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A B S T R A C T

Currently, a significant effort in the world research panorama is focused on finding efficient solutions to a
carbon-free energy supply, wave energy being one of the most promising sources of untapped renewable
energy. However, wave energy is not currently economic, though control technology has been shown
to significantly increase the energy capture capabilities. Usually, the synthesis of a wave energy control
strategy requires the adoption of control-oriented models, which are prone to error, particularly arising from
unmodelled hydrodynamics, given the complexity of the hydrodynamic interactions between the device and
the ocean. In this context, data-driven and data-based control strategies provide a potential solution to some
of these issues, using real-time data to gather information about the system dynamics and performance. Thus
motivated, this study provides a detailed analysis of different approaches to the exploitation of data in the
design of control philosophies for wave energy systems, establishing clear definitions of data-driven and data-
based control in this field, together with a classification highlighting the various roles of data in the control
synthesis process. In particular, we investigate intrinsic opportunities and limitations behind the use of data in
the process of control synthesis, providing a comprehensive review together with critical considerations aimed
at directly contributing towards the development of efficient data-driven and data-based control systems for
wave energy devices.
1. Introduction

World energy demand has increased significantly over recent
decades, making clean and efficient energy production one of the most
crucial challenges. In the context of renewable energy, ocean wave
energy has emerged as one of the most promising sources, having a
vast (yet untapped) potential [1–3] of around 32 000 TWh/year [4]. In
contrast to other renewable energy technologies, such as wind or solar,
technology convergence has been slow among wave energy converters
(WECs), with over 200 prototypes reported [5,6]. Among the challenges
is the variability of the wave energy resource itself, with variations in
amplitude and frequency [7], and directionality [8–10]. Moreover, the
development of computationally modest mathematical models, given
the complex hydrodynamic interactions between WEC devices and the
surrounding fluid, is challenging [11,12]. There is also little agreement
on the ideal power take-off (PTO) system to convert the physical WEC
motion into useful energy.

∗ Corresponding author.
E-mail address: edoardo.pasta@polito.it (E. Pasta).

Considering the increasing amount of available measurement moda-
lities and continuously produced data, it is imperative that maximum
advantage be taken of this information in the empowerment of re-
newable energy systems [13]. Possible applications of data-informed
techniques can be found in solar, wind, and energy management
fields for forecasting purposes [14–17], to model complex systems and
scenarios [18,19], or to provide insight into previously unmodelled
phenomena [20]. Data have been successfully employed in control
applications to solve the control problems related to energy [21,22],
and multi-energy distribution systems [23] management, and floating
wind [24] and photovoltaic system control [25]. Within the marine
energy field, most data-based techniques used are aimed at solving
the problem of estimation of the wave source spectral characteris-
tics [26], predict their trends over time [27–29], forecast wave eleva-
tion
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Nomenclature

Abbreviations

ANN Artificial neural network
DB Data-based
DB1 Data-based, type I
DB2 Data-based, type II
DD Data-driven
DD1 Data-driven, type I
DD2 Data-driven, type II
DD3 Data-driven, type III
DoF Degree of freedom
ESC Extremum seeking control
GPR Gaussian process regression
MPC Model predictive control
MPPT Maximum power point tracking
NL Nonlinear
OCP Optimal control problem
OWC Oscillating water column
P&O Perturb & observe
PA Point absorber
PTO Power take-off
RL Reinforcement learning
WEC Wave energy converter

Symbols

𝜂 Wave elevation [m]
 Control performance function
𝑃 Prediction horizon [s]
𝐸 Absorbed energy [J]
𝑓𝑟 Radiation force [N]
𝑓 𝑙
ℎ𝑟 Hydrostatic restoring force linear compo-

nent [N]
𝑓𝑛𝑙 Nonlinear contributions [N]
𝑓𝑃𝑇𝑂 PTO force [N]
𝑚 WEC mass [kg]
𝑆𝜂 Wave elevation spectrum [m2 s]
𝑡 Time [s]
𝑇s Sampling period [s]
𝑇 eval Performance evaluation period [s]
𝑇ctrl. synth. Control synthesis period [s]
𝑇ctrl. Control period [s]
𝑇data gen. Data generation period [s]
𝑇mdl. adapt. Modelling/adaptation period [s]
𝑣𝑟𝑒𝑓 . Velocity reference [m/s]
𝑦 General output of the system
𝑧, 𝑧̇, z̈ Heave displacement [m], velocity [m/s],

and acceleration [m/s2]

[30–32] and forces on the devices [33–35], and to (partially) model
the hydrodynamic interactions [36].

