second
independent radial solution depending on Km, which is singular for zero argument was omitted),
while the expression of φB was constructed to yield finite values for both zero and very large n values.
Otherwise, Equation (23) is always bounded, considering that in the lower liquid region rq ≤ b.

For calculating the unknown expansion coefficients F(q)
mn, and C(q)

mn, q = 1, . . . , Q, of Equations (22)
and (23), the matched eigenfunctions technique was utilized [10]. The resulting system of equations
is linear and it can be solved by employing standard matrix techniques. Moreover, a finite number
of harmonics m = −M, . . . , M and of vertical eigenfunctions n = 0, . . . , N for both velocity potential
expressions is taken into account, depending on the accuracy of the convergence required. A small
number of modes and eigenfunctions (less than five, each) is usually appropriate to obtain convergent
results. This in turn ensures the realization of numerical computations in practically “no time”.

Having solved the diffraction problem, the first order exciting forces are obtained by direct
pressure integration on the wetted surface of the cylinders, as follows:

F(q)
X

F(q)
Y

 = −ρgAb

h∫
h1

2π∫
0

φA
(
b,θq, z

)
cosθq

sinθq

dθqdz, (24)

F(q)
Z = ρgA

b∫
0

2π∫
0

φB
(
rq,θq, h1

)
rqdθqdrq, (25)

where F(q)
X , F(q)

Y , and F(q)
Z are the surge, sway, and heave exciting forces, respectively, acting on the qth

cylinder of the array and ρ is the water density. Equations (24) and (25) result in robust analytical
formulas. Full details of these formulas can be found in [10,25].
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The amplitude of the total heave exciting force Ftot
Z (objective function in Equation (2)), applied to

all cylinders of the array is calculated as follows:

Ftot
Z =

√√√√√ Q∑
q=1

Re
(
F(q)

Z

)
2

+

 Q∑
q=1

Im
(
F(q)

Z

)
2

, (26)

where Re
(
F(q)

Z

)
and Im

(
F(q)

Z

)
denote the real and imaginary parts of F(q)

Z , respectively.

On the other hand, the amplitude of the heave exciting force Fsubtot
Z (objective function in

Equation (3)) applied on a pair of cylinders q and j, with q , j is calculated as:

Fsubtot
Z =

√(
Re

(
F(q)

Z

)
+ Re

(
F( j)

Z

))2
+

(
Im

(
F(q)

Z

)
+ Im

(
F( j)

Z

))2
(27)

where Re
(
F( j)

Z

)
and Im

(
F( j)

Z

)
denote the real and imaginary parts of F( j)

Z , respectively, of the jth cylinder,

with j , q.

3.2. Genetic Algorithms Solver

The GAS applied in the present paper corresponds to a search evolutionary numerical method that
is based on the process of natural evolution [14], where the fittest individuals of an initial population
representing possible random solutions are selected for reproduction, in order to generate offspring of
the next population. An individual of a population corresponds to a specific set of values of the design
variables, Xq, q = 1, . . . , Q, and it is considered to be a candidate solution of the optimization problem.
The size of the population (equal to the number of individuals) is defined at the beginning of the GAS
operators and remains constant during GAS execution.

Iteratively and at each step of the optimization process, the GAS scores each individual of the
current population by computing its fitness value, with the use of the relevant objective function
(Equation (26) or Equation (27)). Moreover, the GAS considers the individuals of the current population
to create the individuals of the next one by employing specific GAS operators. Constraints and
bounds for the design variables are also imposed (Equations (4)–(7)) and needed to be satisfied when
creating individuals. Part of the individuals that have better scores are selected as the “elite” and are
maintained within the next population without any change, while some individuals are selected as
“parents” for the generation of the new individuals (selection operator of GAS); in this way the fit
solutions are kept in the next population. The “parents” are used to generate new individuals by—(a)
making random changes to a single “parent” in order to maintain diversity within the population and
prevent premature convergence (mutation operator of GAS) or (b) combining the design variables
entries of a pair of “parents” to create fitter offspring (crossover operator of GAS). The same process
continues iteratively until one of the predefined stopping criteria is met. Accordingly, the GAS is
terminated and the individual with the best fitness value among the individuals of the last generated
population presents the optimum solution. In the present paper, GAS is numerically realized by using
the Optimization Toolbox™ R2019b [26] of MATLAB (R2019b, Natick, MA, USA) [27].

