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This paper investigates the application of Neural Network Backstepping Control (NN-BSC) for 
enhancing the rotational speed control of Oscillating Water Column (OWC) wave energy systems. 
Traditional control methods face limitations when dealing with nonlinearities, irregular wave 
conditions, and actuator disturbances. To address these challenges, this research paper introduces 
a Chebyshev NN within the BSC framework, leveraging its high approximation accuracy and 
computational efficiency. The design of the NN-BSC involves estimating the disturbance term using 
the Chebyshev NN and validating the stability OWC control system through Lyapunov analysis. The 
proposed NN-BSC law effectively handles nonlinearities and improves system robustness under 
dynamic conditions. Numerical simulations have been conducted using MATLAB/SIMULINK to 
compare the performance of the uncontrolled OWC system, conventional PI and BSC, and NN-BSC, 
under scenarios with and without actuator disturbances. The parameters for PI, BSC, and NN-BSC are 
optimized using a Particle Swarm Optimization (PSO) algorithm, which minimizes a fitness function 
defined by the Integral Squared Error (ISE). Results indicate that NN-BSC achieves smoother rotor 
speed tracking, particularly under actuator disturbances, where the conventional PI and BSC exhibits 
significant performance degradation in terms of ISE. Under actuator disturbance scenarios: (1) NN-
BSC achieved the lowest ISE value of 22.5433, outperforming PI (40.6381) and BSC (37.1192), and (2) 
NN-BSC demonstrated the lowest maximum peak overshoot (0.9651 rad/s) and fastest settling time 
(0.0561 s).

Keywords  Backstepping control, Lyapunov stability analysis, Neural network backstepping control, Ocean 
wave energy, Oscillating water column, Rotor speed control

Ocean wave energy refers to the process of harnessing the energy generated by the movement of ocean waves to 
produce electricity or perform mechanical work. This form of renewable energy has the potential to provide a 
significant amount of clean power due to the vast and consistent nature of ocean waves. Wave energy technology 
is still in the developmental and early commercial stages. Several pilot projects and small-scale installations are 
being tested around the world, particularly in Europe, North America, and Australia. Continued advancements 
in technology, along with supportive government policies, are crucial for the future growth of this renewable 
energy source1.

There are several types of wave energy converters, each designed to capture energy in different ways based on 
their interaction with the waves. Some of the main types include2: Point Absorbers, Oscillating Water Columns 
(OWCs), Attenuators, Oscillating Wave Surge Converters, Overtopping Devices, and Submerged Pressure 
Differential Devices. OWCs are among the most studied and deployed wave energy conversion systems due 
to their relatively simple design and ability to be integrated into coastal structures3. Control systems for OWCs 
play a crucial role in optimizing the performance, efficiency, and reliability of these wave energy converters4. The 
control system manages the turbine, airflow, and overall dynamics of the OWC to maximize energy capture from 
the waves under varying sea conditions5. The airflow and rotor speed control are the two main control schemes 
employed in OWCs for managing the electrical power generation from ocean waves.
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A brief review of these control schemes is presented next. Initially, few theoretical studies on airflow and rotor 
speed control appeared in6–8 and 9. In6 and 7, a theoretical model suggested that using a control valve in an OWC 
plant with a Wells turbine can notably enhance energy production by mitigating aerodynamic stall losses. The 
paper in8 and 9 explored the rotor speed control strategy for an OWC wave energy plant with a Wells turbine 
and variable speed generator, which focused on adjusting electric torque to optimize turbine efficiency and meet 
grid power quality requirements. Later in10 and11, the Indian Wave Energy Program focused on an OWC system 
with a twin Wells turbine and 55 kW generator, where a MATLAB/SIMULINK model and controller were used 
to optimize turbine power output, with simulations and experiments showing improved performance over an 
uncontrolled module.

After establishment of Nereida project plant, located in the Basque coast of Mutriku, several studies on 
control of OWC systems were conducted, which could be found in12–17, and18. In12 and13, a control scheme 
was proposed to improve the performance of the Wells turbine by adjusting rotor resistance in response to 
pressure drops, effectively managing stalling behaviour and maximizing power generation as the turbine 
approaches critical flow coefficient levels. In14–16 and17, the studies examined stalling behaviour in Wells turbines 
and compared two control strategies: one adjusted the rotational speed of the induction generator based on 
pressure drop, while the other used airflow control via a modulation valve. Both methods effectively prevented 
stalling and optimized turbine performance. In18, a robust sliding mode control (SMC) scheme for OWC plants 
was presented, demonstrating improved power extraction and disturbance rejection compared to traditional 
proportional-integral (PI) based control.

Expanding on the aforementioned studies, the fractional order proportional-integral-derivative (FOPID) 
for airflow control and backstepping rotational speed control strategies were proposed later in19–24, and25. In19, 
the paper proposed using a FOPID controller, optimized by particle swarm optimization (PSO), for air flow 
control in OWC wave power plants, showing improved power output and turbine performance compared to 
conventional PID control under varying sea conditions. In20, a control scheme was presented for maximizing 
turbine output power in an OWC wave power plant using a Wells turbine and doubly fed induction generator 
(DFIG), which combined fuzzy maximum power point tracking (MPPT) and backstepping control (BSC) for 
improved efficiency and stability. In21, the paper proposed three nonlinear control strategies for OWC wave 
power-take-off systems, demonstrating that the proposed controllers enhance the output power of the system 
under realistic sea wave conditions. In22, the paper presented event-triggered nonlinear controllers for an OWC 
wave energy plant, which demonstrated that the event-triggered BSC outperforms the event-triggered SMC in 
maximizing turbine output power while minimizing control updates. In23, a centralized airflow control scheme 
was proposed for a complex ocean energy network of OWCs, significantly reducing output power variation 
using a two-stage controller optimized by PSO. In24, a type 2 fuzzy logic controller for rotor speed control 
in OWC wave power plants was designed to maximize electrical output, with simulations showing improved 
performance using the irregular wave model. In25, the paper presents an ocean wave energy control strategy 
using aquila optimization (AO) to optimize BSC parameters for MPPT in an OWC wave energy converter. The 
AO demonstrated superior performance over PSO and genetic algorithm (GA) techniques.