In the drive towards improved economic performance, control tech-
nology has been identified as a significant contributor [37]. The wave
energy control problem is to maximise absorbed energy, while respect-
ing the physical limits (displacement, force, etc.) of the WEC system.
For this reason, its solution actively contribute to the final productivity
of wave energy systems, and to their operative costs, also indirectly
addressing, in a Sustainable Development Goals framework [38], the
Goal 7 which is to ‘ensure access to affordable, reliable, sustainable and
2

i

modern energy for all’ [38]. In addition, the effective control of WECs
is seen as an important solution towards the societal challenge of mit-
igating climate change [39]. For WEC systems, most control strategies
are model-based, with models typically simplified to make them analyt-
ically/computationally tractable. However, in recent decades, there is
increasing interest in the use of system data in the control synthesis
process. The diversity of uses depends on the characteristics of the
control strategies which make use of data, and the different approaches
these lead to, depending on their availability, control aim, and type
of application [40–43]. Given the specific nature of the WEC con-
trol problem, we comprehensively investigate the main strategies that
exploit data in the wave energy control synthesis process, especially
given the difficulty in producing high-fidelity tractable models from
first principles. Basing the controller development on data obtained
from the real system (or high-fidelity models) can potentially address
the challenge of designing effective WEC controllers. Currently, few
informed guidelines on the effective incorporation of data in WEC
control processes are available in the literature. Motivated by this,
and by the overall discussion provided immediately above, this paper
provides the following main contributions and objectives:

• To provide clear preliminary definitions and a classification of the
different control techniques in wave energy which exploit data,
highlighting how the relationship between data and control (and
the assumptions about these two) changes the way the controller
functions, including the design of the controller itself.

• To highlight advantages and disadvantages of each of the consid-
ered types of ‘data-informed’ controllers, providing an exhaustive
review of the applications of these strategies in the wave energy
field, and clear guidelines on the appropriate solution choice for
a given context and objective.

• To detail the next steps towards efficient data-informed control of
WEC systems, showing the research needs to successfully guaran-
tee reliable utilisation of this kind of strategies in realistic WEC
systems.

The remainder of the paper is organised as follows: Section 2 briefly
introduces WEC working principles and WEC modelling. Section 3
describes the WEC control problem, including the role of mathematical
models in the synthesis process. A brief overview of common model-
based strategies, together with their limitations, are also presented.
Section 4 connects control design with the potential use of data in
the wave energy field, providing a classification system and a clear
distinction between data-based and data-driven control, individually
detailed within Sections 5 and 6. Section 7 critically compares different
types of controllers constituting the data-based and data-driven classes,
highlighting the opportunities and pitfalls of each approach. Finally,
Section 8 draws conclusions and provides potential research directions
to further the design of WEC controllers based on, or driven by, data.

2. WEC systems technology

WEC devices contain both an absorber body, converting hydro-
dynamic potential and kinetic energy into mechanical energy, and
a PTO system that further converts this mechanical energy into a
useful form, typically electrical [7,44,45]. In general, it is possible
to classify wave energy systems on the basis of their geometries and
working principles [45,46] into four main classes [46]: Point absorbers
(PAs) [47], oscillating water columns (OWCs) [48], terminators [49–
51], and attenuators [52].