3.3. Optimization Numerical Process (ONP)

The HM and GAS numerical components described in the previous sections are coupled within
MATLAB R2019b [27] in order to solve the optimization problems that are mathematically expressed
by Equations (2)–(7). This coupling is implemented by developing and applying a suitable ONP in the
present paper, as shown in Figure 2.
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Figure 2. Flow chart of the developed optimization numerical process (ONP) in the present paper for
calculating the optimum arrangement of cylinders in a linear array, in terms of maximizing the heave
exciting force.

The objective functions Ftot
Z

(
X1, . . .Xq, . . . , XQ

)
or Fsubtot

Z

(
X1, . . .Xq, . . . , XQ

)
, (Equations (26) and

(27) respectively), the design variables Xq, q = 1, . . . , Q, the constraints (Equations (4)–(7)), the size of
the populations, and the definition of GAS operators are provided as an input to the ONP. A random
initial population is then created by the GAS for the design variables. The individuals of the initial
population are used as input to the HM, along with the values of the remaining required physical
quantities, i.e., radius, b, draft, h2, water depth, h, wave frequency, ω, and incident wave direction,

β (Figure 1). HM is executed for each individual, F(q)
Z (Equation (25)) for each CYLq, q = 1, . . . , Q,

is obtained and the value of the objective function, Ftot
Z or Fsubtot

Z , is calculated by utilizing Equation (26)
or Equation (27), respectively. Then, the fitness of each individual to the objective function is evaluated,
each individual is accordingly scored and the stopping criteria related to those scores are examined.
If the stopping criteria are not satisfied, a new population of individuals is generated by the GAS
with the use of the relevant GAS operators mentioned in the previous section (i.e., selection, mutation,
and crossover). The individuals of the new population are used as input to the HM in order to calculate

new values of F(q)
Z , q = 1, . . . , Q, and accordingly new values of Ftot

Z or Fsubtot
Z . The individuals of the

new population are scored and the stopping criteria are checked again. The aforementioned process
continues iteratively until the stopping criteria are satisfied. When satisfaction of these criteria is
achieved, the individual of the last generated population with the best score is assigned as the optimum
solution of the constrained maximization problem examined.

4. ONP Validation

In order to validate the accuracy and the efficient development of the ONP, this process is initially
applied in order to compare results with those of Kagemoto [11]. The latter author utilized the inverse
hydrodynamic interaction theory and developed analytical expressions for the objective function,
to determine the optimum arrangement of cylindrical bodies in terms of minimizing the total surge or
the heave exciting force applied on arrays of cylinders.

Herein, we compare the optimum solutions that minimize the total surge exciting force, for two
linear arrays of truncated cylinders with, respectively Q = 3 and Q = 4, identical cylinders of radius
b = 0.25 m and of draft h2 = 0.5 m. The length of the array, larray, is taken to be equal to 2.0 m and 3.0 m,
respectively, with lout = 0.0 m (Figure 1a). Both arrays are placed in an area of water, depth h = 1.0 m,
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and are subjected to the action of head monochromatic waves (β = 0o in Figure 1a) of ω = 5.54 rad/s.
In the work of Kagemoto [11], the external cylinders of the array were considered to be fixed at the two
ends of larray. Accordingly, for each array, the optimum solutions correspond to the values of the X
coordinates of the internal cylinders in the array. Based on the above, the optimization problem for the
array with Q = 3 is formed as follows:

minimize Ftot
X (X2), (28)

subjected to: 
Xq −Xq−1 ≥ 0.5, q = 2 and 3,

X1 = 0.0 m,
X3

(
≡ XQ

)
= 2.0 m,

X2 ∈ [0.0, 2.0].

(29)

On the other hand, the optimization problem for the array with Q = 4 is formed as follows:

minimize Ftot
X (X2, X3), (30)

subjected to: 
Xq −Xq−1 ≥ 0.5, q = 2, 3 and 4,

X1 = 0.0 m,
X4

(
≡ XQ

)
= 3.0 m,

(X2, X3) ∈ [0.0, 3.0].

