
https://ietresearch.onlinelibrary.wiley.com/action/showCampaignLink?uri=uri%3A6c5d4c5b-a64c-4fda-b29d-0b8c7ba1aba6&url=https%3A%2F%2Fietresearch.onlinelibrary.wiley.com%2Fhub%2Fjournal%2F17521424%2Fhomepage%2Fcfp%3Futm_medium%3Ddisplay%26utm_source%3Ddartads%26utm_content%3DIET_ePDF_call_for_papers_feb23%26utm_term%3DRPG2&pubDoi=10.1049/rpg2.12331&viewOrigin=offlinePdf


Received: 14 August 2021 Revised: 20 September 2021 Accepted: 12 October 2021 IET Renewable Power Generation

DOI: 10.1049/rpg2.12331

ORIGINAL RESEARCH

Effective demand response and GANs for optimal constraint unit

commitment in solar-tidal based microgrids

Mohammadamin Mobtahej1 Khodakhast Esapour2 Seyede Zahra Tajalli2

Mojtaba Mohammadi2

1 School of Electrical Engineering, Kazeroon
Islamic Azad University, Fars, Iran

2 Department of Electrical Engineering, Isfahan
(Khorasgan) Branch, Islamic Azad University,
Isfahan, Iran

Correspondence

Mohammadamin Mobtahej, School of Electrical
Engineering, Kazeroon Islamic Azad University, Fars,
Iran.
Email: Aminmobtahej@gmail.com

Abstract

A new approach for optimal demand response program (DRP) in the microgrid consid-
ering the high penetration of the solar energy and tidal units as significant and popular
renewable sources in the system is proposed here. The proposed method makes use of
a multi-objective problem (MOP) to not only minimize the total operation cost of the
scheduling problem but also mitigate the high risk of the interruption in power delivery
due to the components failure rate and long repairing rates. Considering the high complex-
ity and nonlinearity of the formulation, a novel heuristic method based on the firefly algo-
rithm is introduced to solve the problem without any assumption or killing the accuracy. In
addition, a dynamic three-phase correction (DPC) formulation is proposed which can help
to increase the global search characteristics of the method when boosting the convergence
capability of the model. Due to the hard predictability nature of the solar irradiance, a deep
learning model based on generative adversarial networks (GAN) is presented to predict the
output power of the solar and tidal units properly. The high performance and feasibility of
the proposed multi-layer problem are assessed on an IEEE test system.

1 INTRODUCTION

Civilization and modernization have increased the number and
population of cities in the new century. It is estimated that over
50% of the world population would live in the cities by 2050.
This would increase the demand in all aspects including the elec-
trical and thermal loads severely. In this situation, the power sys-
tem as a big legacy system would survive in its current form due
to the necessity of continuous power delivery and high capital
cost for the renewal [1–3]. This situation shows that all parts
of the power system including the smart grids, microgrids, dis-
tribution systems, transmission systems, and generations would
experience load growth at a rapid rate [4]. In this situation, opti-
mal scheduling and unit commitment of the grid is a critical task
that must be taken into consideration. Many researchers have
focused on this topic recently. In [1] a secured optimal schedul-
ing framework for optimal operation of hybrid microgrids in
both islanded and grid-connected modes is proposed. In [4],
the operation of the microgrid is formulated as a single objec-
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tive problem that is solved using heuristic optimization algo-
rithms. Another issue regarding the operation of microgrids is
heavy peak loads. In order to overcome the severe peak loads
safely and without load shedding, the demand response pro-
gram (DRP) will play a critical and vital role [5, 6]. By defini-
tion, DRP is the mitigation in the electrical load demand for
reducing the peak demand or avoiding the system to enter the
emergency status from the normal status [7]. Therefore, it might
be assumed as a technical and economic tool for reducing the
power losses and costs and avoiding the investment costs in
the long term. Such a cost-effective tool adds to the generation
capacity and can handle the demand spikes [8].

