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Abstract: The wave energy converter (WEC) system, which extracts electricity through the relative
heave motion of two concentric cylinders, comprises an inner cylinder and a torus-type outer cylinder
sliding along the inner cylinder. To maximize the relative heave motion between two cylinders,
the natural frequencies of the two cylinders must be precisely tuned to resonate and be situated
on each side of the peak frequency of the wave spectrum. However, the demerit of this strategy is
that it demands a deep draft of each cylinder for tuning, and a large-scale PTO damping device is
necessary for mechanical power amplified by resonance. As an alternative to efficient and stable
WECs, we adopt a new strategy in which the outer cylinder follows the incoming waves and the
motion of the inner one is restricted to be minimal using a heave disk. The viscous damping due
to formation of vortices at the disk edge is realized by the drag force in the Morison equation. The
developed hydrodynamic model of two-body WEC based on a matched eigenfunction expansion
method (MEEM) is applied to irregular waves characterized by significant wave height and peak
period. It is found that the present two-body WEC with heave disk produces wave energy stably
across a wide range of wave frequencies compared to the previous two-body WECs using resonance.

Keywords: two-body WEC; relative heave motion; heave disk; viscous damping; matched eigenfunction
expansion method

1. Introduction

Wave energy, being a clean and inexhaustible source of energy, has the potential to
become one of the most promising renewable and environmentally friendly energy options
in the future [1,2]. From the beginning of wave energy research, a significant emphasis
among researchers has been directed towards tuning the WEC system to resonate with the
incoming wave [3–6]. A widely accepted fact is that a point absorber system that resonates
with the incoming wave experiences greater amplitude and velocity, resulting in higher
transfer of wave energy compared to a system operating out of resonance. Thus, the general
strategy would be to choose the natural frequency of the point absorber to be in resonance
with the dominant wave frequencies at the installation sea site. This has led to the idea of a
point absorber system with two bodies. By choosing two resonant frequencies existing in a
two-body WEC system apart from the peak frequency of the incident wave spectrum, the
extraction of wave energy can be maximized [7,8]. The authors of [7] presented a strategy
of intentional mismatching of the heave natural frequencies of the inner and outer body
and the peak frequency of the target spectrum. This can result in greater extraction of
high-quantity power across a wider range of wave conditions. If there is a gap between two
concentric bodies, gap resonance might affect motion response and wave loads. In [9], the
authors presented a numerical analysis of the transient fluid resonance phenomenon inside
a narrow gap between two adjacent boxes excited by the incident waves. In [10], numerical
and experimental investigations were carried out into fluid resonance in a narrow gap
between two side-by-side vessels.
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Heave plates have primarily been used to stabilize the motion of floating offshore
structures. Heave plates were first installed on spar-type drilling platforms in the late
1990s, and have proven to be an effective measure of reducing the motion responses of
offshore platforms in harsh waves [11]. Much research has subsequently been performed
considering the application of heave plates for motion reduction of offshore structures.
The hydrodynamic performance of an attached heave plate can be described in terms of
damping and added mass. The heave natural frequency of the system decreases as the
added mass by the heave plate increases. In general, the viscous damping is experimentally
and numerically determined by the free-decay test. It is common to model viscous damping
due to edge vortices formed on the heave plate’s edge using the drag force in the Morison
equation. In this way, the performance of the heave plate can be quantified by the drag
coefficient of the heave plate. Several studies [12–15] have attempted to identify design
parameters that affect the drag coefficient of heave plates. The drag force is generated by
the creation of vortices around sharp edges; thus, the drag coefficient of a heave plate is
dependent on the ratio of the edge length to the surface area, the thickness of the plate, and
the shape of the edges. It has been found that thinner plates generate stronger vortices,
increasing the drag coefficient of the plate. The authors of [12] performed a comprehen-
sive analysis in which they systematically tested the effect of key design parameters on
hydrodynamic performance at varying KC (Keulegan–Carpenter) numbers and values
of the frequency parameter β. The varied parameters included the submerged distance
from the free surface, plate porosity, porous hole size, plate thickness-to-width ratio, edge
shape, and the spacing of stacked heave plates. The authors of [16] reported numerical and
experimental hydrodynamic assessments of a heaving porous disk and presented the drag
coefficient in terms of KC and porosity. The existing literature on heave plates provides a
strong base for further research on the use of heave plates for wave energy conversion.

The present study focuses on determining the hydrodynamic coefficients (i.e., added
mass and radiation damping) using a MEEM-based analytical method for a heaving two-
cylinder system. The system is composed of an inner cylinder with a heave disk attached
at the bottom and a torus-shaped outer cylinder with a minimal gap. Figure 1 shows
the conceptual design of the presented two-body WEC system; the inner cylinder moves
vertically with minimal friction by sliding through rollers that are connected to the outer
cylinder. The authors of [17,18] reported hydrodynamic parameters for similar two-body
axisymmetric heaving compound cylinders for the UC Berkeley wave energy device. The
relative heave motion of two bodies has been used to extract wave energy. A similar
study was first performed in [19] and reported hydrodynamic coefficients of two concentric
surface-piercing truncated circular cylinders using the eigenfunction expansion method
under the linear potential theory. The authors of [7] presented the hydrodynamic forces
using the matched eigenfunction expansion method for the radiation and diffraction
problem of coupled two-body systems.

