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Introduction RESULTS

As wave energy converters (WECs)
technology is becoming more mature, a
new generation of units developed by
private industry has emerged and is
expected to become a common feature
of the blue economy. The majority of
these WECs is moored to the seafloor,
and the ability to produce energy both
efficiently and reliably is tied to the very
design of the mooring mechanism. This
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polyurethane belts that offer high

longitudinal stiffness, minimal
post-elongation, and high pitch accuracy,
which are crucial for synchronous drives.
A prominent application concern is the
unpredictable behavior and unknown life
predictions of polyurethane belts when
used for power transmission under
winching elements and harsh underwater
conditions [1]. The focus of the work
presented is to compose a structural

information on whether anchoring forces

Load cell-based belt tensile testing performed

;Ii on the MTS machine:

The test conducted was a tensile test
performed under controlled laboratory
conditions to evaluate the mechanical
behavior of the 3100 um Synchro-Power
flat [4] belt under uniform load increase
and to assess the sensitivity of two data
acquisition systems—PADLOC [2] and the
MTS machine—operating simultaneously.
The PADLOC is connected to the 500 [kN]
Interface load cell (model LPXX-50MT-
DB) mounted [2] at the bottom end and
connected to a computer to record load
measurements. The MTS machine
controls the extension rate, and it is
manually configured in the input section
of the program. The extension rate was
set to 0.000165 mm/s, and the test was
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conducted until a maximum load of
100 [kg-f] was reached. A slow rate
ensures that the viscoelastic composites
like polyurethane-steel belts have time to
respond to the applied load without
introducing dynamic or rate-dependent
effects like viscoelastic lag [6]. On the
other hand, high extension rates may
experience inertia, causing noise,
overshoot, and inaccurate load readings
that could mask true material responses.
Especially when monitoring with two
systems (like MTS and PADLOC), a slower
rate ensures both systems can sample at
appropriate resolution and synchronize

readings with minimal lag.
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Conclusions

Both the MTS and Interface (Y-axis) load cells follow a similar trend,

elongation
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confirming consistency in the tensile testing setup. This test shows
that the belt exhibits a smooth load increase over time. Furthermore,
the maximum extension recorded in the test dataset was 0.07 [mm],
indicating
observations reinforce the conclusion that the belt behaves as a
composite with limited range of elasticity capable of distributing
tensile load without abrupt deformation or failure. However, for
accurate load assessment in practical systems, sensor placement
must be considered, and calibration models, such as the exponential
decay correction [7], should be applied to reconcile differences
between sensor readings. The sensitivity of the data acquisition
method relies on the position of the sensor, as it was observed that
there was a mismatch of 56.2% of load readings from both load
measurement sensors. Exponential decay model reconciles sensor

load.
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"_I'ensile belt test under wave loading
in a controlled environment:

This experimental setup is designed to evaluate the mechanical response
of the Synchro-power flat belt under simulated wave loading in a
controlled lab environment. The system features a vertically mounted
water tank housing the belt setup that is clamped between a submerged
buoy and a fixed base plate. The buoy, introduces an upward buoyant
force that mimics dynamic wave interactions. The belt can be positioned
at varying orientations—0°, 45°, and 90°—to evaluate how different
angles affect its performance under simulated wave conditions. The dual-
axis 500 [kN] interface load cell is integrated in-line with the belt to
precisely measure both vertical and lateral load components during
testing. The load cell is interfaced with PADLOC data acquisition outside
the tank, allowing real-time monitoring of tension fluctuations as
hydrodynamic forces act on the system. This configuration enables
repeatable testing of tensile belt performance under controlled, wave-like
conditions, making it highly suitable for offshore mooring or subsea
tether system analysis.
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Belt tensile test at 0 degrees setup under wave load
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