Several other significant studies on control of OWC have also been conducted, which are discussed next. In26, 
the MPPT-based control approach was validated through case studies, showing its ability to consistently achieve 
optimal rotational speed and maximize active power generation and also highlighted its potential for enhancing 
the commercialization of OWC power plants. In27, an adaptive SMC scheme for OWC plants using Wells 
turbines and DFIGs was designed, which demonstrated through simulations that it improved power generation 
efficiency and robustly handles system uncertainties and disturbances. In28, an optimized higher-order SMC was 
proposed, enhancing turbine performance by improving efficiency and reducing the peak-to-average power ratio 
under varying sea conditions. In29, the paper introduced a fuzzy gain scheduled PI controller for the Nereida 
wave power plant that demonstrated the optimized power generation and maintained robustness under varying 
input conditions compared to conventional PI controllers. In30, again a fuzzy gain scheduled SMC was presented 
for OWC with Wells turbines, effectively preventing stalling, enhancing power generation, and outperforming 
standard SMC in reducing power fluctuations under varying wave conditions. In31, the paper presented a state-
space model of an OWC and demonstrated that second-order SMC, combined with valve control, improves 
electric energy conversion, particularly in less energetic sea states. In32, the study proposed using deep learning 
algorithms using long short-term memory and convolutional neural network (NN) to predict the rotational 
speed in an OWC to improve rated power control and operational efficiency. In33, a generalized predictive 
control scheme was proposed to enhance wave energy conversion efficiency by optimizing flow coefficient, 
preventing turbine stalling, and integrating system limitations, validated through simulations and experiments. 
In34, the paper proposed an adaptive second-order SMC to enhance energy conversion efficiency in oscillating 
water column wave energy systems, which demonstrated superior performance over standard control strategies.

The advanced control strategies discussed above, such as SMC proposed in18, adaptive SMC proposed in34, 
and generalized predictive control proposed in33, require sophisticated design and tuning, making them more 
complex to implement and maintain in real-world applications. Control techniques like FOPID designed in19 
and deep learning-based methods as developed in32 can be computationally intensive, potentially leading to 
higher processing requirements and longer response times. Although these control strategies (e.g.18 and27)  
are designed to address uncertainties and disturbances, their effectiveness may still be affected by parameter 
variations and environmental changes, especially in the presence of highly irregular wave conditions.

Given these considerations, this paper introduces the use of Chebyshev NN to design the BSC for rotational 
speed control of OWC. Chebyshev NN offers high approximation accuracy, robustness to nonlinearities, and 
adaptability to varying conditions35, making it particularly well-suited for addressing the challenges of complex 
and dynamic systems such as OWCs. Chebyshev NN simplifies the control design, reduces computational 
demands, and provide smooth control actions, making them particularly well-suited for addressing the 
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challenges of complex and dynamic systems such as OWCs. The Chebyshev neural network has been widely 
explored in various studies for its applicability in diverse control schemes across different applications, e.g. 
robotic systems36, spacecrafts37,38  and39, twin rotor control systems40, electric vehicles41, power converters42, 
and solar powered devices43.

As compared to data driven control methods (such as in44–46), the NN-BSC combines a structured model-
based framework with NN adaptability to ensure robust performance and moderate computational demands, 
even in scenarios with bounded uncertainties. A brief comparison between NN-BSC and data-driven control 
schemes is discussed as follows:

•	 Model Dependence: NN-BSC relies on a mathematical model of the system for control design, while da-
ta-driven control methods eliminate this dependency by directly leveraging system data for controller design.

•	 Training Requirements: NN-BSC employs a NN for estimating disturbances, requiring proper training and 
parameter tuning, whereas data-driven approaches often optimize performance using empirical data without 
explicit system modelling.

•	 Generalization: NN-BSC can generalize to unmodeled dynamics within the framework of the existing mod-
el, whereas data-driven control excels in adapting to varying operating conditions by directly learning from 
real-time data.

•	 Implementation Complexity: NN-BSC integrates a functional link network with the control law, making 
it computationally lightweight, whereas data-driven methods may require extensive data preprocessing and 
computation, increasing implementation complexity.

While data-driven methods excel in handling significant modelling uncertainties, they often require: (1) 
Extensive and high-quality datasets for effective learning, (2) Computationally intensive optimization processes, 
and (3) Careful tuning to avoid issues like overfitting. Therefore, NN-BSC is preferred over data-driven control 
in this study as it avoids the need for extensive, high-quality datasets, computationally intensive optimization, 
and overfitting concerns, which might not be suitable all real-world scenarios.

Additionally, unlike disturbance observers, which require precise system models and disturbance knowledge, 
the NN-based approach offers adaptability without such prerequisites. The NN integration with BSC enables 
robust closed-loop stability analysis using Lyapunov stability theory to ensure system stability and asymptotic 
convergence of tracking errors under dynamic and uncertain conditions. This integration compensates for 
inaccuracies in the OWC system model by adaptively approximating unknown dynamics in real-time, bridging 
gaps between the simplified model and practical applications.

Building on these advantages and its proven versatility across various applications, this paper employs the 
Chebyshev NN to design a BSC for controlling the rotational speed of OWC systems. Therefore, this paper 
proposes following novel contributions:

•	 The Chebyshev NN is utilized to develop a novel NN-BSC for regulating the rotational speed of OWC, offer-
ing superior approximation accuracy, robustness to nonlinearities, and adaptability to dynamic conditions.

•	 The NN-BSC law is formulated and validated using Lyapunov stability analysis to ensure stability and en-
hanced performance for OWC systems under varying operational scenarios.