In this study, under the assumption of linear wave theory, the radiation and diffraction
problems are solved using the method of eigenfunction expansions [7,19–25]. The presented
two-body WEC model is achieved by designing the outer body in the shape of a torus,
which floats on the water with a larger waterplane area and a relatively shallower draft.
Meanwhile, the inner body can have a smaller waterplane area and a lower resonance
frequency by attaching a heave plate to the bottom. This design allows the outer body to
follow the waves without resonance during WEC operation as well as for the inner body
to have reduced heave motion due to the attached heave plate. In this way, the relative
motion is enhanced over a wider frequency range and the need for site-specific design
choices, such as aligning the natural frequency of the WEC system with the peak frequency
of a sea site to achieve resonance, is eliminated. In addition, the peak-to-average power
ratio is greatly reduced, helping to reduce mechanical and electrical PTO (Power Take-off)
device overrating. Another merit is the capability to extend the available frequency range,
though with some loss of extracted power. To realize the effect of the heave disk, the
viscous damping dominated by the formation of vortices at the edge of the disk is modeled
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using the equivalent linearized drag force with the Morison equation. The drag coefficient
is empirically expressed as a function of the KC number by experiments [16]. The optimal
power of a two-body WEC has been extensively investigated for various design parameters
in irregular-wave conditions.

Figure 1. Definition sketch of two-body WEC with heave disk.

2. Mathematical Formulation

Here, we have investigated the extracted power from two concentric heaving bodies
(inner cylindrical body and torus outer body) with radius a1, a2 and draft d1, d2 floating
in water of uniform depth h. The gap between the two bodies is very small, and the
friction between them is neglected. A solid heave disk with a radius of a3 is attached to
the bottom of the inner body. The two-body WEC model is assumed to move in the heave
direction. Let wj(t), (j = 1, 2) be the velocities of the heaving motion of the inner and
outer bodies. The definition sketch for the two concentric bodies is shown in Figure 1.
The cylindrical coordinates are chosen with the origin at the center of the inner body on
the free surface and the z-axis pointing vertically upward. Assuming harmonic motion
of frequency ω and supposing that the fluid is inviscid, incompressible, and its motion is
irrotational, the fluid velocity can be described by the gradient of the velocity potential:
Φ(r, θ, z, t) = Re

{
φ(r, θ, z)e−iωt}. From the linear potential theory, the velocity potential

can be decomposed as φ(r, θ, z) = − igA
ω φ3(r, θ, z) +

2
∑

j=1
wjφj(r, θ, z), where A is the incident

wave amplitude, wj is the amplitude of the generalized body velocity of each body (j = 1,
inner body, j = 2, outer body), φ3 is the scattering potential representing the wave scattering
by the stationary body in incident waves, which is expressed by the sum of the incident
wave potential (φ0) and diffraction potential (φ4), and φj is the radiation potential due to
the heaving motion of each body with unit body velocity.

The wave field can be described by the velocity potentials φj(r, θ, z), j = 1, 2, 3, which
satisfy the following boundary-value problem:

∇2φj = 0, in the fluid domain
∂φj
∂z −

ω2

g φj = 0, on z = 0.
∂φj
∂z = 0, on z = −h.{∂φj

∂n = nz, j = 1, 2 on the body
∂φ4
∂n = − ∂φ0

∂n , on the body

lim
r→∞

√
r
[

∂φj
∂r − ik1φj

]
= 0.

(1)



Energies 2023, 16, 3791 4 of 20

2.1. Velocity Potentials

The radiation problem corresponds to the case in which each body is forced to oscillate
vertically in the absence of incident waves, while the diffraction problem means the case in
which the body is held fixed in the incident waves. The radiation and scattering potential

can be expressed by φj(r, θ, z) =
∞
∑

l=0
φjl(r, z) cos(lθ), j = 1, 2, 3 by means of the variable

separation method. The term l = 0 among infinite series provides a contribution to the
wave exciting force and hydrodynamic force in the vertical direction.

To apply the matched eigenfunction expansion method (MEEM) to the present ra-
diation problem, the fluid is divided into the regions (I), (II), (III), and (IV). Region (I) is
defined by r ≥ a2,−h ≤ z ≤ 0, region (II) by a3 ≤ r ≤ a2,−h ≤ z ≤ −d2, region (III) by
a1 ≤ r ≤ a3,−d1 ≤ z ≤ −d2, and region (IV) by 0 ≤ r ≤ a3,−h ≤ z ≤ −d1.

The velocity potential (φ(1)
j ) in region (I) can be written as the sum of the particular

(φ̂(1)
j0 ) and homogeneous (φ̃(1)

j0 ) solutions, and can be expressed by

φ
(1)
j0 (r, z) = φ̂

(1)
j0 (r, z) + φ̃

(1)
j0 (r, z),

= J0(k1r) f10(z)
f10(0)

δj3 +
∞
∑

n=0
Ajn

K0(k1nr)
K0(k1na2)

f1n(z),
(2)

where n = 0 denotes propagating mode, n ≥ 1 represents evanescent modes, and K0 is a
modified Bessel function.

The eigenvalues (k10 = −ik1 , k1n, n = 1, 2, . . .) in region (I) satisfy the dispersion
relation k1n tan k1nh = −ω2/g, and the normalized eigenfunctions can be written as

f1n(z) = N−1
1n cos k1n(z + h), n = 0, 1, 2, . . .

(N1n)
2 = 1

2

(
1 + sin 2k1nh

2k1nh

)
.

(3)

The eigenfunctions f1n(z) satisfy the following orthogonal relation:

1
h

∫ 0

−h
f1m(z) f1n(z)dz = δmn, (4)

where δmn is the Kronecker delta function, defined by δmn = 1 if m = n and δmn = 0 if
m 6= n.

The velocity potential in region (II) can be written as the sum of the particular (φ̂(2)
j0 )

and homogeneous (φ̃(2)
j0 ) solutions.