(31)

In Equations (28) and (30), Ftot
X corresponds to the amplitude of the total surge exciting force

applied on all cylinders of the array, which is calculated as follows:

Ftot
X =

√√√√√ Q∑
q=1

Re
(
F(q)

X

)
2

+

 Q∑
q=1

Im
(
F(q)

X

)
2

, (32)

where Re
(
F(q)

X

)
and Im

(
F(q)

X

)
denote the real and imaginary parts of F(q)

X (Equation (24)), respectively.

Table 1 shows the comparison of the results obtained using the present ONP with the corresponding
ones of [11]. It is evident that both the calculated optimum solutions and the minima of Ftot

X (normalized
in terms of ρgπbh2AQ as in [11]) agree favorably with those in [11], which proves the efficiency and
the accuracy of the developed ONP in the present paper. The observed very small differences are
attributed to the fact that ONP includes a search evolutionary method for solving the optimization
problem, while in [11] the minimum of the objective function was derived analytically (existence of an
explicit mathematical formula).

Table 1. Comparison of the optimum solutions between the present ONP and Kagemoto [11].

Q ONP Kagemoto [11]
X2 (m) X3 (m) Ftot

X X2 (m) X3 (m) Ftot
X

3 1.170 - 0.162 1.168 - 0.16271
4 1.153 2.258 0.002 1.150 2.251 ≈ 0

5. Results and Discussions

5.1. Examined Cases

The ONP developed in this study is applied for solving the optimization problems described with
Equations (2)–(7) along with Equations (26) and (27), for a linear array of Q = 9 identical truncated
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cylinders (Figure 1a with Q = 9) of b = 1.0 m and non-dimensional draft h2/b = 1.0, placed in a liquid
area of non-dimensional constant depth h/b = 10.0 (Figure 1b). In total, 18 optimization cases are
considered and solved (Table 2).

Table 2. Details of the examined optimization cases.

Case Objective Function lout/b larray/b β (◦)

EC1.1

Maximization of Ftot
Z with Q = 9 in Equation (26)

4 40
0EC1.2 6 60

EC1.3 4 40
90EC1.4 6 60

EC1.5

0

32
0EC1.6 48

EC1.7 32
90EC1.8 48

EC2.1
Maximization of Fsubtot

Z for q = 5 and j = 0 in Equation (27)
4 40

90

EC2.2 6 60
EC2.3

Maximization of Fsubtot
Z for q = 1 and j = 9 in Equation (27)

4 40
EC2.4 6 60
EC2.5

Maximization of Fsubtot
Z for q = 2 and j = 8 in Equation (27)

4 40
EC2.6 6 60
EC2.7

Maximization of Fsubtot
Z for q = 3 and j = 7 in Equation (27)

4 40
EC2.8 6 60
EC2.9

Maximization of Fsubtot
Z for q = 4 and j = 6 in Equation (27)

4 40
EC2.10 6 60

Cases EC1.1–EC1.8 correspond to the optimum layout configurations of the array that maximize
Ftot

Z (i.e., the total heave exciting forces acting on all the cylinders of the array) for different combinations
of larray/b and lout/b values, under the action of either head or perpendicular to the array waves
(β = 0o and 90o, respectively, in Figure 1a). On the other hand, EC2.1–EC2.10 correspond to optimum
layout configurations of the array that maximize Fsubtot

Z , namely, the heave exciting forces applied on
appropriately selected pairs of cylinders within the array, as well as in the middle cylinder of the array
(in the latter case Fsubtot

Z ≡ F(5)
Z ). For each different objective function Fsubtot

Z , two different combinations
of larray/b and lout/b are considered, along with the action of the perpendicular to the array waves. For all
cases examined, the array is subjected to monochromatic waves of ω = 2.525 rad/s, which coincides
with the heave natural frequency of a cylinder within the array at h/b = 10.0 [28], while during the
implementation of the GAS the non-dimensional design variables, Xq/b, q = 1, . . . , 9, are defined
to have values up to their first decimal. Moreover, for the cases with lout/b = 0, the application of
Equations (5) and (6) leads to constant values of X1/b and X9/b equal to 0 and larray/b, respectively;
accordingly, the external cylinders of the array, CYL1 and CYL9, are assumed to be fixed at the two
ends of larray.