In recent years, many pieces of research have been imple-
mented to check different aspects of the DRP. In [9], DRP is
used in a probabilistic fuzzy method for benefiting both the
electrical customers and the main grid. The model performance
is demonstrated on a remotely islanded solar-diesel-battery grid.
In [10], DRP is joint with battery storage in a combined heat and
power system which could mitigate the operation cost by 6.5%
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and 11.7%, respectively. Moreover, it is shown that the com-
bined model could minimize the energy losses and costs, simul-
taneously. In contrast to the conventional DRP which makes a
load reduction, it is shown in [11] that an effective DRP should
also play a boosting role by adding the load demand at off-peak
load hours. In fact, positive demand response can reduce the
generator ramping needs and thus mitigate the overall prices
during peak hours. A new two-layer problem formulation is
devised in [12] which assesses the effect of the incentive tools in
the DRP on the operating costs. The simulation results on the
IEEE 33-bus system reveals about a 19% reduction in the cost
and a 45% reduction in the total emission. In [13], the effect
of DRP is investigated in two forms of shiftable loads and cur-
tailable loads in the microgrids. It is shown that DRP can make
a positive effect on the bus voltage profile as an indirect effect
and thus reduce the power losses and costs. It is seen that DRP
can be a big asset to electric vehicles by releasing the occupied
capacity of the feeders in the microgrid. These researches advo-
cate the positive role of the DRP in the power system, ranging
from the low voltage of distribution grids to the high voltage of
the transmission systems.

The recent progress in renewable energy resources could
facilitate the way for the high penetration of renewable energy
sources as a flexibility tool to the power grids. With a sharp
focus on the high polluting fossil fuel-based units, the renew-
able energy concept has attained attractive progress in reduc-
ing the losses, mitigating the costs, enhancing the reliability and
power quality, decreasing air pollutions, and improving the volt-
age profile [14–17]. Unfortunately, the high amount of uncer-
tainty injected by the renewable energy sources affects not only
the DRP but also the operation and management policies in
the power system. Therefore, this paper investigates the optimal
DRP in the optimal scheduling of the units in the presence of
high penetration of solar units and tidal turbines in a microgrid.
In this regard, a multi-objective problem (MOP) is designed
wherein the first layer is in charge of optimizing the operation
costs. In the other layers, the length and frequency of interrup-
tions are estimated in the worst case and it is tried to enhance
this worst-case scenario using the optimal scheduling and DRP.
Since heuristic algorithms are currently among the best solu-
tions for non-linear optimization problems [15], in this paper
a novel approach is proposed to solve the MOP in this work.
Owing to the model complexity, a new corrected firefly algo-
rithm [18] (CFA) is introduced to search for the optimal global
solution in the constrained and feasible space of the problem.
A novel dynamic three-phase correction (DPC) model is sug-
gested for adding to the fireflies diversity in the population and
increasing the searchability and convergence rate. In order to
reduce the uncertainty effects, a deep learning model using the
generative adversarial network (GAN) [19] is proposed to pre-
dict tidal and solar power accurately. Generally, in comparison
to existing works, this work proposes several novel methods for
microgrid operation. In this work, a deep learning-based frame-
work for unit commitment and optimal scheduling of micro-
grids in presence of demand response technology and renew-
able sources (i.e. photovoltaic (PV) and tidal units) is proposed.
Also, a novel optimization technique based on the Firefly algo-

rithm is developed to solve the operation problem of the system
and minimize the system’s cost objective function. Additionally,
in this work the powerful deep learning model GAN is utilized
for PV and tidal forecasting. Therefore, the key contributions of
the work are as follows:

∙ Introducing a new MOP model for the DRP and optimal
scheduling of the microgrids in the presence of solar and tidal
units.

∙ Proposing an effective CFA for the optimal solving of the
problem without any assumption or simplification.