φ
(2)
j0 (r, z) = φ̂

(2)
j0 (r, z) + φ̃

(2)
j0 (r, z),

= 1
2(h−d2)

(
(z + h)2 − r2

2

)
δ2j +

∞
∑

n=0
εn

[
Rn(r)Bjn + R̃n(r)B̃jn

]
cos µn(z + h),

(5)

with
for n = 0

R0(r) =
ln(r/a3)

ln(a2/a3)
,

R̃0(r) =
ln(a2/r)

ln(a2/a3)
.

for n ≥ 1
Rn(r) =

K0(µna3)I0(µnr)−K0(µnr)Il(µna3)
K0(µna3)I0(µna2)−K0(µna2)I0(µna3)

,

R̃n(r) =
K0(µnr)I0(µna2)−K0(µna2)I0(µnr)

K0(µna3)I0(µna2)−K0(µna2)I0(µna3)
.

where εn = 1 if n = 0 and εn = 2 if n ≥ 1; moreover, µn = nπ/(h− d2), n = 0, 1, 2, . . ..
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The velocity potential in region (III) can be written as the sum of the particular (φ̂(3)
j0 )

and omogeneous (φ̃(3)
j0 ) solutions.

φ
(3)
j0 (r, z) = φ̂

(3)
j0 (r, z) + φ̃

(3)
j0 (r, z),

= 1
2(d1−d2)

{
[(z + d1)

2 − r2

2 + a2
1 ln r]δ2j − [(z + d2)

2 − r2

2 + a2
1 ln r]δ1j

}
+

∞
∑

n=0
εnCjn

[
I0(λnr)− I0

′(λna1)
K0
′(λna1)

K0(λnr)
]

cos λn(z + d1).

(6)

where λn = nπ/(d1 − d2), n = 0, 1, 2, . . ..
Finally, the radiation potential in region (IV) is provided by

φ
(4)
j0 (r, z) = φ̂

(4)
j0 (r, z) + φ̃

(4)
j0 (r, z),

= 1
2(h−d1)

(
(z + h)2 − r2

2

)
δ1j +

∞
∑

n=0
εnDjn

I0(νnr)
I0(νna3)

cos νn(z + h).
(7)

where νn = nπ/(h− d1), n = 0, 1, 2, . . ..

2.2. Matching Procedure

The velocity potential and radial velocity must be matched on the vertical boundary
r = a2 , a3.

φ
(1)
j0 = φ

(2)
j0 , −h ≤ z ≤ −d2, r = a2 (8)

∂φ
(1)
j0

∂r
=

{
0, −d2 ≤ z ≤ 0

∂φ
(2)
j0

∂r , −h ≤ z ≤ −d2

, r = a2 (9)

φ
(2)
j0 =

 φ
(3)
j0 , −d1 ≤ z ≤ −d2

φ
(4)
j0 , −h ≤ z ≤ −d1

, r = a3 (10)

∂φ
(2)
j0

∂r
=


∂φ

(3)
j0

∂r , −d1 ≤ z ≤ −d2
∂φ

(4)
j0

∂r , −h ≤ z ≤ −d1

, r = a3 (11)

After substituting Equations (2) and (5) into Equations (8) and (9), then multiplying
both sides by {cos µm(z + h), m = 0, 1, 2, . . .} and { f1m(z), m = 0, 1, 2, . . .}, we integrate the
resulting expression over their regions of validity. When using the orthogonality of the
eigenfunctions of each region, the following sets of equations that relate the unknown
coefficients of adjacent fluid regions can be obtained

Bjm =
∞

∑
n=0

Tmn Ajn + αjm, m = 0, 1, 2, . . . (12)

qm Ajm = γjm +
∞

∑
n=0

εn

[
W n(a2)Bjn + W̃ n(a2)B̃jn

]
Tnm, m = 0, 1, 2, . . . (13)

where

qm = k1mh
K0
′(k1ma2)

K0(k1ma2)
,

Tmn =
1

(h− d2)

∫ −d2

−h
f1n(z) cos µm(z + h)dz,
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αjm =


0, j = 1

− 1
2(h−d2)

2

∫ −d2
−h

(
(z + h)2 − a2

2
2

)
cos µm(z + h)dz, j = 2

J0(k1a2)
f10(0)

Tm0, j = 3

,

γjm =


0, j = 1
− a2

2(h−d2)

∫ −d2
−h f1m(z)dz, j = 2

− k1hJ0
′(k1a2)

f10(0)
δm0, j = 3

.

After substituting Equations (5)–(7) into Equation (10), then multiplying both sides
by {cos λm(z + d1), m = 0, 1, 2, . . .} and {cos νm(z + h), m = 0, 1, 2, . . .}, we integrate the
resulting expression over their regions of validity. The following sets of equations can be
obtained relating the unknown coefficients of adjacent fluid regions:

Cjm =

∞
∑

n=0
εnGmn B̃jn+σjm

sm
,

Djm =
∞
∑

n=0
εn Hmn B̃jn + β jm,

(14)

where

Gmn =
1

(d1 − d2)

∫ −d2

−d1

cos µn(z + h) cos λm(z + d1)dz,

Hmn =
1

(h− d1)

∫ −d1

−h
cos µn(z + h) cos νm(z + h)dz,

sm = I0(λma3)−
I0
′(λma1)

K0′(λma1)
K0(λma3),

σjm =



1
2(d1−d2)

2

∫ −d2
−d1

(
(z + d2)

2 − a2
3

2 + a2
1 ln a3

)
cos λm(z + d1)dz, j = 1

1
2(h−d2)(d1−d2)

∫ −d2
−d1

(
(z + h)2 − a2

3
2

)
cos λm(z + d1)dz

− 1
2(d1−d2)

2

∫ −d2
−d1

(
(z + d1)

2 − a2
3

2 + a2
1 ln a3

)
cos λm(z + d1)dz, j = 2

0, j = 3

β jm =



− 1
2(h−d1)

2

∫ −d1
−h

(
(z + h)2 − a2

3
2

)
cos νm(z + h)dz, j = 1

1
2(h−d1)(h−d2)