2.1. WEC modelling

For simplicity, to introduce WEC dynamics, we consider a single1

degree of freedom (DoF) WEC point absorber device, based on the

1 It is important to note that, even if a heaving WEC is considered,
imilar arguments can be formulated for different multi-DoF devices (see, for
nstance, [53]).
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Fig. 1. Simplified schematics of a WEC point absorber.

chematic presented in Fig. 1. These devices typically consist of a
loating hull, able to extract energy from a single DoF by means of the
TO system (actuator), as shown in Fig. 1. The equation describing the
otion of such type of devices can be formulated as2:

𝑧̈ = 𝑓𝑟 + 𝑓 𝑙
ℎ𝑟 + 𝑓𝑒𝑥 + 𝑓 𝑛𝑙 − 𝑓𝑃𝑇𝑂 , (1)

here 𝑧 is the device heave displacement, 𝑓𝑟 represents the radiation
orce, 𝑓 𝑙

ℎ𝑟 is the linear component of the hydrostatic restoring force, 𝑓𝑒𝑥
s the wave excitation force, 𝑓 𝑛𝑙 represents a potential source of non-
inearity (e.g. those depending on displacement 𝑧 and velocity 𝑧̇, such
s nonlinear hydrostatic effects, mooring, or viscous drag forces [54]),
nd 𝑓𝑃𝑇𝑂 is the (controllable) force exerted by the PTO. With the
xception of 𝑓 𝑛𝑙, the terms in Eq. (1) are usually modelled following
inear potential flow theory [53] (assuming linear wave theory, small
scillations, and inviscid and irrotational flow).

The radiation force is typically modelled using Cummins’ equation
see [55]), while the wave excitation force 𝑓𝑒𝑥 is characterised in
erms of standard stochastic descriptions in the field of marine/ocean
ngineering (see e.g. [56]). Due to the random nature of the wave
orce, the consequent power absorption process is inherently non-
eterministic [57]. Assuming linear potential flow, both excitation and
adiation effects can be computed in terms of boundary element method
olvers, such as Nemoh [58].

The simplifying assumptions used for control-oriented modelling,
ssociated with linear potential flow theory, introduce a certain degree
f error [59]. Additionally, the application of controllers based on such
ssumptions, may directly invalidate these hypotheses. Specifically, lin-
arised models assume small device motion, but the application of WEC
ptimal control strategies virtually always maximise absorbed energy
y exaggerating the motion, leading to the so-called WEC ‘modelling
aradox’ [12], further amplifying the inherent modelling error. As
result, these errors can influence the performance of model-based

ontrollers [60].

. WEC energy-maximising control problem

As mentioned in Section 1, the main control objective is the max-
misation of the energy the device absorbs over a certain time interval
= [𝑎, 𝑏] ⊂ R+. Considering (mechanical) absorbed energy, a suitable

erformance metric is:

(

𝑓𝑃𝑇𝑂
)

= 1
𝑇 ∫

𝑏

𝑎
𝑓𝑃𝑇𝑂(𝜏)𝑧̇(𝜏)𝑑𝜏, (2)

2 From now on, the dependence on 𝑡 is dropped when clear from the
context.
3

where 𝑇 = 𝑏 − 𝑎. Other performance metrics are also possi-
ble, ideally with a view towards minimisation of the levelised cost
of energy. To avoid exceeding physical system specifications, con-
straints can be included in the optimisation process. Through max-
imisation/minimisation of the performance function, it is possible
to deal with such limitations (e.g. on maximum displacement 𝑧𝑚𝑎𝑥,
velocity 𝑧̇𝑚𝑎𝑥, and control force 𝑓𝑃𝑇𝑂 [61]) by means of soft constraints
(minimising in an average fashion excessive values that should be
constrained, or minimising the violation of the boundaries) or with
hard constraints (always ensuring that the variables to be restricted
belong to a defined set). Soft constraints can be implemented via
additional terms 𝑆𝐶 (e.g. proportional to the squared norm of 𝑧𝑚𝑎𝑥,
̇𝑚𝑎𝑥, and/or 𝑓𝑃𝑇𝑂) within  as:


(

𝑓𝑃𝑇𝑂
)

= 1
𝑇 ∫

𝑏

𝑎
𝑓𝑃𝑇𝑂(𝜏)𝑧̇(𝜏)𝑑𝜏 + 𝑆𝐶 , (3)

Hard constraints can, instead, be introduced along with Eq. (2), as:

⎧

⎪

⎨

⎪

⎩

|𝑧(𝑡)| ≤ 𝑧𝑚𝑎𝑥,

|𝑧̇(𝑡)| ≤ 𝑧̇𝑚𝑎𝑥,

|𝑓𝑃𝑇𝑂(𝑡)| ≤ 𝑓𝑃𝑇𝑂,𝑚𝑎𝑥,

(4)

ith ∀𝑡 ∈  , and
{

𝑧𝑚𝑎𝑥, 𝑧̇𝑚𝑎𝑥, 𝑓𝑃𝑇𝑂,𝑚𝑎𝑥
}

⊂ R+, leading to a constrained
optimisation problem. There may be additional constraints on the grid
side [62], while a flow coefficient, in the OWC case [63], has also been
considered. In the general case, the optimal control problem (OCP) to
be solved by the energy-maximising controller can be written as:

𝑓opt
𝑃𝑇𝑂 = arg max

𝑓𝑃𝑇𝑂

(

𝑓𝑃𝑇𝑂
)

s.t.:
WEC dynamics (1),
Motion and input constraints (4).

(5)

The solution of the OCP in (5) is dependent on the nature of the
system mathematical model employed, trying to achieve a balance
between fidelity and analytical/computational complexity [37], the
control freedom permitted by the set of constraints in (4), and the
nature of the wave excitation [57], noting that the ocean presents an
ever changing environment. Ideally, the control philosophy should:

• Take maximum advantage of information regarding 𝑓𝑒𝑥,
• Be relatively insensitive to errors in the system dynamical model,

where model-based control is employed,
• Strictly respect the system physical constraints in (4), since off-

shore repairs are expensive [64], and
• Require as little user intervention as possible.

Ultimately, the control philosophy changes significantly, depending on
the information available at the design stage, e.g. a WEC model or a
set of data.

3.1. Outline of standard WEC control approaches

In the WEC control literature, a wide variety of control strategies
have been reported [65], with the objective of solving the OCP pre-
sented in Section 3. One categorisation observes the dichotomy of
optimisation-based and non-optimisation-based controllers [66]. The
first category includes all controllers that require numerical optimisa-
tion to be performed online for the control action to be calculated,
including e.g. model predictive control (MPC) [67,68], spectral and
pseudo-spectral control [69,70], and moment-based control [71]. For
a survey of the main WEC control strategies belonging to this category,
the reader can refer to [72]. The second type, i.e. non-optimisation-
based control, includes all controllers aiming to reach the maximum
power transfer by trying to emulate the so-called impedance-matching
condition [73–75]. Relevant examples of this type of controllers are

given by the linear time invariant controller [75,76], which tries to
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Fig. 2. Typical WEC control system: Schematic representation of the control loop.
pproximate the impedance-matching condition for a band of frequen-
ies according to the operating conditions of the WEC system under
nalysis, and by linear quadratic Gaussian control [77,78], designing
n optimal causal controller for a WEC by solving a non-standard linear
uadratic Gaussian OCP.

.2. The role of models in WEC control

Most solutions to the control problem in Section 3 are model-based
nd, in general, rely on a fixed model, obtained by means of first
rinciple modelling or through the use of off-line system identification
rocedures [79]. Such a model can be used within the control design
rocedure for a number of purposes, including estimation of the force
𝑒𝑥 acting on the WEC [80], which is otherwise unmeasurable. Con-
equently, the disturbance can be considered in the optimisation stage
s ‘known’ at each instant, and can also be predicted using forecasting
ethods [30,81]. In addition, models allows the system dynamics to

e propagated into the future, enabling direct hard constraint handling
uring the control computation. The role of WEC models in the syn-
hesis process of typical controllers for wave energy systems is shown
n Fig. 2. However, the achievable model-based control performance
s a direct function of the employed model fidelity. The inevitable
odelling errors (parametric or from unmodelled dynamics), if severe,

ould lead to unpredictable behaviour of the device, and even cause
amage. On the other hand, high-fidelity models may not permit a
ontrol solution in real time. We note that, where system identification
s used on-line to tune the model, a reasonable level of model fidelity
ay be achievable across a wide range of operating conditions.

Motivated by the issues associated with a controller purely based
n an approximated model, we explore, in this study, the opportunities
nd pitfalls that arise from the exploitation of data of various types in
he control synthesis for WEC applications.

. WEC control and data: Definitions and classification

Control strategies in wave energy, which make use of data in their
ynthesis, can be distinguished by the way in which data are collected
nd treated, and on the role that data have in the overall process.