For applying the ONP, the following options were assigned to the GAS—(a) the population size
was defined equal to 1000, while the double vector was selected as the population type, (b) a rank
fitness scaling was applied, (c) a crossover fraction was taken to be equal to 0.8 with the intermediate
function, and (d) an adaptive feasible mutation was selected. In order to ensure that the GAS predicts
the global maximum of the physical problem correctly, multiple different runs for each case of Table 2
were made. It is also noted that for each examined case, a different number of GAS operator iterations
was required in order to achieve convergence of the optimization algorithm. In general, the cases
with β = 90o required a smaller number of GAS operator iterations (∼ 150), compared to the cases
with β = 0o, where ∼ 430 iterations were required to obtain the optimum solution. The average
computational time for one iteration (1000 runs of the HM) was approximately equal to 3 min, using a
standard PC (Personal Computer) with 128 GB RAM (Random Access Memory) and Intel® Xeon®

Silver 4110 CPU@ 2.1 GHz 2.1 GHz (2 processors).
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5.2. Optimum Solutions for EC1.1–EC1.8

Table 3 shows the results (optimum values of the design variables Xq, q = 1, . . . , 9, normalized in
terms of b, and maximum values of Ftot

Z , normalized in terms of ρgb2A) for the cases EC1.1–EC1.8 of
Table 2. For these cases the optimum layout configuration of the array in the X −Y plane is shown
schematically in Figure 3, while, Figures 4 and 5 show the effect of larray/b on the maximum values of
Ftot

Z and on the optimum Xq/b values, respectively, for a given β direction.
The results in Table 3 and Figure 3 clearly demonstrate that irrespective of the examined larray/b

and β combinations, the optimum solutions correspond to a random positioning of the cylinders
within the array, characterized by the existence of unequal center-to-center distances between the
adjacent cylinders and of non-symmetrical features. The only distinctive characteristic identified is
the formation of clusters (sub-groups) of one, two, or more (up to six) closely-positioned cylinders,
depending on larray/b and β. These clusters are distributed at various distances between each other,
along the length of the array. Under the action of perpendicular to the array waves (EC1.3–EC1.4,
EC1.7–EC1.8), a smaller number of clusters is realized, compared to the corresponding cases with
β = 0o, while, for all cases, except that of EC1.3, the clusters tend to be situated close to the ends of the
examined larray. The latter feature is not observed for β = 0o, where the clusters are distributed along
the whole available length of the array. From a physical point of view, all of the above illustrate that
the closely-positioned cylinders within the clusters induce intense hydrodynamic interaction effects,
which are positive in terms of maximizing Ftot

Z .

Table 3. Optimum values of Xq/b, q = 1, . . . , 9 and corresponding maximum Ftot
Z /

(
ρgb2A

)
values for

EC1.1–EC1.8.

Case X1/b X2/b X3/b X4/b X5/b X6/b X7/b X8/b X9/b Ftot
Z /(ρgb2A)

EC1.1 0.10 8.70 10.90 18.20 20.70 27.40 30.10 36.30 39.50 6.841
EC1.2 1.10 9.70 18.40 21.30 30.70 40.40 47.30 49.90 59.90 7.137
EC1.3 0.50 3.20 12.70 15.60 22.90 26.00 33.60 36.00 38.10 10.212
EC1.4 0.00 2.80 5.30 46.70 50.00 52.70 55.00 57.40 60.00 10.017
EC1.5 0.00 2.20 9.30 11.80 19.60 21.80 27.50 30.00 32.00 6.075
EC1.6 0.00 7.10 9.70 19.10 26.50 29.00 35.40 38.30 48.00 6.968
EC1.7 0.00 2.90 5.70 18.90 21.90 24.40 26.80 29.10 32.00 10.035
EC1.8 0.00 2.20 4.70 10.90 13.40 15.80 43.50 45.90 48.00 10.090
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Figure 3. Optimum layout configurations of the array with Q = 9 cylinders for EC1.1–EC1.8.

