Marine energy classification systems: Tools for resource assessment and design

V.S. Neary, K.A. Haas, J.A. Colby
USTAG Annual Meeting, Portland, ME, 13-14 Nov 2019
Motivation/Goal

Build marine energy classification systems that, like wind, codify and support resource assessment, design and device-type certification for wave and tidal energy devices.

Resource classification - support project siting, feasibility, and scoping studies, regional energy planning.

Device classification - codify and streamline device design, device-type certification, product-line development and manufacturing.
Wave resource classification

- Main parameter, wave power, J (kW/m); Class I, II, III, IV
- Subclass parameter, T_p, peak period bandwidth, delineates three WEC resonant bandwidths
 - 1, local wind seas, $0<T_P<7$
 - 2, short-period swell, $7 \leq T_P \leq 10$
 - 3, long-period swell, $10<T_P$
- Related standards
 - Wave resource assessment and characterization, IEC TS 62600-101:2015-06
 - WEC power performance assessment, IEC TS 62600-100:2012-08
Tidal resource classification: Preliminary

- Main parameter, tidal power density, P_m (kW/m2); Class I, II, III, IV

 $$P_m = \frac{1}{2N} \rho \sum_{j=1}^{N} U_j^3$$

- Subclass parameter TBD, A, a constraint on the theoretical resource
 - Multiple levels TBD

- Related standards
 - Tidal resource assessment and characterization, IEC TS 62600-201:2015-04
 - TEC power performance assessment, IEC TS 62600-200:2013-05

Power Class

<table>
<thead>
<tr>
<th>Class</th>
<th>$P_m \geq 2$</th>
<th>$1 \leq P_m < 2$</th>
<th>$0.5 \leq P_m < 1$</th>
<th>$P_m < 0.5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>$A > TBD$</td>
<td>$I(1)$</td>
<td>$II(1)$</td>
<td>$III(1)$</td>
</tr>
<tr>
<td>II</td>
<td>$TBD \leq A < TBD$</td>
<td>$I(2)$</td>
<td>$II(2)$</td>
<td>$III(2)$</td>
</tr>
<tr>
<td>III</td>
<td>$A < TBD$</td>
<td>$I(3)$</td>
<td>$II(3)$</td>
<td>$III(3)$</td>
</tr>
</tbody>
</table>

Use model data from US Tidal Energy RA

Tidal resource classification: Preliminary

- Relate the mean power, P_m (kW/m2) to the mean velocity, V_m (m/s)

\[P_m \approx 1.75P \]

<table>
<thead>
<tr>
<th>Power Class</th>
<th>I ($P \geq 2$)</th>
<th>II ($1 \leq P < 2$)</th>
<th>III ($0.5 \leq P < 1$)</th>
<th>IV ($P < 0.5$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Velocity</td>
<td>$V_m \geq 1.3$</td>
<td>$1.05 \leq V_m < 1.3$</td>
<td>$0.8 \leq V_m < 1.05$</td>
<td>$V_m < 0.8$</td>
</tr>
<tr>
<td>1</td>
<td>$A > TBD$</td>
<td>I(1)</td>
<td>II(1)</td>
<td>III(1)</td>
</tr>
<tr>
<td>2</td>
<td>$TBD \leq A < TBD$</td>
<td>I(2)</td>
<td>II(2)</td>
<td>III(2)</td>
</tr>
<tr>
<td>3</td>
<td>$A < TBD$</td>
<td>I(3)</td>
<td>II(3)</td>
<td>III(3)</td>
</tr>
</tbody>
</table>

Classes can be delineated based on the mean velocity
Tidal resource classification: Preliminary

US West Coast

Cook Inlet

US East Coast

East River
WEC classification: Preliminary

- Main parameter, $H_{s\text{(ref)}} = H_{s(50)}$ (m), 50-year return H_s, Class I, II, III
- Note $H_{s\text{(mean)}} = CH_{s(50)}$ for distinct wave climates
- Subclass parameter, T_p, peak period bandwidth, delineates three energy transfer mechanisms (normal operations)
 - 1, local wind seas, $0<T_p<7$
 - 2, short-period swell, $7<T_p<10$
 - 3, long-period swell, $10<T_p$
- Related technical specs, standards
 - Design requirements for marine energy systems, IEC TS 62600-2:2016-08
 - Environmental conditions & environmental Loads, DNV-RP-C205:2014