The design process for the NN-BSC scheme begins with a thorough description of the OWC wave energy system, 
which includes an overview of ocean waves and JONSWAP irregular wave model, the OWC chamber and Wells 
turbine, and the electrical generator. Following this, the process covers the conventional BSC design and its 
Lyapunov stability analysis to establish a baseline for comparison. The focus then shifts to the NN-BSC design, 
starting with an overview of the Chebyshev NN and its role in the scheme. This is followed by the design of the 
NN-BSC law. Asymptotic tracking is a critical challenge in nonlinear control systems. Recent advancements, 
including Adaptive RISE control with neural networks, model-based reinforcement learning, and hybrid-driven 
approaches, offer potential solutions47–49). Based on these, Lyapunov stability analysis is conducted to ensure 
robust performance of NN-BSC in this study. The final stage involves numerical simulations and results, where 
the performance of an uncontrolled OWC system is first evaluated. This is followed by a comparison of the PI, 
BSC and NN-BSC performance, both without and with actuator disturbances. The parameters for PI, BSC, and 
NN-BSC were determined through an optimization process that utilized a PSO algorithm to minimize a fitness 
function based on Integral Squared Error (ISE). These evaluations assess the effectiveness of the conventional 
PI and BSC as compared to NN-BSC in controlling the rotational speed of the OWC system under varying 
conditions.

The remainder of this paper is structured as follows: section “OWC wave energy system description” provides 
a detailed description of the OWC wave energy system. Section “Conventional BSC design and stability analysis” 
focuses on the conventional BSC design and its associated Lyapunov stability analysis. In section “NN-BSC 
design and stability analysis”, the design and stability analysis of the NN-BSC are discussed, including the 
application of Chebyshev Neural Networks. Section “Numerical simulations and results” presents the numerical 
simulations and results, offering a comparative analysis of system performance. Finally, section “Concluding 
remarks” concludes with remarks summarizing the findings and implications of the study.

OWC wave energy system description
The OWC system typically consists of a partially submerged chamber with an opening below the waterline, 
allowing waves to enter and cause the water column inside to oscillate as shown in Fig. 1. This oscillation creates 
an alternating airflow, which drives a bi-directional turbine, such as a Wells turbine, to convert the kinetic energy 
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of the air into mechanical energy. The turbine is connected to a generator, which then converts the mechanical 
energy into electrical power.

Ocean wave description
Ocean waves are often modelled using irregular wave models to simulate real-world conditions. These models 
account for the randomness and complexity of natural waves. Such models help in understanding and predicting 
wave behavior, crucial for optimizing energy conversion and coastal management. The JONSWAP model is a 
prominent example50, designed to represent the statistical characteristics of sea waves, particularly for generating 
realistic wave spectrum as shown in Fig. 2 and assessing wave energy conversion efficiency in various conditions. 
This model has been selected for use in this study to generate irregular wave profiles.

OWC chamber and wells turbine description
The air velocity inside OWC chamber is mathematically represented by the equation given in51:

	
Vx =

(
Ao

Ad

)
∂hw (t)

∂t
� (1)

Here, Ao represents the cross-sectional area of the OWC (in m2), Ad denotes the cross-sectional area of the 
turbine duct (in m2), hw (t) indicates the wave height (in meters), and Vairis the air velocity (in (m/s). The 
expression for air velocity, as given in Eq. (1), serves as the input to the Wells turbine.

Next, the Wells turbine52, invented by Alan Wells, is a specialized turbine used in OWC wave energy 
converters. It features a symmetrical air-foil shape that allows it to operate efficiently in both directions of airflow, 
converting bidirectional wave-induced airflow into rotational mechanical energy as shown in Fig. 3.

The turbine torque, Ttur , is defined as51:

	 Ttur = f (ϕtur) V 2
air � (2)

where f (ϕtur) is a function of the turbine flow coefficient, ϕtur , expressed as:

	 f (ϕtur) = Cturkturr
(
1 + ϕ−1

tur

)
� (3)

Fig. 1.  OWC system description.
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Fig. 3.  Wells turbine schematic diagram.

 

Fig. 2.  JONSWAP wave spectrum.
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Here, Cturrepresents the characteristics of the Wells turbine, which vary with ϕtur  as depicted in Fig. 4. ktur  
represents the turbine constant and r is the turbine radius (in m). The turbine flow coefficient, ϕtur , is calculated 
as:

	 ϕtur = Vair(rωrot)−1� (4)

As shown in Fig. 4, when the flow coefficient ϕtur  is at or below the threshold value ϕth = 0.3, the torque 
coefficient is maximized, resulting in the highest turbine torque and, consequently, the greatest power output. 
Here, ϕth represents the flow coefficient threshold limit. If the flow coefficient remains below this threshold, 
turbine torque and output power continue to increase. However, when ϕtur  exceeds ϕth, both turbine torque 
and output power begin to decline.

Next, the Wells turbine is linked to a DFIG, and as a result, the equation that describes the turbo-generator 
interaction can be formulated as follows:

	
dωrot

dt
= 1

J
(Ttur − F.ωrot − Tgen)� (5)

where ωrot represents the rotor speed, F denotes the frictional coefficient, and Tgen is the electromagnetic 
torque of the DFIG.

Electrical generator description
A DFIG type electrical generator has been considered in this study, which is widely utilized in wind and wave 
energy systems. It consists of a stator connected to the grid and a rotor linked to a variable frequency converter. 
This configuration allows the DFIG to operate efficiently at variable speeds, optimizing energy capture and 
enhancing grid stability18. Its ability to control both active and reactive power makes it versatile and effective for 
renewable energy applications. The DFIG direct-quadrature (dq) dynamics in differential equation form are as 
follows22:

Fig. 4.  Wells turbine characteristics.
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dλds

dt
= −RsLr

Q
λds + ωeλqs + RsLm

Q
λdr + vds� (6)

	
dλqs

dt
= −ωeλds − RsLr

Q
λqs + RsLm

Q
λqr + vqs� (7)

	

dλdr

dt
= RrLm

Q
λds − RrLs

Q
λdr

− (ωrot − ωe)λqr + vdr

� (8)

	
dλqr

dt
= RrLm

Q
λqs + (ωrot − ωe)λdr + vqr � (9)

Where, In this framework, Q is defined as Q = LsLr − L2
m. The flux linkages λds, λqs, λdr  and λqr  represent the 

direct and quadrature axis fluxes for the stator and rotor, respectively, within the DFIG. The resistive parameters 
Rs and Rr  correspond to the stator and rotor resistances, while Ls, Lr  and Lm denote the stator inductance, 
rotor inductance, and mutual inductance of the DFIG. The stator supply angular frequency is denoted by ωe, 
and the DFIG voltages are characterized by vds, vqs, vdr  and vqr . The initial conditions for the flux states are 
specified as λds0, λqs0, λdr0 and λqr0, respectively. The formulations for electromagnetic torque and output 
power are delineated as follows:

	 Tgen = −M (λqsλdr − λdsλqr)� (10)

	 Pgen = Tgenωrot� (11)

where, M =
(

3
2

) (
p
2

) (
Lm
Q

)
. p is number of poles of DFIG.