Regarding the maximum values of Ftot
Z (Table 3, Figure 4), it is evident that for a given larray/b

value, the maximum total heave exciting force is significantly smaller for the cases EC1.1–EC1.2 and
EC1.5–EC1.6, where β = 0o (Figure 4a) compared to the cases EC1.3–EC1.4, EC1.7–EC1.8 (Figure 4b),
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respectively, where β = 90o. This could be attributed to the fact that, for head waves, the incident
wave energy is successively reduced towards the leeward section of the array. Moreover, for β = 0o,
the successive increase of larray/b results in a smooth increase of Ftot

Z maxima, since larger values of
larray/b enable the reduction of shadow effects between the clusters of the cylinders. This is not observed
for β = 90o, where the change of larray/b does not have any significant impact on the maximum values
of Ftot
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of the array, namely, for 𝑞𝑞 ≥ 7 . Moreover, under the action of head waves a linear correlation 
between 𝑞𝑞 and 𝑋𝑋𝑞𝑞/𝑏𝑏, 𝑞𝑞 = 1, … , 9, for each examined 𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎/𝑏𝑏 value is observed. This is also shown 
in Figure 6, where 𝑋𝑋𝑞𝑞/𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 , 𝑞𝑞 = 1, … , 9, is plotted as a function of 𝑞𝑞. By implementing linear fitting 
to the aforementioned data, a linear trend line along with its equation is obtained and it is additionally 
included in Figure 6. It is evident that the formula shown in Figure 6 does not correspond to a direct 
outcome of the solution of the examined optimization problem (Equations (2) and (4)–(7)), but to an 
approximation of the relevant optimum solutions obtained for 𝛽𝛽 = 0o, by utilizing the present ONP. 
In the case of 𝛽𝛽 = 90o (Figure 5b), a linear dependence of 𝑋𝑋𝑞𝑞/𝑏𝑏 with 𝑞𝑞 exists only for EC1.3 and 
EC1.7 (𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎/𝑏𝑏=40 and 32, respectively) restricting the use of any possible fitting scheme of the data 
related to 𝛽𝛽 = 90o. 
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Figure 4. Effect of larray/b on the maximum non-dimensional values of Ftot
Z (cases EC1.1–EC1.8):

(a) β = 0o and (b) β = 90o.
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Figure 5. Effect of larray/b on the optimum Xq/b values for EC1.1–EC1.8. (a) β = 0o and (b) β = 90o.

Continuing with the effect of larray/b on Xq, q = 1, . . . , Q, (Figure 5), it is evident that for a given
qth cylinder, the successive increase of larray/b in the case of β = 0o leads to larger values of Xq/b,
q = 1, . . . , 9, especially for q ≥ 5. For β = 90o, this trend is only observed for the last three cylinders of
the array, namely, for q ≥ 7. Moreover, under the action of head waves a linear correlation between q
and Xq/b, q = 1, . . . , 9, for each examined larray/b value is observed. This is also shown in Figure 6,
where Xq/larray, q = 1, . . . , 9, is plotted as a function of q. By implementing linear fitting to the
aforementioned data, a linear trend line along with its equation is obtained and it is additionally
included in Figure 6. It is evident that the formula shown in Figure 6 does not correspond to a direct
outcome of the solution of the examined optimization problem (Equations (2), (4)–(7)), but to an
approximation of the relevant optimum solutions obtained for β = 0o, by utilizing the present ONP.
In the case of β = 90o (Figure 5b), a linear dependence of Xq/b with q exists only for EC1.3 and EC1.7
(larray/b = 40 and 32, respectively) restricting the use of any possible fitting scheme of the data related
to β = 90o.
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Figure 6. Xq/larray as a function of q for EC1.1–EC1.2 and EC1.5–EC1.6.

5.3. Optimum Solutions for EC2.1–EC2.10

Table 4 shows the results (optimum values of Xq/b, q = 1, . . . , 9, and maximum values of
Fsubtot

Z /
(
ρgb2A

)
) for the cases EC2.1–EC2.10 of Table 2, where only the action of waves with β = 90o is

considered. Moreover, Figure 7 schematically shows the corresponding optimum layout configuration
of the array in the X −Y plane. For all examined larray/b values, the optimum solutions correspond
again to random placements of the cylinders within the array, with unequal center-to-center distances
between adjacent bodies. The formation of clusters of closely-positioned cylinders, distributed along
the length of the array is also observed. In general, the maximization of Fsubtot

Z for a given pair of
cylinders qth and jth is realized by placing one or more adjacent bodies at small distances from the
qth and/or the jth cylinder. It is also worth noting that for both examined larray/b values, the largest
maxima of Fsubtot

Z occur for EC2.9 and EC2.10 (Table 4), where maximization of the total heave exciting
force applied on CYL4 and CYL6 of the array is implemented. For the rest of the examined pairs of
cylinders, the Fsubtot

Z maxima successively decrease and the smallest values are observed for cases EC2.3
and EC2.4 (maximization of total heave exciting force applied on the outer cylinders, CYL1 and CYL9,
of the array).