∙ Developing a deep GAN-based approach for predicting the
output power of solar and tidal units, precisely.

The performance and quality of the proposed MOP model
are assessed on an IEEE standard case study.

The rest of this paper is organized as: Section 2 explains the
proposed MOP including the objectives and constraints. Sec-
tion 3 describes the managing framework based on CFA and
GAN. The results and discussions are provided in Section 4.
Finally, Section 5 shows the conclusions and outcomes of the
research.

2 PROBLEM FORMULATION

In this part, the proposed MOP is described according
to the objective function and constraints. In the proposed
model, the initial layer optimizes the cost of the optimal
scheduling neglecting the component failure effects. In the
second layer, the reliability indices of (AENS) and system
average interruption duration index (SAIDI) are mitigated
according to the uncertainty of failure rate and repair rate
time.

2.1 Objective functions

The total operation cost consists of the cost of power produced
by the units to support the microgrid load demand, cost of
power losses, and cost of switching as follows:

Cost =
∑

t

∑
i

Fi (Pit ) +
∑

t

ΦM
t PM

t

+
∑

t

∑
mn∈L

(
𝜒1

mnt + 𝜒2
mnt

)
𝜆RCS (1)

In (1), the first term refers to the cost of DGs, start-up and
shut-down cost; the second term refers to the cost of power
purchasing from the utility (when the microgrid is in connected
mode) and the last term refers to the cost of switching. Switch-
ing is a useful and strategic tool for the operator to change
the microgrid topology and power flow in accordance with the
objective function and preferences. Such a strategy can reduce
the losses, enhance the reliability indices and mitigate the cost
and capital costs.
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MOBTAHEJ ET AL. 3487

The second objective function is the AENS which calculates
the average energy which is estimated to not be supplied by the
microgrid and can affect the reliability of the system and the
sustainability of the electrical power supply.

AENS =

∑
n∈B

LcnΓn∑
n∈B

NC
n

(2)

The third objective function is SAIDI which estimates the
average time which the system may experience after a fault
occurs in the system. This is a popular index for showing the
electrical services to the customers and is calculated yearly.

SAIDI =

∑
n∈B

ΓnNC
n∑

n∈B
NC

n

(3)

2.2 Limitation and constraints

The above objectives would be optimized when meeting the
equality and inequality constraints:

∙ Power unit limits

In (4), the dispatchable units are restricted to produce in their
capacity range. The minimum up and down rate for power gen-
eration increase or decrease is shown in (5) and (6). The mini-
mum up and downtime are shown in (7) and (8).

Pmin
i vit ≤ Pit ≤ Pmax

i vit ∀i ∈ G , ∀t (4)

Pit − Pi (t−1) ≤ ℜu
i ∀i ∈ G , ∀t (5)

Pi (t−1) − Pit ≤ ℜD
i ∀i ∈ G , ∀t (6)

T on
it ≥ U Ti (vit − vi (t−1) ) ∀i ∈ G , ∀t (7)

T
o f f

it ≥ DTi (vi (t−1) − vit ) ∀i ∈ G , ∀t (8)

∙ Battery storage unit

The maximum charging/discharging rate of the units is pre-
sented in (9) and (10). The binary variables u and v show
the charging/discharging status of the battery. The amount of
energy stored in the battery is calculated according to the effi-
ciency (12). It is clear that a battery has a limited capacity for
energy storage (13). In order to avoid fast aging of the battery, a
minimum charging/discharging time is considered for the bat-
tery (14) and (15).