This variety of possible interactions between data and control re-
ults in different approaches, for example leading to (rapidly) adaptive
ontrol systems, or in fixed control laws with control parameters that
dapt slowly over time to the environment around and the (possibly
arying) plant itself. Included in this plethora of possibilities are the set
f model-based controllers, formulated and/or adapted using real-time
EC data.
To classify these data-based (or data-driven) strategies, preliminary

efinitions are formulated, which constitute part of the contributions of
his work, in Sections Section 4.1, and 4.2, respectively. It is important
o highlight that, in the formulation of such definitions and classifica-
ions, an effort is made to provide general formulations, even if the
ocus of the work is specifically on wave energy control applications.
4

T

4.1. Definitions: Modelling, adaptation, storage, and control synthesis

In the analysis of the inter-relation between the control system and
system data, the primary definition relates to data itself. In this context,
data can be defined as any kind of information that is generated from
the process to be controlled, usually describing the system reaction to
the application of an external action (controllable or uncontrollable
input), under certain condition and within a specific time frame.

Regarding the utility of data in controller synthesis, different stages
can be identified. Each stage has a specific role and goal, and their
implementation affects the final control outcome, its capabilities, and
characteristics. In particular, we identify modelling, model adaptation,
control synthesis, and data storage stages:

• Modelling: The stage in which, given a set of data, a dynamical
model of the system is developed. The techniques used to perform
this task usually fall under the moniker of system identification.

• Model adaptation: The process in which an already developed
model is modified (entirely, or partially, e.g. in some of its pa-
rameters, if a parameterisation is present) to better reproduce the
data gathered online when the system is operating.

• Control synthesis: The process of generating a structure (i.e. a
parametrised law, or a process) that produces the control action,
given the available information (i.e. a model, a dataset, or a single
data point).

• Data storage: The selection and ordering of data that are needed
in the development of the controller, from the set of measured
data. This operation generates a dataset that is dynamical (i.e. it
changes with time) whenever it is fed (also) by data that are
generated online after an initial control synthesis has been per-
formed; otherwise, the obtained dataset is static. In the dynamic
case, part of the data storage process is the application of a
suitable forgetting strategy, aimed at keeping a (reduced) repre-
sentative set of data, avoiding potential overflow, or insensitivity
to new data, during system operation.

Not all the above stages are always present. A modelling stage may,
as already noted in Section 3.2, increase the capabilities of the devel-
oped control. Also, a data storage stage, ‘keeps track’ of the system
‘experience’ in terms of data, constituting a memory of past operation.

These definitions can also include the different time scales at which
these operations are performed. Measurements from the WEC system,
and/or incident waves, constitute the raw data logged at every sam-
pling instant 𝑡 = 𝑘𝑇𝑠, with 𝑘 ∈ N+. To generate the dataset that is
(ultimately) adopted during the control synthesis, certain preprocessing
operations (e.g filtering, averaging, etc.) can be applied. In particular,
final data are generated every 𝑇𝑑𝑎𝑡𝑎 𝑔𝑒𝑛., while a measure of the per-
formance function  can be produced every 𝑇 eval.. These latter two
periods usually coincide (i.e. 𝑇𝑑𝑎𝑡𝑎 𝑔𝑒𝑛. = 𝑇 𝑒𝑣𝑎𝑙.). Equally, whenever
modelling and/or adaptation stages are present, these are performed
every 𝑇𝑚𝑑𝑙. 𝑎𝑑𝑎𝑝𝑡, while a new controller is synthesised every 𝑇𝑐𝑡𝑟𝑙. 𝑠𝑦𝑛𝑡ℎ..
he controller, however, produces a new control action every 𝑇𝑐𝑡𝑟𝑙.. The
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Fig. 3. Classification of DB and DD control systems in wave energy: working principles and data flows.
ampling periods, as defined above, can be related by the following
imple inequality:

𝑠 ≤ 𝑇𝑐𝑡𝑟𝑙. ≤ 𝑇𝑑𝑎𝑡𝑎 𝑔𝑒𝑛. = 𝑇 𝑒𝑣𝑎𝑙. ≤ 𝑇𝑐𝑡𝑟𝑙. 𝑠𝑦𝑛𝑡ℎ. ≤ 𝑇𝑚𝑑𝑙. 𝑎𝑑𝑎𝑝𝑡. (6)

It is important to notice that the control action is not necessarily applied
at the same pace instruments generate raw data, and for this reason,
𝑇𝑠 ≤ 𝑇𝑐𝑡𝑟𝑙.. The same holds for 𝑇𝑠 ≤ 𝑇𝑑𝑎𝑡𝑎 𝑔𝑒𝑛. = 𝑇 𝑒𝑣𝑎𝑙., since the
preprocessing operations to generate the final data or measure  may
require multiple raw measurements.