The mathematical model of the OWC system stated above (Eqs. 1–11) has been validated in prior experimental 
studies (e.g. in17,51) that demonstrates its reliability and accuracy for control design purposes in this study.

To design BSC, Eq. (5) through (10) are transformed into a state-space model in strict feedback form as per 
the process underlined in22. The state equations for the OWC plant are provided as follows:

	 α̇1 = k1α1 + k2α2 + Dtur � (12)

	 α̇2 = k3 (α1 − ωe) + k4α2 + ur � (13)

where, k1 = − F
J ; k2 = − M

J ; k3 = Lr
Lm

ψS ; k4 = − RrLs
Q ; ur = vqr ; Dtur = Ttur

J ; α1 = ωrot and α2 = λqr . 
The state α1 represents the rotor speed, which serves as the output of the OWC system targeted for control. The 
term ur  acts as the control input for the OWC system.

Conventional BSC design and stability analysis
The block diagram in Fig.  5 depicts OWC wave energy system integrated with MPPT and BSC/NN-BSC 
modules. Wave height, hw (t), data is supplied to both the OWC wave energy system and the MPPT module. 
The implementation of the MPPT module in this study adheres to the design methodology outlined in22. The 
OWC system transmits state signals, α1 and α2, to the BSC/NN-BSC module, which processes these inputs and 
generates control signal, ur , to control the OWC system. Simultaneously, the MPPT module sends the reference 
signal, α1d, to the BSC/NN-BSC block, guiding the controller to ensure maximum energy extraction.

A step-by-step approach is employed for the design of the BSC. The controller for the second-order system, 
described by Eqs. (12) and (13), is developed in two stages. First, a virtual controller, α2d, is designed. This α2d 
is then used to formulate the final control law ur .

The design of the virtual controller, α2d, takes into account the error component, expressed as:

	 α̃1 = α1d − α1� (14)

The next step involves differentiating Eq. (14), which results in the following expression:

	 ˙̃α1 = α̇1d − α̇1 = α̇1d − k1α1 − Dtur − k2α2� (15)

At this point, we add and subtract the k2α2d term, and Eq. (15) is rewritten as:

	 ˙̃α1 = α̇1d − k1α1 − Dtur − k2α2 + k2α2d − k2α2d� (16)

The virtual controller α2d is chosen as:

	 α2d = k−1
2 (α̇1d − k1α1 − Dtur + σ1α̃1)� (17)

where, σ1 > 0.
Taking the derivative of α2d produces:

	 α̇2d = k−1
2

(
α̈1d − k1α̇1 − Ḋtur + σ1 ˙̃α1

)
� (18)
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Subsequently, the second error component is formulated as:

	 α̃2 = α2d − α2� (19)

Substituting Eqs. (17) and (18), the Eq. (16) can be expressed as:

	 ˙̃α1 = −σ1α̃1 + k2α̃2� (20)

The subsequent step involves computing the derivative of Eq. (19), yielding:

	 ˙̃α2 = α̇2d − α̇2 = α̇2d − k3 (α1 − ωe) − k4α2 − ur � (21)

By substituting α̇2d into Eq. (21), the following expression is obtained:

	 ˙̃α2 = k−1
2

(
α̈1d − k1α̇1 − Ḋtur + σ1 ˙̃α1

)
− k3 (α1 − ωe) − k4α2 − ur � (22)

Solving Eq. (22) by substituting Eqs. (12) and (20) produces the following result:

	 ˙̃α2 =
(
k3 − k1k4k−1

2 − σ2
1k−1

2
)

α̃1 + (k1 + k4 + σ1) α̃2 − ur + fd� (23)

where, fd is treated as a disturbance function and is represented as:

	 fd = k−1
2 α̈1d −

(
k1k−1

2 + k4k−1
2

)
α̇1d −

(
k3 − k1k4k−1

2
)

α1d + k4k−1
2 Dtur − k−1

2 Ḋtur + k3ωe� (24)

.

To develop a control strategy that ensures the closed-loop stability of the OWC system, a suitable Lyapunov 
function candidate, denoted as Vlf1, is selected as follows:

Fig. 5.  Block diagram of OWC wave energy system with MPPT and BSC/NN-BSC.
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Vlf1 = 1

2
(
α̃2

1 + α̃2
2
)

� (25)

The expression in Eq. (25) is subjected to differentiation and subsequently reformulated as:

	 V̇lf1 = α̃1 ˙̃α1 + α̃2 ˙̃α2� (26)

By substituting ˙̃α1 and ˙̃α2 from Eqs. (20) and (23) into Eq. (26), the following expression is derived:

	 V̇lf1 = −σ1α̃2
1 + α̃2

{
k2α̃1 +

(
k3 − k1k4k−1

2 − σ2
1k−1

2
)

α̃1 + (k1 + k4 + σ1) α̃2 − ur + fd

}
� (27)

Next, the control law ur :

	 ur = k2α̃1 +
(
k3 − k1k4k−1

2 − σ2
1k−1

2
)

α̃1 + (k1 + k4 + σ1) α̃2 + fd + σ2α̃2� (28)

results in:

	 V̇lf1 = −σ1α̃2
1 − σ2α̃2

2 ⩽ 0� (29)

where, σ2 > 0.
Equation (29) is shown to be negative semi-definite, indicating that the derivative of the Lyapunov function, 

V̇lf1, does not permit non-trivial error state trajectories for α̃1 and α̃2 beyond the trivial solution α̃1 = α̃2 = 0
. Consequently, these error states asymptotically converge to zero. Therefore, the system described by Eqs. (12) 
and (13), when governed by the control law ur  in Eq. (24), is asymptotically stable.