Pst ≤ P
dch,max

st vst − P
ch,min

st ust ∀s ∈ S , ∀t (9)

Pst ≥ P
dch,min

st vst − P
ch,max

st ust ∀s ∈ S , ∀t (10)

ust + vst ≤ 1∀s ∈ S , ∀t (11)

Bst = Bs(t−1) −
Pst ust 𝜏

𝜂s
−Pst vst 𝜏 ∀s ∈ S , ∀t (12)

Bmin
s ≤ Bst ≤ Bmax

s ∀s ∈ S , ∀t (13)

T ch
st ≥ MCs (ust − us(t−1) ) ∀s ∈ S , ∀t (14)

T dch
st ≥ MDs (vst − vs(t−1) ) ∀s ∈ S , ∀t (15)

∙ DRP limits

In order to attend the DRP, Equations (16) to (18) are
deployed to show the limited power demand of the load (16),
the total energy required in a specific time range (17), and the
minimum up time for the dispatchable loads (18).

PDmin
dt

𝜁dt ≤ PDdt ≤ PDmax
dt

𝜁dt ∀d ∈ D, ∀t (16)

∑
t∈[∈,𝜈]

PDdt = Ed ∀d ∈ D (17)

T on
dt

≥ MUd (𝜁dt − 𝜁d (t−1) ) ∀d ∈ D, ∀t (18)

∙ Microgrid structure modelling

In order to meet the generation and consumption balance,
(19) and (20) are used in this paper. It is clear that the nor-
mal active and reactive power flow equations are considered in
this part. The microgrid is technically able to exchange a lim-
ited amount of power with the utility (21). In order to show the
switching process, an auxiliary variable 𝛽mnt is used to show the
On or Off status of the line. Therefore, the maximum and min-
imum power flow rate in a feeder is restricted by (22) to (25).
In (26), the maximum voltage deviation from the rate value is
restricted.

∑
i∈Bm

Pit +
∑

n

PLmnt+PM
t =

∑
d

PDdt ∀t , ∀m (19)
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3488 MOBTAHEJ ET AL.

∑
i∈Bm

Qit +
∑

n

QLmnt+QM
t =

∑
d

QDdt ∀t , ∀m (20)

−uM PM ,min
≤ PM

t ≤ uM PM ,min ∀t (21)

−M (1 − 𝛽mnt ) ≤ PLmnt −Vmt VntYmn cos
(
𝜃mn + 𝛿mt − 𝛿nt

)
≤ M (1 − 𝛽mnt ) ∀mn ∈ L, ∀t (22)

−PLmax
mn 𝛽mnt ≤ PLmnt ≤ PLmax

mn 𝛽mnt ∀mn ∈ L, ∀t (23)

−M (1 − 𝛽mnt ) ≤ QLmnt −Vmt VntYmn sin
(
𝜃mn + 𝛿mt − 𝛿nt

)
≤ M (1 − 𝛽mnt ) ∀mn ∈ L, ∀t

(24)

−QLmax
mn 𝛽mnt ≤ QLmnt ≤ QLmax

mn 𝛽mnt ∀mn ∈ L, ∀t (25)

V min
m ≤ Vmt ≤ V max

m ∀m ∈ B (26)

∙ Switching constraints

In order to avoid fast degradation of the switches, we
need to avoid a high number of operations in the microgrid.
Therefore, (27) to (29) would limit the maximum number of
switching in the microgrid. Moreover, the microgrid structure
and its radiality should be preserved after each switching as
in (30).

𝜒1
mnt ≥ 𝛽mnt − 𝛽

mn(t−1) ∀mn ∈ L, ∀t (27)

𝜒2
mnt ≥ 𝛽

mn(t−1) − 𝛽mnt ∀mn ∈ L, ∀t (28)

∑
t

(
𝜒1

mnt + 𝜒2
mnt

)
≤ N max

switching
∀mn ∈ L (29)

∑
mn∈Q

𝛽mnt ≤ 𝜔L − 1 ∀q, ∀t (30)

3 PROPOSED INTELLIGENT MODEL

In this section, the proposed deep learning-based framework
using GAN and CFA is explained. In the first part, CFA is
described as the optimizer along with a dynamic three-phase
correction (DPC) method. In the next part, the GAN model
is described as the prediction solution for the solar and tidal
units.