As detailed within Sections 4.4 and 4.5, these inequalities hold
for all the controllers analysed in this study, and the specific values
attached to these periods is strongly related to the type of control
strategy that is consequently designed.

4.2. Definitions: Data and data flow

Data can be produced in different ways. An obvious way is to
measure some (output) variables from the real system (process) to
be controlled, when the system is operating. This type of data gives
information on the overall system which has a degree of uncertainty
defined only by any effect that pollutes the data itself (e.g. noise
or measurement resolution of the instrumentation). A second path to
obtain data is by means of system simulation, exploiting a previously
formulated model. In this case, the uncertainty on the information
obtained is given by the fidelity of the adopted model (higher fidelity
→ lower uncertainty).

A second clarification relates to the offline and/or online data
available during controller synthesis:

• Offline data: Stored data produced from a different stage with
respect to control synthesis.

• Online data: Data employed and/or stored at the same rate (in
time) as their generation.

As a consequence of such definitions, whenever an online data flow
is present in a strategy that adopts a data storage stage, the resulting
dataset is effectively a dynamical dataset.

Depending also on the data usage, additional requirements can
be present. For example, whenever data are adopted to generate a
model of the process to be controlled, these must satisfy the so-called
fundamental lemma by Willems [82], related to concept of persistence
of excitation [82–85]. The lemma has clear implications for system
identification, and data-based modelling. stating a condition for the
data to be sufficiently informative to uniquely identify the system
model within a given model class.
5

4.3. Classification system: Data-based and data-driven control

A fundamental distinction between controllers making use of data
relates to the type of data flows holds between data-based (DB) and
data-driven (DD) control strategies, specified by Hou and Wang [40]
for general classes of control applications.

• DB control makes use of a static dataset, without any sort of
online data flow involved.

• DD control adopts a dynamical dataset and, for this reason, an
online data flow is present in the process.

In the DD case, the adoption of a dynamical dataset does not exclude
the presence of offline data, obtained before the control synthesis stage,
which can be augmented by online data flow, affecting future controller
synthesis stages.

4.4. Classification of controller types

A second distinction between the considered controllers can be
formulated on the basis of the activities and stages relating to control
synthesis. With reference to Section 4.1, three distinct types of control
strategy can be identified:

• Type I: Strategies that assume the performance of a modelling,
and/or a model adaptation, stage on the basis of a stored (static
or dynamic) dataset prior to the control synthesis stage.

• Type II: Strategies which need past (and eventually present)
data to be stored, but nevertheless do not assume any modelling
and/or a model adaptation stage to synthesise the controller.

• Type III: Strategies which perform control synthesis at every
𝑇𝑑𝑎𝑡𝑎 𝑔𝑒𝑛.∕𝑇 𝑒𝑣𝑎𝑙., purely on the basis of the information produced
online at the present instant, and without any form of modelling,
data batch, or storage involved.

Combining the definitions given to DB/DD classes (Section 4.3) and
controller types (Section 4.4), five classes of controller can be identi-
fied:

• Data-based, type I (DB1).
• Data-based, type II (DB2).
• Data-driven, type I (DD1).
• Data-driven, type II (DD2).

• Data-driven, type III (DD3).
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A graphical representation of the working principles and data flow,
characterising the different classes and types of controllers identified,
is shown in Fig. 3. Since Type III control strategies exploit only present
data (unique to DD control) to perform control synthesis (thus involving
only an online data flow), no DB Type III controller can be formulated.