<table>
<thead>
<tr>
<th>Class</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_{ref} (m)</td>
<td>15</td>
<td>10</td>
<td>5</td>
<td>Specified by designer</td>
</tr>
<tr>
<td>1</td>
<td>$0<T_p<7$</td>
<td>I(1)</td>
<td>II(1)</td>
<td>III(1)</td>
</tr>
<tr>
<td>2</td>
<td>$7<T_p<10$</td>
<td>I(2)</td>
<td>II(2)</td>
<td>III(2)</td>
</tr>
<tr>
<td>3</td>
<td>$10<T_p$</td>
<td>I(3)</td>
<td>II(3)</td>
<td>III(3)</td>
</tr>
</tbody>
</table>

Geographical distribution of $H_{s(50)}$ (m) for US Coast [Neary et al. 2019]; Alaska site, $H_{s(50)} = 12$ m

Regional correlations extreme and mean wave heights [Neary et al. 2018]; Alaska site, $H_{s\text{mean}} = 2.8$ m T_p band is Class 3

$H_{s\text{(ref)}}$ (site) ~ 12 m T_p (site) - Class 3

SITE CLASS I(3)

Extreme DLC based on $H_{s\text{(ref)}} = 15$ m

Normal DLC based on $H_{s\text{(mean)}} = 2.8$ m, $10<T_p$
TEC classification: Preliminary

- Main parameter, V_{ref} (m/s), max, 3-min avg current for extreme design load case (DLC); Class I, II, III
- Subclass parameter, I_{ref}, turbulence intensity @ 1.5 m/s
 - A, high, $0.15 < I_{ref} \leq 0.20$
 - B, moderate, $0.10 < I_{ref} \leq 0.15$
 - C, low, $I_{ref} \leq 0.10$
- Related technical specs, standards
 - Design requirements for marine energy systems, IEC TS 62600-2:2016-08
 - Environmental conditions & environmental Loads, DNV-RP-C205:2014
- FY20 studies:
 - Reviewing turbulence measurements database with NREL to identify trends
 - Standard method for determining maximum current speed, e.g., 1-percentile current

<table>
<thead>
<tr>
<th>TEC Class</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_{ref} (m/s)</td>
<td>3.5</td>
<td>2.5</td>
<td>1.5</td>
<td>Specified by engineer</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td>I_{ref} (-) 0.20</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td>I_{ref} @1.5 m/s 0.15</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td>I_{ref} 0.10</td>
</tr>
</tbody>
</table>

RITE site, East River:
Variation of hub height mean current speed - black
(Gunawan, Neary and Colby 2014)

V_{ref}(site) = 2.4 m/s
l_{ref}(site) $= 0.18$

RITE site, East River: Variation of hub height turbulence intensity with mean current speed (Gunawan, Neary and Colby 2014)

V_{ref}(site) ~ 2.4 m/s
l_{ref}(site) $= 0.18$

Design for $V_{ref} = 2.5$ m/s,
$l_{ref} = 0.20$
Proposed motions

The US TAG is asked to endorse and deliver the following proposal to TC 114 for the integration of classification systems into standards. This proposal would be discussed and approved at the TC 114 Plenary Meeting in April 2020:

1) Update the Scope of Work of AHG 8 to include the integration of classification systems into TC 114 documents. AHG 8 would oversee the coordination and integration of classification systems across TC 114.

2) The following Maintenance Teams would consider incorporation of classification systems in their Technical Specifications during their maintenance cycle:
 - MT 62600-2: Design, TS 62600-2:2019-10 {Ed. 2}
 - WAVE AND TIDAL CONDITIONS CLASSIFICATION
 - MT 62600-101: Wave resource characterization, TS 62600-101:2015-06 {Ed. 1}
 - WAVE RESOURCE CLASSIFICATION
 - MT 62600-201: Tidal resource characterization, TS 62600-201:2015-04 {Ed. 1}
 - TIDAL RESOURCE CLASSIFICATION
ACKNOWLEDGEMENTS:

This study benefited from review and input from project steering committee members chaired by Dr. Bryson Robertson, Oregon State University.

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. This presentation describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Thank you

Contact: vsneary@sandia.gov or khaas@gatech.edu
References:

P. Veers, private communication, Nov. 2018.

Marine energy - Wave, tidal and other water current converters - Part 100: Electricity producing wave energy converters - Power performance assessment, IEC TS 62600-100:2012-08.