3.1 Corrected firefly algorithm

The firefly algorithm is a heuristic method that uses the liv-
ing habits of fireflies in tropical countries to attract neighbour-
ing insects. This algorithm can solve nonlinear and non-convex
constrained optimization methods without any simplification or
assumption in the problem formulation. A firefly in this algo-
rithm represents a promising solution in the feasible problem
space which can be either an optimal or non-optimal solution.
The improvisation stage in the firefly algorithm is in charge of
growing the population to a level that all solutions are near the
optimal solution. Fundamentally, this algorithm works based on
the firefly brightness as a representative of its attractiveness. In
the beginning, a set of fireflies (solutions) are generated in the
problem space. After calculating the objective function value for
the fireflies Xi and sorting them, the best solution Xg is stored. It
is now the time to enhance the firefly population based on their
brightness. Therefore, the first stage is to compute the bright-
ness of a firefly as below:

I (r ) =
Is

r2
(31)

As it can be seen from (31), the brightness of a firefly is
reduced as the distance r increases. Considering the absorp-
tion coefficient for the light, the light value can be measured
as below:

I = I0e−𝛾r (32)

One might reformulate the light value of a firefly using the
Gaussian concept:

I (r ) =
I0

1 + 𝛾r2
(33)

Therefore, we will show the firefly brightness according to
the light value as below:

Δ(r ) = Δ0 × e−𝛾r2
(34)

The first question is to compute the distance between any
two fireflies in the Cartesian frame as below:

ri j =
|||Xi − Xj

||| =
√

(xi,1 − x j ,2)2 + (x j ,1 − x j ,2)2 (35)

It is time to update the position of all fireflies using the above
brightness. Therefore, a firefly with high attractiveness would
attract the other firefly with less attractiveness as below:

Xi = Xi + Δ0 × e−𝛾r2
(Xj − Xi ) + 𝛼(rand − 0.5) (36)

This article suggests a correction method for the firefly algo-
rithm to amend the improvisation stage using the local search
mechanisms. To this end, a new method using the Levy action
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MOBTAHEJ ET AL. 3489

FIGURE 1 The proposed CFA flowchart

is deployed to reinforce the slow movements around the opti-
mal solution as below:

Le′vy(𝜌) ∼ 𝜏 = l −𝜌; (1 < 𝜌 ≤ 3) (37)

where 𝜌 is a random constant. By the above equation, a new
promising optimal solution is generated as follows:

X l
i
= X l−1

i
+ 𝜑1 ⊕ Le′vy(𝜌) (38)

As it can be seen from (38), a local searching is implemented
in the near neighbouring of each firefly to upgrade its position.
This is so important since the original firefly algorithm does not
have any local search tool.

In a second try, we enhance the convergence rate of the algo-
rithm by shifting the mean of the fireflies’ positions toward the
best fitting solution Xg as below:

X l
i = X l−1

i × l −0.01l × (Xg − MD ) (39)

Figure 1 shows the flowchart of the proposed CFA.

3.2 Deep generative adversarial network

In order to predict the output power of the solar panel and tidal
units, there is an urgent need for a precise and accurate method.
We propose the GAN model due to the competing networks
which it uses in the game to produce the most fitting values for
the parameters. A GAN model belongs to the class of machine
learning methods which includes a generative model (GM) and
a discriminative model (DM) to learn new data with varied sta-
tistical features. This is called zero-sum gaming with the GM
trying to fool the DM through some fake data based on the
Gaussian noise signal. Therefore, one can see that each player
tries to amend its behaviour (which is the network’s parameters
values) intelligently based on the reaction of the other player.
Figure 2 shows the structure of a GAN model.

The DM would compare the generated data with the real data
and returns a probability between 0 and 1 to show the fake level
of the data. Such a bidirectional interaction would continue until
the returning probability becomes zero. In order to formulate
the GAN, initially, a random signal G(N) is generated with the
probability PG (N ). After signal generation, the DM receives two
inputs PG (N ) and PR (x ), and tries to match PG (N ) on each
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3490 MOBTAHEJ ET AL.