4.5. Classification system: Relationship between time scales, classes, and
types

Having presented the classification system in Sections 4.3 and 4.4,
some considerations can be made regarding the set of inequalities
in Eq. (6). Indeed, the identified classes are strongly related to the
values assumed by the different periods/scales defined in Section 4.1.
The first distinction is related to the broad DB/DD classes. As a starting
point, 𝑇𝑐𝑡𝑟𝑙. 𝑠𝑦𝑛𝑡ℎ. can be taken as infinite for all DB controllers, since
control synthesis is performed only once, offline, before deployment.
The same happens in the case of DB1 control systems with 𝑇𝑚𝑑𝑙. 𝑎𝑑𝑎𝑝𝑡
(note that DB2 does not include any modelling stage). In contrast, for
DD controllers, both 𝑇𝑐𝑡𝑟𝑙. 𝑠𝑦𝑛𝑡ℎ. and 𝑇𝑚𝑑𝑙. 𝑎𝑑𝑎𝑝𝑡 are finite.

Also in DD control, 𝑇 𝑒𝑣𝑎𝑙./𝑇𝑑𝑎𝑡𝑎 𝑔𝑒𝑛. and 𝑇𝑐𝑡𝑟𝑙. 𝑠𝑦𝑛𝑡ℎ. are strongly
inked, being identical in DD3, in contrast to most of the controllers
n DD1 and DD2. Since DD3 does not involving a storage process, the
ontroller is (re)synthesised every time new data is generated. In DD1
nd DD2, the data can be effectively stored, allowing a disparity in
imescales between control synthesis and data production.

Finally, the relationship between 𝑇 𝑒𝑣𝑎𝑙., 𝑇𝑐𝑡𝑟𝑙., and 𝑇𝑠 is related to
he way in which the control strategies resolve the issues of stochastic-
ty introduced by the wave disturbance and constraint handling. Since
he DD2 and DD3 strategies are model free, a process of averaging and
iltering in the evaluation of  is required, to reduce the variability
f the absorbed energy given by a realistic ocean wave [57] over a
elatively short timescale. The definition of  as a function of the
verage value of past measurements, requires 𝑇 𝑒𝑣𝑎𝑙. to be longer than
𝑐𝑡𝑟𝑙. and 𝑇𝑠.

Similarly, displacement, velocity, and control action constraints in
D2 and DD3 are accommodated in an average sense, with penalty

erm usually added to  . This constraint handling approach is nat-
rally more conservative than employment of hard constraints and
equires careful tuning to guarantee constraint satisfaction across the
omplete operational space. In contrast, DD1 strategies, which adopt a
EC model, enable wave contribution estimation and exact constraint

andling, without the need of an averaging approach. For this reason,
n DD1 control, usually 𝑇 𝑒𝑣𝑎𝑙. = 𝑇𝑐𝑡𝑟𝑙..

.6. Classification system: Considered works

In the proposed classification and survey, studies in which data
re effectively adopted in the synthesis of the WEC control strategy
re considered. For this reason, considering that the field of predictor
esign which makes use of time-series forecasting [30,32,86,87], is
ffectively data-based, we consider only those studies in which data are
irectly responsible for either the control synthesis procedure itself, or
nvolved in building the model on which the entire synthesis process is
ased, not considering the studies in which data are used only to tune
n already synthesised control strategy, e.g. [88].

. Data-based control

As presented in Section 4, DB control strategies adopt a static
ataset, used to effectively ‘develop’ the control solution. Within DB
ontrol, two main types of controllers are present: DB1, which makes
se of data to build the model on which the control strategy is designed,
nd DB2, which employs the produced data to directly ‘develop’ the
ontroller, avoiding any modelling stage. In particular, DB1 strategies
mploy data to reduce the uncertainty present in the model employed
or control synthesis. In DB2, in contrast, the use of data is often
imed at reducing the complexity of the synthesised control system, or
eplicating the behaviour of controllers that, because of computational
equirements, could only be deployed in simulated environments.
6

t

.1. Data-based (DB) control: Type I

DB1 accommodates all the control strategies which adopt a model
uilt offline from datasets compiled from previous tests or experience.
ince the model is developed from data, rather than first principles,
ll the control systems synthesised from a system identification pro-
ess [79] fall under this category. Moreover, since data are used only
nce offline during the identification stage, control synthesis can be
chieved using well-established model-based techniques, unlimited by
ata management requirements. As a consequence, model-based syn-
hesis more easily attracts guarantees of stability and convergence, not
lways easily (or fully) demonstrated in the case of model-free control
trategies [41].