∫ −d1
−h

(
(z + h)2 − a2

3
2

)
cos νm(z + h)dz, j = 2

0, j = 3

When substituting Equations (5)–(7) into Equation (11), multiplying both sides by
the eigenfunction {cos µm(z + h), m = 0, 1, 2, . . .}, and integrating from −h to −d2, the
following equation is obtained:

Wm(a3)Bjm + W̃m(a3)B̃jm = τjm +
∞

∑
n=0

εnwnCjnGnm +
∞

∑
n=0

εn pnDjn Hnm, (15)

where p n = νn(h− d1)
I0
′(νna3)

I0(νna3)
, w n = λn(d1 − d2)

[
I0
′(λna3)−

I0
′(λna1)

K0′(λna1)
K0
′(λna3)

]
.
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τjm =



− a3
2(h−d1)

∫ −d1
−h cos µm(z + h)dz + 1

2(d1−d2)

(
a2

3−a2
1

a3

)∫ −d2
−d1

cos µm(z + h)dz, j = 1

a3
2(h−d2)

∫ −d2
−h cos µm(z + h)dz− 1

2(d1−d2)

(
a2

3−a2
1

a3

)∫ −d2
−d1

cos µm(z + h)dz, j = 2

0, j = 3

The solutions of the infinite system obtained with Equations (12)–(15) provide the
unknown coefficients in each fluid region. For the numerical calculation, infinite series are
truncated after N. When eliminating Ajn, Cjn, Djn, we obtain the simultaneous algebraic
equations for the unknown coefficients Bjn, B̃jn for the radiation problem by the heaving
motion of the inner body (j = 1) and outer body (j = 2) and for the diffraction problem
(j = 3) when the body is held fixed in incoming waves.

Bjm −
N
∑

k=0
εk

(
N
∑

n=0

TmnTknWk(a2)
qn

)
Bjk −

N
∑

k=0
εk

(
N
∑

n=0

TmnTknW̃k(a2)
qn

)
B̃jk

= αjm +
N
∑

n=0

γjnTmn
qn

, for m = 0, 1, 2, . . . , N
(16)

Wm(a3)Bjm + W̃m(a3)B̃jm −
N
∑

k=0
εk

N
∑

n=0
εn

(
wnGnkGnm

sn
+ pnHnk Hnm

)
B̃jk

= τjm +
N
∑

n=0
εn

(wnσjnGnm
sn

+ pnβ jn Hnm

)
, for m = 0, 1, 2, . . . , N

(17)

The unknown coefficients Bjn, B̃jn, (j = 1, 2, 3; n = 1, 2, . . . , N) can be readily obtained
by solving the above algebraic equation. The remaining unknown coefficients Ajn, Cjn, Djn
can be readily obtained from Equations (13) and (14).

2.3. Hydrodynamic Forces

For the diffraction problem, the vertical wave exciting force FE
i = Re

{
A f E

i e−iωt} on
the fixed inner body (i = 1) and outer body (i = 2) can be found by integrating the dynamic
pressure over the surface of the body.

f E
1 = 2ρgπ

{∫ a3
0 rφ

(4)
30 (r,−d1)dr−

∫ a3
a1

rφ
(3)
30 (r,−d1)dr

}
,

f E
2 = 2ρgπ

{∫ a2
a3

rφ
(2)
30 (r,−d2)dr +

∫ a3
a1

rφ
(3)
30 (r,−d2)dr

}
.

(18)

The hydrodynamic vertical forces (FR
ij (t) = Re

{
wj f R

ij e−iωt
}

) acting on the inner body
(i = 1) and outer body (i = 2) due to the heaving motion of the body (j = 1, 2) are found by
integrating the corresponding pressure over each body surface.

f R
1j = 2πiωρ

{∫ a3
0 rφ

(4)
j0 (r,−d1)dr−

∫ a3
a1

rφ
(3)
j0 (r,−d1)dr

}
,

f R
2j = 2πiωρ

{∫ a2
a3

rφ
(2)
j0 (r,−d2)dr +

∫ a3
a1

rφ
(3)
j0 (r,−d2)dr

}
.

(19)

It is convenient to further decompose the hydrodynamic forces into real and imaginary
parts. The real part (aij) and imaginary part (bij) are termed the added mass and radiation
damping coefficient.

aij = Im
{

f R
ij /ω

}
, bij = −Re

{
f R
ij

}
, (i, j = 1, 2) (20)
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Using the Haskind relation, we can obtain the approximate solution for the wave
exciting forces with the radiation potential φi, (i = 1, 2),

f E
i = iωρ

s

SB

(φ0 + φ4)ni dS

= iωρ
s

SB

(
φ0

∂φi
∂n + φi

∂φ4
∂n

)
dS

= −iωρ
s

S∞

(
φ0

∂φi
∂n − φi

∂φ0
∂n

)
dS = − 4iωρ

k1
Cg Ãi, (i = 1, 2)

(21)

where Cg = ω
2k1

(
1 + 2k1h

sinh(2k1h)

)
is the group velocity and Ãi =

cosh(k1h)Ai0

H(1)
0 (k1a2)N10

represents the

radiated wave amplitude in the far field caused by the heaving inner and outer bodies.

2.4. Equation of Motion

A two-body WEC system generates electricity from the relative heave motion of two
concentric bodies. In this case, each body has to function as a magnet or amateur (coil) in a
wet condition. In the present study, we installed a heave disk at the bottom of the inner
body to reduce the heave motion of the inner body. The PTO system can be simplified as
an equivalent linear damping force.