FIGURE 2 GAN model concept and structure

FIGURE 3 Single-line diagram of the test microgrid

TABLE 2 Battery storage system data

Capacity

Min-max charging/

discharging power

Min charging/

discharging time

Storage (kWh) (kW) (h)

ESS 1500 40–200 3

the real data. The DM would determine whether the signal is
real or fake and this decision would affect both networks train-
ing. The difference between the PR (x ) and PG (N ) is considered
as the error signal. Through a recursive process, and in each iter-
ation, the error signal of the DM is returned to the GM. When
the GM receives the error signal, it would attempt to produce
data with as much similar distribution as to the real data. On the
other hand, the DM adds up to its sensitivity and peruses ways
to check and recognize fake data more accurately. This would
result in a min-max equation wherein the feeding signal x and
the DM parameters 𝜃(D) are trained as below:

V
(
D, 𝜃(D)) = −Ex∼PR (x )

[
log D (x )]

−EN∼Pg (N )
[
log (1 − D (G (N )))

]
(40)

In a similar interpretation, the GM with the parameter set
𝜃(G ) would be trained as below:

V
(
G , 𝜃(G )) = EN∼Pg (N )

[
log (1 − D (G (N )))

]
(41)

Therefore, both GM and DM try to train with respect to the
reaction of the competitor. It means that the GM tries to opti-
mize the V (G )(𝜃(G ), 𝜃(D) ) by adjusting the values in 𝜃(G ) and
assuming constant values in 𝜃(D). The same story exists for the
DM V (D)(D(G ), 𝜃(D) ) which tries to adjust the 𝜃(D) for con-
stant 𝜃(G ). The final formulation is a combinatorial equation as
below:

min
G

max
D

V (D,G ) = Ex∼PR (x )
[
log D (x )]

+EN∼Pg (N )
[
log (1 − D (G (N )))

]
(42)

TABLE 1 Microgrid structure including the generators, loads, and storages

Cost coefficient Capacity limits Least up/down hours Ramp up/down rate

Unit ($/kWh) (kW) (h) (kW/h)

DG1 0.153 1000–3000 2 1400

DG2 0.143 1000–2000 2 1400

DG3 0.204 700–2500 3 1200

DG4 0.191 700–2500 2 1000

WT – 0–1700 – –

PV – 0–2200 – –
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MOBTAHEJ ET AL. 3491

TABLE 3 Loads attending the DRP in microgrid

Capacity limits Total obligatory energy Available times Least uptime

Bus (kW) (kWh) (h) (h)

3 0–90 360 10–13 1

13 0–80 320 16–20 1

18 20–80 240 12–15 1

24 10–50 300 1–24 24

31 20–60 300 13–24 12

FIGURE 4 Total Load Demand of the microgrid

4 EXPERIMENTAL RESULTS

In this section, the proposed model is applied and analysed
on the IEEE 33-bus test system [19, 20]. In the test micro-
grid, there is 1 solar panel, 1 tidal turbine, 1 battery, and 4
dispatchable units. For the DRP, there are five buses with
adjustable loads suitable for DRP and 27 buses with static loads.
The microgrid is connected to the main grid through a circuit
breaker and thus it is able to move into the islanding mode when
there is no need to power exchange or in emergency cases. Fig-
ure 3 shows the one-diagram shape of the system. Tables 1 to 3
show the system characteristics for power units, generators, and
loads [21].

In order to attend the DRP, there are five bus candidates
which attend the demand response for peak load shaving and
reducing the microgrid costs. Table 3 shows the location, capac-
ity, and energy specifications of these loads. Moreover, Figures 4
and 5 show the forecast values of the load demand and the mar-
ket bidding price over 24 h.