The final closed-loop state error dynamics of the OWC system under BSC framework are given by:

	 ˙̃α1 = −σ1α̃1 + k2α̃2 � (30)

	 ˙̃α2 =
(
k3 − k1k4k−1

2 − σ2
1k−1

2
)

α̃1 + (k1 + k4 + σ1) α̃2 − ur + fd� (31)

where, ur  denotes the backstepping control law, and fd represents the disturbance function. These are expressed 
as:

	 ur = k2α̃1 +
(
k3 − k1k4k−1

2 − σ2
1k−1

2
)

α̃1 + (k1 + k4 + σ1) α̃2 + fd + σ2α̃2� (32)

	 fd = k−1
2 α̈1d −

(
k1k−1

2 + k4k−1
2

)
α̇1d −

(
k3 − k1k4k−1

2
)

α1d + k4k−1
2 Dtur − k−1

2 Ḋtur + k3ωe� (33)

There, the Eqs. (30–33) represent the final state space model of OWC in terms of state error dynamics with BSC 
law. Equations (30) and (31) provide a comprehensive representation of the closed-loop state-space dynamics of 
the OWC system in terms of state errors.

Figure 6 illustrates the architecture of the BSC scheme for the OWC system. The inputs include the reference 
input α 1d, system states α 1 and α 2, and Dtur . The BSC output ur  is computed using Eqs. (17), (32), and 

Fig. 6.  Architecture of BSC scheme for the OWC system.
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(33). The model explicitly incorporates the control law (Eq.  32) and disturbance function (Eq.  33), aligning 
the inputs and outputs for subsequent NN-BSC implementation. These dynamics serve as the foundation for 
analyzing stability and tracking performance under the proposed NN-BSC framework in the next section.

NN-BSC design and stability analysis
Disturbance term fd in BSC design introduces uncertainty and unpredictability that makes it difficult to model 
and compensate for its effect accurately. It is also has nonlinear or time-varying behaviour, which complicates 
the controller performance. This terms is also very difficult to measure in real scenario. Hence, in this study, the 
disturbance term fd is estimated using Chebyshev NN and the stability of NN-BSC law is analysed subsequently.

Chebyshev NN overview
The Chebyshev NN leverages the orthogonal properties of Chebyshev polynomials35 to efficiently approximate 
nonlinear system dynamics with high accuracy and computational efficiency. In this study, the Chebyshev NN 
integrates seamlessly into the BSC framework, combining the adaptive learning capabilities of NNs with the 
systematic control design of BSC.

The NN architecture employed in this study is a single-layer Chebyshev NN, illustrated in Fig.  7, and 
categorized as a functional link network leveraging Chebyshev polynomials40. The architecture involves:

•	 Input Layer: Inputs to the NN are the system states α1, α2 · · · , αj , which are functionally expanded using 
Chebyshev polynomials.

•	 Functional Expansion: This expansion transforms the input variables into a higher-dimensional feature 
space to enhance approximation capability.

•	 Output Layer: The expanded terms are linearly combined using weights (Ŵ T ) to generate the estimated 
disturbance f̂d which is critical for improving the control accuracy of the OWC system.

One approach to function approximation is through a truncated power series expansion, which provides 
minimal error near the expansion point but incurs significant error as the evaluation distance increases. 
Chebyshev series, on the other hand, offer superior computational efficiency, particularly when power series 
exhibit slow convergence. As a result, Chebyshev series are frequently employed for function approximation, 
delivering greater efficiency compared to power series of the same degree. The Chebyshev polynomials, Tn (α) , 
are defined recursively as follows:

	 T0 (α) = 1� (34)

	 T1 (α) = α� (35)

	 Tn+1 (α) = 2αTn (α) − Tn−1 (α)� (36)

The output of weighted sum of each neuron in the hidden layer is computed as follows:

	 fd = W T ϕNN (α1, α2) + ∈� (37)

where, W represent the weight matrix of the NN having dimension m × 1, and m represents number of neurons. 
The ideal weights are limited by specified positive bounds such that ∥W ∥F ⩽ WM . The notation ∥W ∥F  
represents the Frobenius norm of the weight matrix W and is represented as:

	

∥W ∥F =

√√√√
m∑

i=1

|wi|2� (38)

where, wi is the weight of the i-th neuron. Next, ∈ denote the functional reconstruction error vector of the 
Chebyshev NN. The error ∈ is bounded such that ∈⩽ ∈M . The function ϕNN (α1, α2) serves as a basis function, 
formulated using Chebyshev polynomials as defined in Eqs. (34–36) and is expressed as follows:

Fig. 7.  Structure of Chebyshev NN.
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ϕNN (α1, α2) = [ 1 T1 (α1) T2 (α1) · · ·

· · · T1 (α2) T2 (α2) · · · ]

}
� (39)

where, the basis function, ϕNN (α1, α2), vector has the dimension 1 × m. Henceforth, ϕNN (α1, α2) will be 
denoted as ϕNN  for notational simplification.

Moreover, an estimation of the function fd can be expressed as:

	 f̂d = Ŵ T ϕNN � (40)

where, Ŵ  is the estimated weight matrix of the ideal weight matrix W.
Choose an error function as:

	 f̃d = fd − f̂d = W T ϕNN + ∈ −Ŵ T ϕNN � (41)

The Eq. (37) is further simplified as:

	 f̃d = W̃ T ϕNN + ∈� (42)

where, W̃ = W − Ŵ .