Table 4. Optimum values of Xq/b, q = 1, . . . , 9 and the corresponding maximum Fsubtot
Z /

(
ρgb2A

)
values for EC2.1–EC2.10.

Case X1/b X2/b X3/b X4/b X5/b X6/b X7/b X8/b X9/b Fsubtot
Z /(ρgb2A)

EC2.1 1.80 3.90 10.90 12.90 15.40 18.10 27.80 36.70 39.00 1.5854
EC2.2 4.20 6.20 14.70 24.70 27.10 29.60 39.10 49.00 59.00 1.6066
EC2.3 1.40 4.70 13.40 15.40 23.10 25.30 32.30 34.30 37.20 2.5921
EC2.4 3.00 6.30 15.90 25.20 34.10 36.30 44.70 54.20 57.50 2.5742
EC2.5 0.00 2.20 5.00 14.10 21.70 23.90 32.10 34.90 37.20 2.7583
EC2.6 5.80 8.40 11.20 20.90 31.10 40.80 50.80 53.60 56.30 2.7670
EC2.7 0.60 2.60 5.40 8.60 10.80 31.30 34.60 37.50 39.50 2.7262
EC2.8 2.90 11.90 14.30 17.10 25.90 42.20 44.80 47.20 56.40 2.8065
EC2.9 1.50 3.50 11.70 14.50 22.40 25.30 27.80 36.20 38.20 2.8033
EC2.10 1.90 11.80 21.00 23.70 31.10 33.80 36.20 45.50 55.40 2.8618
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Figure 8. Optimum values 𝑋𝑋𝑞𝑞/𝑏𝑏 as a function of 𝑞𝑞  for EC2.1–EC2.10. (a) 𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎/𝑏𝑏 = 40 and (b) 
𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎/𝑏𝑏 = 60. 

For a better insight on the heave exciting forces, 𝐹𝐹𝑍𝑍
(𝑞𝑞), 𝑞𝑞 = 1, … , 9, and 𝐹𝐹𝑍𝑍𝑜𝑜𝑜𝑜𝑜𝑜  for the optimum 

solutions of cases EC2.1–EC2.10 are presented in Table 5. For each case, the values of 𝐹𝐹𝑍𝑍
(𝑞𝑞) written in 

bold are related to the cylinders that have been considered to form the relevant 𝐹𝐹𝑍𝑍𝑠𝑠𝑜𝑜𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜. Accordingly, 
they correspond to the largest values of the heave exciting forces among all cylinders, within the 
array. These values are also plotted in Figure 9a. By comparing the pair of cases, where the same 
objective function was considered (e.g., cases EC2.1 and EC2.2, cases EC2.3 and EC2.4, etc.), it is 
evident that the change of 𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎/𝑏𝑏 has a minor effect on the largest 𝐹𝐹𝑍𝑍

(𝑞𝑞), 𝑞𝑞 = 1, … , 9, values (an 
increase or decrease of up to 2%), except for cases EC2.7 and EC2.8, where the increase of 𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎/𝑏𝑏 
leads to a 7% increase of 𝐹𝐹𝑍𝑍

(3). With regards to 𝐹𝐹𝑍𝑍𝑜𝑜𝑜𝑜𝑜𝑜  (Table 5 and Figure 9b), as resulted from the 
optimum layout configurations of cases EC2.1–EC2.10, the largest total heave exciting force for 
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array is performed. On the other hand, for 𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎/𝑏𝑏=60 the case of EC2.8 (maximization of 𝐹𝐹𝑍𝑍𝑠𝑠𝑜𝑜𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜 
applied on CYL3 and CYL7 of the array) leads to the largest value of 𝐹𝐹𝑍𝑍𝑜𝑜𝑜𝑜𝑜𝑜 . Nevertheless, the 
aforementioned 𝐹𝐹𝑍𝑍𝑜𝑜𝑜𝑜𝑜𝑜  values are smaller, compared to those obtained for the relevant cases EC1.3 and 
EC1.4 (Table 3, Figure 4b). 
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Figure 7. Optimum layout configurations of the array with Q = 9 cylinders for EC2.1–EC2.10.