The dynamic responses of the two-body WEC are obtained by solving the coupled
equations of the heave motion of two bodies. These coupled equations include the hy-
drostatic restoring forces, wave exciting forces, radiation forces, PTO forces, and viscous
damping forces. They may be written as[

−iω(m1 + a11) + (b11 + bPTO + bν1 + ∆b)− c11
iω
]
w1 + [−iωa12 + (b12 − bPTO)]w2 = A f E

1
[−iωa21 + (b21 − bPTO)]w1 +

[
−iω(m2 + a22) + (b22 + bPTO + bν2)− c22

iω
]
w2 = A f E

2
(22)

where m1, m2 are the masses of the inner and outer body, respectively, c11(= ρgπa2
1) and

c22(= ρgπ(a2
2 − a2

1)) are the heave restoring force coefficients of the inner and outer body,
aij, bij are the frequency-dependent added mass and radiation damping coefficient, bPTO is
the PTO damping coefficient, and fvi = bνiwi (i = 1, 2) are the viscous damping forces for
each body, where bνi is the viscous damping coefficient. The viscous damping coefficients
are expressed by bνi =

2κicii
ωNi
− bii(ωNi), where the undamped natural frequency is provided

by ωNi =
√

cii
mi+aii(ωNi)

, (i = 1, 2). The damping factor κi can be determined from a

free-decay test in still water.
The coupled equations of motion are solved to determine the complex heave velocity

amplitude (wj, j = 1, 2) of each body. The corresponding complex heave amplitude of each
body is determined by ξ j = iwj/ω.

2.5. Viscous Damping

As mentioned above, viscous damping can be commonly considered by conducting a
free-decay test. However, when the viscous damping is dominantly attributed to vortices
formation at the outer edge of the heave disk, as in the present model, the viscous damping
is added by the drag force, inspired by the Morison equation. The drag force on the heave
disk attached to the inner body is expressed as

∆ f V =
1
2

ρCdS1|wr|wr, (23)

where ρ is the water density, S1 = πa2
3 is the projected area of the heave disk, wr(= w1 − Awz)

is the relative heave velocity of the heave disk with respect to an incident wave, and wz is
the vertical water particle velocity of an incident wave at the edge of a heave plate having a
unit amplitude

wz = −
igk1

ω

sinhk1(h− d1)

cosh k1h
J0(k1a3). (24)
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Using Lorenz’s principle of equivalent work, the quadratic velocity term in Equation (23)
can be linearized as

∆ f V = ∆b wr, with ∆b =
4

3π
ρCdS1|wr|, (25)

where ∆b is the added damping coefficient due to the installation of the heave disk.
To implement the effect of viscous damping due to the edge vortices of the heave disk,

an empirical formula for the drag coefficient Cd in Equation (23) should be determined.
The empirical formula for Cd is obtained through curve fitting of the experimental data
in the form of Cd = 6.5(KC)−1/3, as presented in [16], where the KC number is defined as
KC = π|ξ1|/a3.

2.6. Extracted Power

Equation (22) can now be rewritten as

[(b11 + bPTO + bv1 + ∆b)− iωA11]w1 + [(b12 − bPTO)− iωa12]w2 = A( f E
1 + ∆bwz),

[(b21 − bPTO)− iωa21]w1 + [(b22 + bPTO + bv2)− iωA22]w2 = A f E
2 ,

(26)

where A11 = (m1 + a11)− c11
ω2 , A22 = (m2 + a22)− c22

ω2 , and bνi(i = 1, 2) can be obtained
from the free-decay test without the heave disk.

The solutions of Equation (26) can be written as

w1
A =

( f E
1 +∆bwz)G22− f E

2 G12
G11G22−G12G21

,
w2
A =

f E
2 G11−( f E

1 +∆bwz)G21
G11G22−G12G21

.
(27)

where
G11 = b11 + bPTO + bv1 + ∆b− iωA11,
G12 = b12 − bPTO − iωa12,
G21 = b21 − bPTO − iωa21,
G22 = b22 + bPTO + bv2 − iωA22.

The relative heave velocity of two bodies can be expressed by

w1 − w2

A
=

( f E
1 + ∆bwz)(G22 + G21)− f E

2 (G12 + G11)

G11G22 − G12G21
. (28)

The nonlinear coupled Equation (26) is solved with an iteration method to determine
the heave motion velocity (wj, (j = 1, 2)) of each body.

The time-averaged extracted power can be obtained as

P = 1
2 bPTO|w1 − w2|2,

= 1
2 A2bPTO

∣∣∣∣ ( f E
1 +∆bwz)(G22+G21)− f E

2 (G12+G11)
G11G22−G12G21

∣∣∣∣2.
(29)

For maximization of the extracted power, the PTO damping coefficient requires

dP
dbPTO

= 0, (30)

which leads to

b̃PTO =

√
Y2

1 + ω2Y2
3

Y2
2 + ω2Y2

4
, (31)
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where
Y1 = (b11 + bv1 + ∆b)(b22 + bv2)− b12b21 −ω2(A11 A22 − a12a21),
Y2 = (b11 + bv1 + ∆b) + (b22 + bv2) + b12 + b21,
Y3 = (b11 + bv1 + ∆b)A22 + (b22 + bv2)A11 − b21a12 − b12a21,
Y4 = A11 + A22 + a12 + a21.

As a measure for evaluating the performance of a two-body WEC, the capture width
(CW) representing the WEC’s efficiency is generally used. The capture width has a length
dimension and is expressed as the ratio of the time-averaged extracted power by a WEC to
the time-averaged power per unit width of the incident wave.