In the first phase, we need to predict the output power of the
tidal unit and the solar panel using the GAN model. To this end,
the historical data of the two solar and tidal sites are used over
1 year and the target history is the next 24 h. In order to check
the model accuracy and performance quality, some indices are
used in this paper as follows:

- Relative percentage error:

FIGURE 5 Hourly forecast energy price

𝜎k% =

|||Y k −Yk
|||

Yk
× 100, k = 1, 2, … ,Nts (43)

- Mean absolute percentage error (MAPE):

MAPE% =
1

Nts

Nts∑
k=1

𝜎k (44)

- Root mean square error (RMSE):

RMSE =

√√√√ 1
Nts

Nts∑
k=1

𝜎2
k

(45)

- Maximum absolute relative percentage error (MARPE):

MARPE = max

⎛⎜⎜⎝100 ×

|||Y k −Yk
|||

Yk

⎞⎟⎟⎠ , i = 1, 2, … ,Nts (46)

Tables 4 and 5 provide the prediction results for the photo-
voltaic unit and the tidal unit over 24 h using the GAN model,
respectively. For a better comparison, the results are compared
to the autoregressive (AR), artificial neural network (ANN),
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TABLE 4 Photovoltaic system output power prediction using GAN for
24 h

Method MAPE (%) MARPE RMSE

AR 2.1673 4.9568 2.7331

ANN 1.8223 4.0386 2.2850

SVR 1.3308 3.1173 2.1673

Proposed method 0.5167 0.7337 0.6272

TABLE 5 Tidal system output power prediction using GAN for 24 h

Method MAPE (%) MARPE RMSE

AR 1.9360 3.3963 2.6835

ANN 1.6204 3.1647 2.4270

SVR 1.2361 2.0633 2.2887

Proposed method 0.4165 0.6227 0.5831

and support vector regression (SVR). As it can be seen from
the results, the GAN model shows superior results and higher
accuracy over the AR, ANN, and SVR methods. In addition,
it is seen that the RMSE is low enough in both cases which
shows the high robustness of the prediction method. By com-
paring Tables 4 and 5, one can conclude that the tidal unit out-
put power is easier to predict rather than the photovoltaic out-
put power.

Figure 6 is used to compared the MAPE, MARPE and RMSE
results for the prediction of the PV and tidal system using the
proposed method. According to these results, the prediction
results for tidal unit are better than the PV unit which shows
the higher complexity of PV dataset for the prediction. Overall,
the proposed prediction model shows appropriate performance
for all cases.

So far, the GAN model accuracy is validated. In order to
check the microgrid power scheduling model, Figure 7 shows
the optimal output power of the unit in the grid-connected
mode. As it can be seen in the figure, the photovoltaic unit and
the tidal are shown as filled curves. The dispatchable units with

FIGURE 6 The comparison of the prediction results by the proposed
method for PV and tidal systems

lower prices are producing power at a higher amount rather than
the non-dispatchable units. This is due to the nature of renew-
able sources which are not allowed to produce higher than a
percentage due to the unstable and random characteristics. Fig-
ure 8 shows the power dispatch of the units in the islanded
mode. Comparing the curves with those in Figure 7, one can
say that the microgrid has to increase the internal power gen-
eration to compensate for the power generation shortage from
the upstream grid. This means higher operation cost but still, no
low shedding has happened.

To optimal values of the objective functions are depicted in
Figure 9. To have a fair comparison, the islanding mode opera-
tion and grid-connected mode are compared for all objectives.
According to the results, the system experiences a worse situ-
ation in the islanded mode which is the price that has to pay
for not letting load shedding happen in the system. Moreover,
the low values of AENS and SAIDI for both modes reveal the
appropriate capability of the microgrid for supporting the cus-
tomers with appropriate services. The low SAIDI value shows
that the customers experience low shutdown time in a year. The
higher cost of the microgrid in the islanding mode shows that
connection to the upstream grid is economical and can provide