Figure 8 shows the variation of the optimum values of Xq/b, q = 1, . . . , 9, for larray/b = 40
(Figure 8a) and larray/b = 60 (Figure 8b), as a function of q. By comparing the same symbols of the
two subfigures, it can be concluded that for the middle cylinder CYL5 or for a given pair of qth and
jth cylinders, the consideration of a larger larray/b for maximizing the corresponding Fsubtot

Z , leads to a
more linear relationship between Xq/b and q.
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Figure 8. Optimum values Xq/b as a function of q for EC2.1–EC2.10. (a) larray/b = 40 and
(b) larray/b = 60.

For a better insight on the heave exciting forces, F(q)
Z , q = 1, . . . , 9, and Ftot

Z for the optimum

solutions of cases EC2.1–EC2.10 are presented in Table 5. For each case, the values of F(q)
Z written in

bold are related to the cylinders that have been considered to form the relevant Fsubtot
Z . Accordingly,

they correspond to the largest values of the heave exciting forces among all cylinders, within the array.
These values are also plotted in Figure 9a. By comparing the pair of cases, where the same objective
function was considered (e.g., cases EC2.1 and EC2.2, cases EC2.3 and EC2.4, etc.), it is evident that the

change of larray/b has a minor effect on the largest F(q)
Z , q = 1, . . . , 9, values (an increase or decrease of

up to 2%), except for cases EC2.7 and EC2.8, where the increase of larray/b leads to a 7% increase of

F(3)
Z . With regards to Ftot

Z (Table 5 and Figure 9b), as resulted from the optimum layout configurations
of cases EC2.1–EC2.10, the largest total heave exciting force for larray/b = 40 is observed for EC2.5,
where maximization of Fsubtot

Z applied on CYL2 and CYL8 of the array is performed. On the other hand,
for larray/b = 60 the case of EC2.8 (maximization of Fsubtot

Z applied on CYL3 and CYL7 of the array)
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leads to the largest value of Ftot
Z . Nevertheless, the aforementioned Ftot

Z values are smaller, compared
to those obtained for the relevant cases EC1.3 and EC1.4 (Table 3, Figure 4b).

Table 5. F(q)Z and Ftot
Z for the optimum solutions of EC2.1–EC2.10 (values given are non-dimensional in

terms of ρgb2A).

Case F(1)
Z F(2)

Z F(3)
Z F(4)

Z F(5)
Z F(6)

Z F(7)
Z F(8)

Z F(9)
Z Ftot

Z

EC2.1 0.8226 0.9252 0.6471 1.0907 1.5854 0.9715 0.8162 0.9043 0.8791 8.6421
EC2.2 0.8574 0.9521 0.8326 1.0353 1.6066 1.0241 0.9176 0.8459 0.8345 8.9062
EC2.3 1.2923 0.9728 0.9957 0.7696 0.8527 0.9442 0.7182 1.2133 1.2998 9.0586
EC2.4 1.2844 0.9606 0.7900 0.7714 0.8406 0.9169 0.7725 0.9369 1.2897 8.5631
EC2.5 1.1283 1.3630 0.9451 0.8343 0.9146 1.0193 0.9563 1.3954 1.1155 9.6716
EC2.6 1.0812 1.3888 0.9813 0.8426 0.8016 0.8232 0.9905 1.3782 1.0650 9.3523
EC2.7 0.8450 0.9402 1.3724 1.0471 0.7847 0.9590 1.3538 0.9844 0.8380 9.1245
EC2.8 1.0085 1.0164 1.4672 0.9892 0.9476 1.0915 1.3393 0.9905 0.9495 9.7998
EC2.9 0.9191 0.9416 0.9061 1.2613 1.0189 1.5420 0.9170 1.0359 0.8775 9.4195

EC2.10 0.9050 0.9024 0.9690 1.2821 0.9843 1.5796 1.0082 0.9658 0.9381 9.5347
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Figure 9. Optimization cases EC2.1–EC2.10. (a) Largest values of F(q)Z , q = 1, . . . , 9 , for each case;
and (b) Ftot

Z as resulted from each optimum layout configuration.