CW =
Popt

Pw
. (32)

where Pw(=
1
2 ρgA2Cg) is the time-averaged power per unit width of a regular wave and

Cg is the group velocity.
The capture width normalized by the diameter of the outer body, referred to as the

capture width ratio (CWR), is a measure of the extracted power efficiency in the WEC
system. The capture width ratio can be calculated by

CWR =
CR
2a2

=
Popt

2a2Pw
. (33)

2.7. Irregular Waves

In the present frequency domain analysis, the root mean square (RMS) value of the
relative heave velocity and motion response in irregular waves can be obtained through
the following equation [26]:

wRMS
1/2 =

√∫ ∞
0
|w1−w2|2

A2 · Sς(ω)dω,

ξRMS
1/2 =

√∫ ∞
0
|ξ1−ξ2|2

A2 · Sς(ω)dω.
(34)

The mean power absorbed in irregular waves can be determined by the following
equation [27,28]:

Pirr =
∫ ∞

0

2P(ω)

A2 · Sς(ω)dω. (35)

where P(ω) is provided by Equation (29) with the particular PTO damping coefficient or
optimal PTO values such as b̃PTO(ω) or (b̃PTO)max. For the incident wave spectrum Sζ(ω),
the JONSWAP spectrum is used [29]

Sς(ω) = β
H2

1/3ω4
P

ω5 exp

[
−1.25

(
ω

ωP

)−4
]

γ
exp [− (ω−ωP)2

2σ2ω2
P

]
, (36)

with β =
0.0624

0.23 + 0.0336γ− 0.185(1.9 + γ)−1 (1.094− 0.01915 ln γ),

where H1/3 is the significant wave height and ωP(= 2π/TP) is the peak frequency. The
peakedness factor γ = 3.3, σ = 0.07 for ω < ωP, and σ = 0.09 for ω ≥ ωP.

In addition, the characteristic periods (energy period, spectral mean period, and zero
up-crossing period) are defined as

Te = 2π
m−1

m0
, T01 = 2π

m0

m1
, Tz = 2π

√
m0

m2
, (37)

where mn(=
∫ ∞

0 Sς(ω)ωndω) is the nth-order spectral moment.
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With the PTO damping coefficient, we can obtain the nondimensional optimal capture
width ratio in irregular waves:

(CWR)irr =
Pirr

2a2Pw,irr
, (38)

where the denominator Pw,irr is the irregular wave power per unit width and is provided by

Pw,irr = ρg
∫ ∞

0
Sζ(ω)Cgdω ≈ 1

64π
ρg2H2

1/3Te (39)

3. Experiments

The experiment was conducted in a glass-walled two-dimensional wave flume at Jeju
National University. The schematic experimental setup of the WEC model is shown in
Figure 2. It is 20 m long, 0.8 m wide, and the water depth is 0.6 m. At one end of the tank, a
piston-type wavemaker is installed which can generate regular and irregular waves. The
other end of the tank has a wave absorber to attenuate the waves and minimize the wave
reflection. The two-body WEC is placed at a distance of 8.7 m from the wavemaker. A
capacity-type wave gauge is placed 2.3 m from the wavemaker to measure the incident
waves. The model is held in place with the help of four slack mooring lines to avoid model
drift. The mooring lines have negligible effects on motion response.

Figure 2. Schematic experimental set-up of model in wave tank and photos of model in wave tank:
no heave disk a3/a1 = 1; with a heave disk a3/a1 = 1.5 and a3/a1 = 2.

The two-body WEC model consists of two independent cylinders made of acrylic
material. The inner cylinder has a radius (a1) of 0.06 m, a draft (d1) of 0.267 m, and a mass
(m1) of 2.86 kg, while the outer cylinder has a radius (a2) of 0.12 m, a draft (d2) of 0.05 m,
and a mass (m2) of 1.55 kg. The inside surface of the outer cylinder has eight small ball
rollers arranged to ensure that it slides smoothly along the inner cylinder. Heave plates
made of steel with different radii (a3) of 0.09 and 0.12 m were attached to the bottom of the
inner cylinder by a bolt.

The heave motion of the inner cylinder and torus outer cylinder was measured with
the aid of image tracking of markers on the model. Video clips of the experiments were
processed with help of Python code to extract the heave motions of each cylinder and the
relative heave motion between them as time series.

The experiments were conducted for three cases: one without a heave disk (a3/a1 = 1.0)
and two and three with a heave disk (a3/a1 = 1.5, 2.0). First, the viscous damping of each
cylinder including the edge vortices of the heave disk was obtained from the free-decay
test, as plotted in Figure 3. The measured heave natural periods TN1 of the inner cylinder
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for a3/a1 = 1.0, 1.5, 2.0 were 1.09 s, 1.31 s, and 1.63 s, and for the outer cylinder was 0.7 s.
The corresponding damping factor κi is depicted in the plots. It can be observed that the
heave motion of the inner cylinder is drastically decreased with the increase of a3/a1 due
to the higher viscous damping provided by the heave disk. The viscous damping of the
outer cylinder shows no change for different cases, as was expected.
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Figure 3. Free-decay tests of the heave motion of the inner and outer cylinders for different radii
heave plates. (a) Inner cylinder with no heave disk, a3/a1 = 1; (b) outer cylinder; (c) inner cylinder
with heave disk a3/a1 = 1.5; (d) outer cylinder; (e) inner cylinder with heave disk a3/a1 = 2;
(f) outer cylinder.

4. Results and Discussions

The analytical solutions formulated in Section 2 were validated with the panel-based
commercial program WAMIT, which is a commercial software program used to compute
wave loads and motions of offshore structures, floating bodies, and vessels. The design
parameters considered were d1/a1 = 4.45, d2/d1 = 0.187, a2/a1 = 2.0. The added mass,
radiation damping, and wave excitation force are nondimensionalized by ρVj, ρVjω (j = 1,2),
ρgπa2

1, ρgπ(a2
2 − a2

1) respectively, where Vj is the submerged volume of each cylinder.
The added mass and radiation damping are presented for the inner and outer cylinder
including cross-terms only for the heaving motion mode. Figures 4–6 show comparisons
between the analytical solutions and WAMIT numerical results as a function of the radius
(a3/a1 = 1.0, 1.5, 2.0) of the heave disk, and are excellent agreement. As a double-check
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of analytical solutions, the wave excitation forces are compared with the Haskind results
expressed in terms of radiation parameters in Figure 7, and are again in excellent agreement.
Even if the number of eigenfunctions is truncated at some suitable number, the MEEM
analytical solutions show excellent truncation characteristics and good agreement with
WAMIT numerical results. The number of eigenfunctions (N = 60) used in Figures 4–7 is
taken in all subsequent calculations.
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Figure 5. Comparison of nondimensional added mass, radiation damping coefficient, and
wave exciting force between the present MEEM solutions and WAMIT numerical results for
d1/a1 = 4.45, d2/d1 = 0.187, a2/a1 = 2, a3/a1 = 1.5.
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Figure 7. Comparison of nondimensional wave exciting forces on the inner and outer cylinder with
Haskind results for d1/a1 = 4.45, d2/d1 = 0.187, a2/a1 = 2. (a) a3/a1 = 1.5 (b) a3/a1 = 2.0.