NN-BSC law and stability proof
To design the NN-BSC law, the term fd has been replaced by its estimate f̂d in the expression of BSC law, ur , 
in Eq. (32), which is expressed as follows:

	 ur = k2
∼
α 1 +

(
k3 − k1k4k−1

2 − σ 2
1k−1

2
) ∼

α 1 + (k1 + k4 + σ 1) ∼
α 2 + f̂d + σ 2

∼
α 2� (43)

The NN-BSC law, as formulated in Eq. (43), is substituted into Eq. (31), resulting in the following 
expression:

	
∼̇
α 2 = −k2

∼
α 1 − σ 2

∼
α 2 + fd − f̂d

� (44)

An additional actuator disturbance term ∆  such that ∆ ≤ ∆ M , is added in Eq. (44) to study the robustness 
of the proposed controller. ∆ M  is the upper bound on actuator disturbance. Hence, the Eq. (44) is now written 
as:

	
∼̇
α 2 = −k2

∼
α 1 − σ 2

∼
α 2 + fd − f̂d + ∆ = −k2

∼
α 1 − σ 2

∼
α 2+

∼
f +∆ = −k2

∼
α 1 − σ 2

∼
α 2 +

∼
W

T

φ NN + ∈ +∆ � (45)

Next, the weight update mechanism is designed to ensure system stability. This update process is governed by 
an adaptive learning rule, which enhances the robustness of the learning process. In this regard, a cost function 
is considered as follows:

	
Y = 1

2
∼
α

2
2� (46)

The adaptive learning rule to update of neural network weights is defined as follows:

	
˙̂

W = −η
∂Y

∂Ŵ
− ηρ

σ2
∥α̃2∥ Ŵ � (47)

where, η  represents learning rate and ρ  represents damping coefficient.
The differentiation of Y  can be represented as follows:

	

∂ Y

∂ Ŵ
= ∂ Y

∂
∼
α 2

∂
∼
α 2

∂ f̂d

∂ f̂d

∂ Ŵ
� (48)

Substituting, ∂ Y

∂
∼
α 2

= ∼
α 2 and ∂ f̂d

∂ Ŵ
= φ NN  in Eq. (48), the ∂ Y

∂ Ŵ
 is expressed as:

	

∂ Y

∂ Ŵ
= ∼

α 2φ NN

∂
∼
α 2

∂ f̂d

� (49)

Referencing Eq. (44) and differentiating it with respect to f̂d yields the following result:

	

∂

∂ f̂d

(
∼̇
α 2

)
= ∂

∂ f̂d

(−k2
∼
α 1 − σ 2

∼
α 2 + fd − f̂d + ∆ )� (50)

Equation (50) is solved further and results in:
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∂

∂ f̂d

(
∼̇
α 2

)
= −σ 2

∂
∼
α 2

∂ f̂d

− 1 ≈ 0� (51)

From Eq. (51), the following expression is derived:

	

∂
∼
α 2

∂ f̂d

= − 1
σ 2

� (52)

Hence, the final expression for ∂ Y

∂ Ŵ
 after substituting ∂

∼
α 2

∂ f̂d

 in Eq. (49) is:

	
∂ Y

∂ Ŵ
= −

∼
α 2φ NN

σ 2
� (53)

Which further modifies Eq. (47) in the following form:

	
˙̂

W = η

σ2
α̃2ϕNN − ηρ

σ2
∥α̃2∥ Ŵ � (54)

In this context, Eq. (54) serves as the final weight update mechanism for the NN-BSC law defined in Eq. (43).
The stability analysis of the NN-BSC law is now conducted. For this purpose, a Lyapunov function candidate 

is introduced as follows:

	
Vlf2 = 1

2

(
∼
α

2
1 + ∼

α
2
2

)
+ 1

2 tr

{
∼

W
T

(
σ 2

η

)
∼

W

}
� (55)

The expression in Eq. (55) is subjected to differentiation and subsequently reformulated as:

	
V̇lf1 = ∼

α 1
∼̇
α 1 + ∼

α 2
∼̇
α 2 + tr

{
∼

W
T

(
σ 2

η

)
∼̇

W

}
� (56)

The expression for 
∼̇

W  is required in Eq. (56). It can be obtained by differentiating 
∼

W = W − Ŵ , resulting in 
∼̇

W = Ẇ − ˙̂
W . Since the ideal weights are constant, Ẇ = 0, leading to 

∼̇
W = − ˙̂

W . Thus, 
∼̇

W  is given by:

	
˙̃W = − η

σ2
α̃2ϕNN + ηρ

σ2
∥α̃2∥ Ŵ � (57)

Next, 
∼̇
α 1 from Eq. (30), 

∼̇
α 2 from Eq. (45), and 

∼̇
W  from Eq. (57) are substituted into Eq. (56). This results in:

	

V̇lf2 = α̃1 (−σ1α̃1 + k2α̃2)
+ α̃2

(
−k2α̃1 − σ2α̃2 + W̃ T ϕNN + ∈ +∆

)

+ tr

{
W̃ T

(
σ2

η

) (
− η

σ2
α̃2ϕNN + ηρ

σ2
∥α̃2∥Ŵ

)}� (58)

Equation (58) is further modified as follows:

	 V̇lf2 = −σ1α̃2
1 − σ2α̃2

2 + α̃2 (∈ +∆) + ρ∥α̃2∥tr
{

W̃ T Ŵ
}

� (59)

Consider the following inequality36:

	 tr
{

W̃ T Ŵ
}
⩽ WM

∥∥W̃
∥∥

F
−

∥∥W̃
∥∥2

F
� (60)

Inserting the inequality presented in Eq. (60) into Eq. (59) results in:

	
V̇lf2 ⩽ −σ1α̃2

1 − σ2α̃2
2 + ∥α̃2∥ (∈M + ∆M ) + ρ∥α̃2∥

(
WM

∥∥W̃
∥∥

F
−

∥∥W̃
∥∥2

F

)
� (61)

Further solving Eq. (61) results in the following form:

	
V̇lf2 ⩽ −σ1α̃2

1 − σ2α̃2
2 − ρ∥α̃2∥

[(∥∥W̃
∥∥

F
− 1

2WM

)2
− 1

4W 2
M − ∈M + ∆M

ρ

]
� (62)

Equation (62) remains negative semi-definite provided the following condition is satisfied:
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∥∥W̃
∥∥

F
⩾ 1

2WM +

√(
∈M + ∆M

ρ
+ 1

4W 2
M

)
� (63)

Consequently, the dynamical OWC system described by Eqs. (30) and (31), when controlled by the NN-BSC 
control law defined in Eq. (43), with the weight update mechanism outlined in Eq. (54) and under the condition 
specified in Eq. (63), establishes asymptotic stability. This completes the stability proof. Following the detailed 
derivation, the architecture of the NN-BSC is illustrated in Fig. 8. It clearly depicts the reference input, system 
states, control signals, and the incorporation of the Chebyshev NN into the OWC control system. Next, the 
parameters of PI, BSC, and NN-BSC were determined by minimizing ISE using PSO as per the process employed 
in25. The ISE expression is as follows:

	
ISE =

∫ Tsim

t=0

∼
α

2
1dt� (64)

where, Tsim is the simulation time.
Other advanced optimization techniques are not employed in this study, as the primary focus is to integrate 

the Chebyshev NN with BSC for OWC control and validate system stability through Lyapunov analysis. 
However, in25, some advanced optimizers, such as the AO and GA including PSO, were successfully used to 
determine optimal BSC parameters for OWC systems. This highlights the potential for such methods to achieve 

Fig. 8.  Architecture of NN-BSC scheme for the OWC system.
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globally optimal parameter values. The application of similar optimization algorithms to further refine NN-BSC 
parameters may also be explored in future work.

Numerical simulations and results
In this section, numerical simulations are presented to evaluate the performance of the NN-BSC applied to 
the OWC wave energy system. The simulations include performance analysis of the uncontrolled OWC to 
establish a reference for comparison. Additionally, the NN-BSC is compared with traditional PI and BSC under 
scenarios with and without actuator disturbances. These comparisons aim to demonstrate the ability of NN-
BSC to enhance wave energy capture, maintain system stability, and improve robustness against disturbances. 
Numerical simulations were conducted using MATLAB/SIMULINK. Simulation parameters for the OWC 
system have been adopted from22. The simulation parameters and corresponding ISE values for PI, BSC, and 
NN-BSC, determined using the PSO optimizer, are presented in TABLE I. The simulation time, Tsim, is taken 
as 50 s. The PI controller expression used is as follows:

	
ur = Kp

∼
α 1 + Ki

∫ Tsim

t=0

∼
α 1dt� (65)

where, Kp is the proportional gain and Ki is the integral gain of PI.
Irregular wave profiles or heights are generated using the JONSWAP spectrum model, depicted in Fig. 9. The 

air velocity inside the OWC is computed from Eq. (1), with wave height serving as the input, as illustrated in 
Fig. 10. The function φ NN  has been formulated using Chebyshev polynomials as defined below:

	 φ NN = [1 α 1 2α 2
1 − 1 α 2 2α 2

2 − 1]� (66)

The optimization results in Table 1 indicate a clear progression in performance, with the NN-BSC significantly 
outperforming the PI and BSC methods in terms of ISE. This improvement can be attributed to the adaptive 
learning capabilities of the Chebyshev NN within the NN-BSC framework, enabling better handling of 
nonlinearities, disturbances, and dynamic conditions.

Fig. 9.  Wave profile generated using JONSWAP.
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Performance evaluation of uncontrolled OWC
In this subsection, the performance of the uncontrolled OWC plant is analysed, which emphasizes key 
performance limitations. First, the flow coefficient often exceeds the critical threshold of 0.3, as shown in 
Fig. 11, which indicates stalling in Wells turbine. Additionally, the rotor speed in the uncontrolled OWC system 
fluctuates around the stator supply frequency of 50π  rad/s, as seen in Fig.  12. A considerable rotor speed 
error appears when comparing the actual rotor speed to the reference speed generated by the MPPT block, as 
presented in Fig. 13.

The turbine torque in the uncontrolled OWC system shows stalling effects, with visible stalling regions 
around 5s and 20s (refer red encircled regions) in Fig. 14, which reduces system efficiency. Due to this stalling, 
the output power remains below 50 kW, as shown in Fig. 15. It indicates the overall unsatisfactory performance 
of the uncontrolled OWC system. The observations in rotor speed, power output, and turbine torque highlight 
the need for an effective control strategy to address these issues and improve system performance.

Performance evaluation of BSC and NN-BSC without actuator disturbance (i.e. ∆ (t) = 0)
In this subsection, the performance of the PI, BSC, and NN-BSC controlled OWC wave energy system without 
actuator disturbances is evaluated. Firstly, as shown in Fig. 16, the actual rotor speed satisfactorily tracks the 

Method Controller parameters ISE

PI Kp = 88.4998
Ki = 22.3953 40.6381

BSC σ1 = 12.1818
σ2 = 17.0149 37.1192

NN-BSC
σ1 = 70.5090
σ2 = 0.9147
η = 6.8973 × 103

ρ = 6.2516 × 103
22.5433

Table 1.  Optimization results for controller gains and ISE values.

 

Fig. 10.  Air velocity generated using Eq. (1).
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MPPT reference speed for all three control methods. However, as seen in the zoomed section, significant steady 
state error is observed in the actual rotor speed for PI between 18.9s and 26.9s, which are notably absent in BSC 
and NN-BSC.

Similarly, Fig. 17 illustrates that the rotor speed error settles more quickly and without transients for NN-
BSC, particularly noticeable between 26.5 s and 26.9 s, whereas significant transients are present with PI and 
BSC. Further, the q-axis rotor flux error in NN-BSC, as depicted in Fig. 18, settles to zero without any transients, 
demonstrating a smoother control response compared to PI and BSC, where error variations remain significant, 
especially during the same time frame.

Rotor control voltages, shown in Fig. 19, reveal that during abrupt changes in the MPPT reference, substantial 
control efforts are required to minimize rotor speed and q-axis rotor flux errors. The Wells turbine flow coefficient, 
depicted in Fig. 20, remains consistently below the critical threshold of 0.3 for all three control methods, which 
ensures stable operation. Additionally, the Wells turbine torque and output power, shown in Figs. 21 and 22 
respectively, are significantly enhanced in all three control methods as compared to the uncontrolled OWC 
system. These results demonstrate that NN-BSC outperforms or is at least on par with the conventional PI 
and BSC, providing superior control by minimizing transients, achieving faster error settling, and maintaining 
critical operational thresholds.