Finally, Figure 10 shows the values of F(q)
Z , q = 1, . . . , 9, applied on each cylinder of the array

for each of the optimum layout configuration of cases EC2.1–EC2.10. For a qth cylinder, the largest

F(q)
Z value occurs when Fsubtot

Z is maximized for the pair of cylinders that includes the specific qth

body. For the outer cylinders of the array (q = 1 and 9), the second largest value occurs for EC2.5
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and EC2.6, where Fsubtot
Z is maximized for the pair of the two adjacent cylinders (i.e., q = 2 and 8).

Same conclusions can be derived for CYL2 and CYL8, where the second largest value occurs for EC2.3
and EC2.4 (maximization of Fsubtot

Z for the pair of the two outer cylinders, i.e., q = 1 and 9). For the rest
of the cylinders, a clear trend can not be observed. However, it is evident that the consideration of
different pairs of cylinders for maximizing the corresponding Fsubtot

Z has a direct impact on the values

of F(q)
Z for each qth cylinder of the array.
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Figure 10. F(q)Z , q = 1, . . . , 9, for the optimum layout configurations of EC2.1–EC2.10. (a) larray/b = 40
and (b) larray/b = 60.

6. Conclusions

In this paper, we developed and applied an ONP for determining the optimum layout configuration
of a linear array of identical mutually interacting truncated cylinders. The optimum configurations
maximize either the total heave exciting force, Ftot

Z , acting on all cylinders of the array or the heave
exciting force, Fsubtot

Z , acting on appropriately selected pairs of cylinders within the array. ONP consists
of two coupled distinctive numerical components capable of solving the diffraction problem of the
examined multi-body arrangement in the frequency domain and the examined optimization problem,
by utilizing GAs. The efficiency and the accuracy of the proposed ONP was demonstrated by the very
good agreement of results with those of Kagemoto [11]. The developed ONP was applied for the case
of a linear array consisting of nine identical truncated cylinders. In total, 18 optimization cases were
considered and solved under the action of either head or perpendicular to the array waves, and for
different maximum allowable lengths of the array.

The results illustrated that irrespectively of the objective function definition, the examined length
of the array and the incident wave direction, optimum solutions corresponded to a quite random
positioning of the cylinders within the array with unequal center-to-center distances between adjacent
bodies. However, a common feature observed for all optimum layout configurations was the formation
of clusters (sub-groups) of closely-positioned adjacent cylinders. Under the action of head waves,
the clusters were distributed along the whole available length of the array, while for perpendicular to
the array waves, a smaller number of clusters was realized, which tended to be situated close to the
ends of the examined length of the array.

For the optimization cases, where the maximization of Ftot
Z was sought, the maximum values of Ftot

Z
under head waves (β = 0o) were significantly smaller, compared to those obtained for perpendicular
to the array waves. Moreover, for β = 0o, the increase of the array’s length resulted in a smooth
increase of the total heave exciting force maxima, while, for all examined lengths of the array, a linear
correlation was observed between the cylinders’ number and their optimum locations within the array.
Regarding the optimization cases, where maximization of Fsubtot

Z was sought, the consideration of the
pair of cylinders situated on the two sides of the middle cylinder in the objective function led to the
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largest maximum value of Fsubtot
Z . The optimum layout configurations of the aforementioned cases also

resulted in Ftot
Z values that were smaller, compared to those obtained by the direct maximization of the

total heave exciting force. Finally, the consideration of different pairs of cylinders for maximizing the

corresponding Fsubtot
Z had a direct impact on the values of F(q)

Z for each qth cylinder of the array.
In practical applications, the proposed ONP could be employed by exploiting the features of

the spectral analysis and by utilizing in the objective function of the examined optimization problem
suitable statistical parameters that describe the exciting forces’ spectra. Furthermore, the present
ONP could be further extended to deal with arrays of heaving cylinders by appropriately introducing
and coupling one more numerical component, enabling the solution of the hydrodynamic radiation
problem of the multi-cylinders arrangement. In this context, optimum layout configurations of arrays
of heaving wave energy converters that lead to absorbed power maximization could be determined.
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