Figure 8 shows the comparison of the heave RAO (Response Amplitude Operator)
of the inner cylinder and outer cylinder between the analytical (MEEM) and numerical
(WAMIT) predictions and experimental results without and with a heave disk. The an-
alytical and numerical predictions with viscous damping from the free-decay test are in
reasonably good correlation with the experimental measurements, especially without a
heave plate. The slight deviations for the case with a heave plate might be attributed
to roller friction effects, nonlinear effects, slack mooring effects, etc. Additionally, these
discrepancies could be attributed to the inaccurate prediction of viscous damping due
to the formation of vortices at the disk edge being incorporated into the model. These
discrepancies can be reduced by consideration of the drag force inspired by the Morison
equation, as in Section 2.5, instead of using the results of the free-decay test. It can be
observed that the heave RAO of the inner cylinder is significantly amplified at its nat-

ural frequency ( ω2
N1h
g = 2.03, 1.41, 0.91), while the outer cylinder conforms to the waves

(|ξ2/A| ≈ 1.0). The reduction of the nondimensional natural frequency is caused by the
increase in added mass according to the size of the heave plate. The heave motion response
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of the inner cylinder without a heave disk is about four times that of the outer cylinder,
which is drastically reduced to 1.5 times owing to the increase in viscous damping caused
by the presence of the heave disk. The peaks of the relative heave motion are close to the
natural frequencies of the inner cylinder. With the heave disk, the frequency range of the
relative heave motion, which is greater than 1.0, is widened to the low-frequency region
even if the peak value is reduced. Installation of the heave disk contributes to extracting
the wave energy belonging to the low-frequency range in the real sea. In addition, this
approach can save the cost of protecting the WEC system against excessive motion of the
WEC as well as the cost of manufacturing a large PTO system to accommodate amplified
mechanical power in resonance.

Figure 8. Comparison of heave RAOs of the inner and outer cylinder with numerical and experimental
results for d1/a1 = 4.45, d2/d1 = 0.187, a2/a1 = 2. (a) Heave RAOs without a heave plate
(a3/a1 = 1.0); (b) heave RAOs with a heave plate (a3/a1 = 1.5); (c) heave RAOs with a heave plate
(a3/a1 = 2.0).

As described in Section 2.5, the viscous damping due to the formation of vortices at
the disk edge can be implemented by the drag force inspired by the Morison equation,
with the drag coefficient determined by curve fitting of the experimental data in the form
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of Cd = 6.5(KC)−1/3 [16], where KC = π|ξ1|/a3. In Figure 9, the heave RAO obtained
from the viscous damping from the drag force shows better predictions than that from the
free-decay test near the resonance frequency. In all subsequent calculations, the viscous
damping due to the edge vortices of the heave disk is added to the skin frictional damping,
which is determined by the free-decay test without the heave disk (a3/a1 = 1.0).

Figure 9. Heave RAO for comparison of the viscous damping through the equivalent linearized drag
force and the free decay test: (a) a3/a1 = 1.5; (b) a3/a1 = 2.0.

Figure 10 shows the optimal PTO damping coefficient, optimal extracted power, and
capture width ratio as a function of the radius a3/a1 of the heave plate. The curve of the
optimal PTO damping has valleys at two frequencies, which coincide with the natural
frequencies of the inner and outer cylinders. Interestingly, the peak of the optimal extraction
power is situated at the frequency representing the hump of the PTO damping curve, which
is halfway between the natural frequencies of the cylinders. The optimal capture width
ratio shows a similar trend to the optimal extracted power. Practically, it is impossible to
control the PTO damping coefficients according to Equation (31) by responding to varying
frequencies in irregular waves. In general, either the optimal value of the PTO damping
coefficient at the natural frequency of the bodies or the peak frequency is selected.

Figure 10. Optimal PTO damping coefficient, optimal extracted power, and capture width ratio as
functions of the radius of the heave plate a3/a1 for d1/a1 = 4.45, d2/d1 = 0.187, a2/a1 = 2.
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A scaled-up prototype WEC system with parameters of h/a1 = 30, d1/a1 = 4.45,
d2/a1 = 0.83, a2/a1 = 2, a1 = 1m is considered in the next analysis. Figure 11 shows
a comparison of the relative heave RAOs without and with the optimal PTO damping
coefficient. The relative heave RAO decreases to half with the application of PTO damping.
The reduced part of the mechanical energy is transferred to the electrical energy. Figure 12
shows the optimal PTO damping coefficient and corresponding extracted power as a
function of the radius of the heave plate. The observation is similar to the previous model-
scale results (see Figure 10).

Figure 11. Comparison of relative heave RAOs of prototype WEC between without and with
optimal PTO damping coefficient as a function of the radius of the heave plate a3/a1 for
h/a1 = 30, d1/a1 = 4.45, d2/a1 = 0.83, a2/a1 = 2, a1 = 1 m.

Figure 12. Optimal PTO damping coefficient and corresponding extracted power as a function of the
radius of the heave plate a3/a1 for h/a1 = 30, d1/a1 = 4.45, d2/a1 = 0.83, a2/a1 = 2, a1 = 1 m.