Performance evaluation of BSC and NN-BSC with actuator disturbance (i.e. ∆ (t) = 10sin (2πt))
In this subsection, the performance of the PI, BSC and NN-BSC controlled OWC wave energy system under 
actuator disturbance is analysed, which highlights the advantages of NN-BSC over conventional PI and BSC. 
As illustrated in Fig. 23, the actual rotor speed for NN-BSC satisfactorily follows the MPPT reference speed 
without noticeable transients. In contrast, PI and BSC exhibits significant transients in rotor speed throughout 
the response, particularly visible between 18.8s and 24.8s in the zoomed portion.

The rotor speed error, shown in Fig.  24, settles faster without transients in the NN-BSC case, especially 
between 26.4s and 36.4s, whereas PI and BSC consistently shows prominent transients throughout the response. 
The q-axis rotor flux error, depicted in Fig. 25, demonstrates superior control by NN-BSC as it smoothly settles 
to zero without any transients. In contrast, PI and BSC shows significant error variations throughout, as seen 
during 26.4s to 36.4s in the zoomed section. Figure 26 highlights rotor control voltages, indicating that during 
sudden changes in the MPPT reference, all control methods require substantial efforts to minimize rotor speed 
and flux errors. Additionally, all controllers need continuous control efforts to counteract actuator disturbances.

Fig. 11.  Well turbine flow coefficient waveforms for uncontrolled OWC system.
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The Wells turbine flow coefficient, shown in Fig. 27, remains consistently below the critical threshold of 0.3 for 
PI, BSC, and NN-BSC, even under actuator disturbances, maintaining the turbine operational safety. Figures 28 
and 29 illustrate the Wells turbine torque and output power, respectively. It shows significant enhancements for 
all control methods compared to the uncontrolled OWC system, even in the presence of disturbances.

The Table  2 compares the time response performance specifications of rotor speed for three control 
methods—PI, BSC, and NN-BSC—under two scenarios: ∆ (t) = 0 and ∆ (t) = 10sin (2πt). Key metrics 
include maximum peak overshoot and settling time. The NN-BSC demonstrates the best performance, achieving 
the lowest maximum peak overshoot (0.962488 rad/s for ∆ (t) = 0 and 0.965075 rad/s for ∆ (t) = 10sin (2πt) 
and the shortest settling time (0.0323s and 0.0561s, respectively). This highlights its ability to minimize transient 
errors and stabilize quickly, even under disturbances. The BSC offers moderate improvement over PI, with 
reduced maximum peak overshoot and faster settling time. However, the PI controller exhibits the highest 
maximum peak overshoot (2.02206  rad/s for ∆ (t) = 0) and longest settling time (8.8658s), reflecting its 
limitations in managing transient behaviour and achieving rapid stabilization compared to the more advanced 
methods.

Overall, the results indicate that NN-BSC outperforms conventional PI and BSC when subjected to actuator 
disturbances, providing superior transient-free control and quicker error settling. The NN-BSC enhances 
robustness and control precision under disturbance conditions that ensures more reliable and efficient energy 
capture.

Concluding remarks
An NN-BSC scheme for rotational speed regulation in OWC wave energy systems was designed in this study. By 
integrating Chebyshev NNs into the BSC framework, this study addresses key limitations of conventional control 
methods, such as the inability to handle nonlinearities, disturbances, and variations in ocean wave conditions 
effectively. By offering smoother rotor speed tracking and reducing transient errors, the NN-BSC provides 
improved control stability, faster convergence, reduced transients and efficient power generation, as validated 
by numerical simulations. The NN-BSC, particularly under actuator disturbances, demonstrates robustness and 
adaptability, which makes it a superior alternative to conventional PI and BSC. The simulation results highlight 
that the NN-BSC maintains the critical operational thresholds of the Wells turbine, enhances the turbine torque 
and output power levels.

Suggested future scopes of this study are as follows:

Fig. 12.  Rotor speed waveforms for uncontrolled OWC system.
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•	 Investigate advanced neural network architectures, such as deep learning, to enhance system adaptability 
under uncertain sea conditions.

•	 Conduct experimental validation of the proposed control strategy using a physical OWC prototype to com-
plement simulations.

•	 Explore advanced nonlinear control schemes like sigmoid PID and intelligent PID controllers for managing 
nonlinearities and uncertainties.

•	 Apply advanced optimization algorithms to further refine NN-BSC parameters and achieve globally optimal 
performance.

Fig. 13.  Rotor speed error waveforms for uncontrolled OWC system.
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Fig. 14.  Well turbine torque waveforms for uncontrolled OWC system.
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Fig. 15.  Output power waveforms generated for uncontrolled OWC system.
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Fig. 16.  Rotor speed waveforms for BSC and NN-BSC controlled OWC system without actuator disturbance.
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Fig. 17.  Rotor speed error waveforms under BSC and NN-BSC controlled OWC system without actuator 
disturbance.
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Fig. 18.  q-axis rotor flux error waveforms under BSC and NN-BSC controlled OWC system without actuator 
disturbance.
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Fig. 19.  Control voltage waveforms under BSC and NN-BSC controlled OWC system without actuator 
disturbance.
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Fig. 20.  Flow coefficient waveforms under BSC and NN-BSC controlled OWC system without actuator 
disturbance.
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Fig. 21.  Wells turbine torque waveforms under BSC and NN-BSC controlled OWC system without actuator 
disturbance.
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Fig. 22.  Output power waveforms under BSC and NN-BSC controlled OWC system without actuator 
disturbance.
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Fig. 23.  Rotor speed waveforms for BSC and NN-BSC controlled OWC system with actuator disturbance.
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Fig. 24.  Rotor speed error waveforms under BSC and NN-BSC controlled OWC system with actuator 
disturbance.
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Fig. 25.   q-axis rotor flux error waveforms under BSC and NN-BSC controlled OWC system with actuator 
disturbance.
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Fig. 26.  Control voltage waveforms under BSC and NN-BSC controlled OWC system with actuator 
disturbance.
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Fig. 27.  Flow coefficient waveforms under BSC and NN-BSC controlled OWC system with actuator 
disturbance.
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Fig. 28.  Wells turbine torque waveforms under BSC and NN-BSC controlled OWC system with actuator 
disturbance.

 

Scientific Reports |         (2025) 15:7983 33| https://doi.org/10.1038/s41598-025-87725-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
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