FIGURE 7 Power dispatch of units over 24 h in
the grid-connected mode
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FIGURE 8 Power dispatch of units over 24 h in
the islanding mode

FIGURE 9 Comparison of the cost, AENS, and SAIDI values in the
islanding and grid-connected mode

FIGURE 10 Demand response program and the storage system status

more benefits for the microgrid owner by providing cheaper
electricity. Finally, the status of the candidate loads for DRP
as well as the battery charging/discharging mode are plotted in
Figure 10. It is seen from the figure that the electrical loads are
distributed at different hours depending on the flexibility and
the total energy needed over a day. Moreover, the storage unit
has actively attended the power dispatch plans to mitigate the
total cost and enhance the reliability indices.

5 CONCLUSIONS

This article develops a predictive-based optimal scheduling
framework for the renewable microgrids considering the DRP.
Different renewable energy resources of photovoltaic and tidal
units are modelled and predicted in the system. A novel intel-
ligent optimization method based on CFA and GAN is pro-
posed to solve the problem optimally. The simulation results
on the IEEE test system show that the proposed GAN model
overcomes the AR, ANN, and SVR for prediction of the PV
and tidal unit output power by providing lower MAPE and
RMSE values. From the optimization point of view, the pro-
posed optimizer could schedule the units in both islanding and
grid-connected modes. Moreover, it is able to schedule the bat-
tery storage over 24 h in collaboration with the DRP. Five differ-
ent loads which attended the DRP showed mitigating effects on
the total cost by distributing their total electrical energy demand
over some hours. From the reliability point of view, the pro-
posed framework could enhance the system reliability by reduc-
ing the AENS and SAIDI. Despite all of the novel methods and
simulations in this paper, several other assumptions and meth-
ods can be considered as future work. For instance, in future
works electric vehicles and energy storage devices can be con-
sidered or the results of the GAN can be compared with other
deep learning methods like long short-term memory and con-
volutional neural networks. Additionally, other reliability indices
like system average frequency interruption index are considered
for future work.
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NOMENCLATURE

min/max Least/max values
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B/ m,n Set of buses in the microgrid
ch/dch charge and discharge status

D/ d Set of DRP loads
G/ i Set of DGs

l Index for CFA iteration
L/mn Set of feeders
Q/ q Set of feeders in a loop
S/ s Set of batteries

SETS

T/t Set of hours

PARAMETERS/VARIABLES

Is source intensity
Γ Annual outage time of component
𝜁 Adjustable load state

𝜔L Number of loops in the microgrid
Δ Attractiveness of firefly
𝜑1 Random value in the range [0,1].
ΦM Cost of energy purchased from the main grid
𝛾 Absorbtion coefficient

𝜒1, 𝜒2 Switching indicators
ℜu/ ℜD Ramp down/up rate

B Battery energy
DT/UT Minimum down/up time

E Adjustable load total required energy
F(.) DG production cost

I Commitment state of dispatchable units
I0 original light intensity
Lc Average bus load

MC/MD/MU Minimum charging/discharging/operating
time

MD Mean of the population
NC Number of customers
NL Number of lines to form a loop

Nmax
switching Maximum switching actions for each switches.

P DG output power
PD/QD Active/Reactive load demand
PL/QL Active/Reactive line power flow

PM Main grid power
R Distance between two fireflies

Rand uniformly distributed generated number in
[0,1].

T Scheduling horizon
Tch/dch Number of successive charging/discharging

hours
Ton/off Number of successive ON/OFF hours

u/v Energy storage discharging/charging state
uM Islanding state of the microgrid

V/δ Bus voltage magnitude/phase
W Weighting factor of the sample point
Xg Best solution in CFA

Y/θ Magnitude/phase of line admittance
α randomization parameter
β Open/closed state of the switch

ϵ /ν Start time/end time of adjustable loads
η Energy storage efficiency

λRCS Hourly switching operation cost

τ Time period
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