The prototype model was run for irregular waves based on the JONSWAP spectrum
with H1/3 = 3.0m, TP = 5.5s. Figure 13 shows the relative heave motion spectrum and
power spectrum with applied optimal PTO damping coefficients of b̃PTO(ω) as a function
of the radius of the heave plate. It can be noted that the peak frequency of the relative heave
motion spectrum aligns well with the peak frequency of the wave spectrum when a heave
disk is installed. It can be explained that the outer body, which follows the incident waves,
dominates the relative heave motion when the inner body’s heave motion is minimized by
the heave disk. As a result of minimizing the motion of the inner cylinder, the area under
the power spectrum is at its maximum when a3/a1 = 2.0, as mentioned in Figure 13.

While application of the optimal PTO damping coefficient b̃PTO(ω) to the WEC system
might yield good theoretical predictions, it may be impossible to practically adjust the PTO
damping from time to time in real time for varying irregular waves. Thus, the selection of
one PTO damping coefficient is desirable. Figure 14 shows the root mean square of the rela-
tive heave motion and extracted power in irregular waves as a function of the PTO damping
coefficient with heave plates of three different radii. While increasing PTO damping steadily
decreases the relative heave motion, the extracted power increases to a maximum, then
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slightly decreases. The heave plate with a radius of a3/a1 = 2.0 shows higher relative
heave motion and extracted power than a3/a1 = 1.0, 1.5 after bPTO > 5.0 kNs/m.

Figure 13. Relative heave motion spectrum and power spectrum with applied opti-
mal PTO damping coefficients as a function of the radius of the heave plate a3/a1 for
H1/3 = 3.0 m, TP = 5.5 s,h/a1 = 30, d1/a1 = 4.45, d2/a1 = 0.83, a2/a1 = 2, a1 = 1 m.

Figure 14. (a) Root mean square of relative heave motion and (b) extracted power in irregular waves
H1/3 = 3.0m, TP = 5.5s as a function of the PTO damping coefficient with heave plates of three
different radii for h/a1 = 30, d1/a1 = 4.45, d2/a1 = 0.83, a2/a1 = 2, a1 = 1 m. (a) RMS of relative
heave motion and (b) extracted power.

It is possible to choose the optimal PTO damping coefficient at the natural frequency
of the inner or outer cylinders or the value yielding the maximum extracted power. It
is notable that the frequency of the maximum extracted power lies between the natural
frequencies of the inner and outer cylinders, as shown in Figure 10. Thus, the average of
these two natural frequencies is considered as ω1 = (ωN1 + ωN2)/2. The optimal value
at the natural frequency of the outer cylinder, ω2 = ωN2, which moves more actively
than the inner cylinder, is another candidate for optimal design. The irregular waves at a
particular sea site have a peak frequency where the wave energy is concentrated. Thus, the
optimal PTO value at the peak frequency of the irregular wave spectrum, ω3 = ωP, could
be another selection.

Table 1 shows the extracted power from irregular waves for three different design
PTO damping values ω1, ω2, ω3 for different radii of the heave plate. It is noted that the
optimal heave disk is a3/a1 = 2.0 and the optimal PTO value corresponds to the optimal
PTO damping coefficient at both ω1 = (ωN1 + ωN2)/2 and ω3 = ωP. If we are forced to
choose one between them, the PTO damping having a smaller value is desirable, which
means the smaller PTO damping device.
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Table 1. Extracted power in irregular waves for different PTO damping values.

a3/a1 1.0 1.5 2.0
ω1 = (ωN1 + ωN2)/2 1.96 1.89 1.77

b̃PTO(ω1) [kNs/m] 22.03 27.12 42.74
Pirr [W] 63 66 83

ω2 = ωN2 [rad/s] 2.52 2.52 2.52
b̃PTO(ω1) [kNs/m] 9.50 9.88 10.43

Pirr [W] 69 69 79
ω3 = ωP [rad/s] 1.14 1.14 1.14

b̃PTO(ω1) [kNs/m] 8.11 7.51 13.31
Pirr [W] 69 67 83

5. Conclusions

The performance of a two-body heaving WEC system that extracts wave energy
through relative heave motion has been investigated through parametric study according to
the radius of the heave disk attached to the bottom of the inner cylinder. The hydrodynamic
forces on the WEC are obtained by an analytical solution based on the linear potential
theory, and the viscous damping force on the heave disk is considered using the drag forces
in the Morison equation. The analytical results have been validated with WAMIT numerical
results and experiments self-conducted in a 2D wave tank.

Through intensive study, it was found that by allowing the outer cylinder to follow the
waves and by reducing the motion of the inner cylinder using a heave disk, the two-body
WEC with heave disk produces wave energy stably across a wide range of wave frequencies.
This can be achieved by designing the outer body as a floating torus with a large waterplane
area and a small draft, enabling it to move in harmony with the waves. Meanwhile, the
inner body can have a smaller waterplane area and a low resonance frequency, which can
be achieved by attaching a heave plate to the bottom. Because this design strategy does
not rely on resonance, large-scale PTO damping devices and site-specific design features
such as aligning the natural frequency of the system with the peak frequency of the sea
site to achieve resonance are not necessary. In addition, by shifting the natural frequency
of the inner cylinder to the low-frequency regime due to the increase in added mass with
the heave disk, the frequency range for the extraction of the wave power is extended. This
proposed WEC system concept with heave disk eliminates the need to have a large draft
regardless of the incoming wave condition; thus, it is cost-effective, and can be installed
even at shallower water depths. Cost savings can be achieved by eliminating the need for
excessive motion protection measures for safety of the WEC system and by avoiding the
manufacturing costs associated with a large Power Take-Off (PTO) system to accommodate
amplified mechanical power during resonance. Thus, the proposed system has many merits
over previous WECs using resonance, even at some loss of energy extraction.
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