While system identification techniques have became popular in re-
ent years in the wave energy field [54], a comprehensive review of all
tudies concerning this topic is beyond the scope of this work, which is
rimarily focused on different control applications based on, or driven
y, data. Nonetheless, in the remaining part of this section, a brief
verview of the main studies on the subject is presented, in an attempt
o provide the reader with insight on the (DB1) data-based approach
o WEC control-oriented modelling. For reviews of model-based WEC
ontrol strategies, the reader is referred to [65,72,89–91].

In the wave energy field, a comprehensive study on the application
f system identification, in the wave energy context, is presented
n [92,93], including the design of identification-oriented tests to be
erformed on a point absorber in a numerical wave tank [92], to-
ether with the consequent development of control-oriented models,
sing different black-box identification methods [93]. Similar tests
re employed to perform grey-box identification in [94]. In [95],
ystem identification is performed to find a state-space model of a
oint absorber, subsequently employed by a predictive fuzzy logic
ontroller [96]. In [97], identification-oriented multisine signals are
esigned to perform experimental tests on a scaled WEC, with the
esulting responses used to identify a black-box model of the system.

scaled multi-DoF WEC model is also identified from experimen-
al tests in [98], and the obtained model is adopted to synthesise
ifferent energy-maximising control strategies, subsequently experi-
entally assessed. In [99], a nonlinear reduced-complexity model is
etermined following a data-based moment-matching approach, on the
asis of simulated data. Data obtained in a simulated environment
re also adopted in [100], where a nonlinear control-oriented WEC
odel, including nonlinear Froude–Krylov effects [101], is identified

nd subsequently employed to synthesise a moment-based control so-
ution. In [102], recorded tank test data are used to identify nonlinear
olmogorov–Gabor models. Applications of system identification tech-
iques to experimental data from tests on scaled OWC devices can
e found in [103,104], where the authors identify the dynamical
elationship between free-surface elevation and water column displace-
ent inside the OWC chamber. In [105], the same dataset is used

o model the OWC dynamic system describing the turbine pressure
rop between the chamber and atmosphere, driven by the variation in
ree-surface elevation. In [106], a parametric model of the dynamics
f a point absorber is obtained from wave tank tests, and used to
ynthesise a Linear Time Invariant Controller strategy, which is then
xperimentally assessed. The studies in [59] investigate the process
f identifying a model from data obtained in a numerical wave tank,
xciting the system with different classes of signals, evaluating the
ncertainty on the obtained models, and assessing the performance
f a corresponding robust control strategy. In [107], the influence
f the excitation amplitude in the process of system identification is
ighlighted, with similar wave tank experiments. Finally, in [108],
dentification-oriented signals are applied to a WEC coupled with a
ooring system (usually neglected in control-oriented models) in a sim-
lated environment, and a corresponding empirical frequency response
stimate is used as representative non-parametric linear description of

he system to synthesise a reactive controller.



Renewable and Sustainable Energy Reviews 188 (2023) 113877E. Pasta et al.

l
w
p
(
o
i

5

o
A
t
b
t
a
w
n
r
i

i
p
a
n
o
c
o
w
p
(
a
O
r
h
t
O
[
b

Table 1
Summary review table: data-based
control-oriented modelling studies.
The studies under analysis are
divided on the basis of the type
of data adopted in the system
identification process, which could be
the result of a numerical simulation
(Sim.), or of experimental tests (Ex.).

Ref. Type of data WEC type

Sim. Ex.

[93] ∙ PA
[92] ∙ PA
[94] ∙ PA
[95] ∙ PA
[97] ∙ PA
[98] ∙ PA
[99] ∙ PA
[100] ∙ PA
[102] ∙ PA
[103] ∙ OWC
[104] ∙ OWC
[105] ∙ OWC
[106] ∙ PA
[59] ∙ PA
[107] ∙ PA
[108] ∙ PA

Table 1 summarises the studies discussed within this section, high-
ighting the source of data and type of WEC considered. In general,
hen experimental data are not available, identification data are com-
uted from high-fidelity simulation environments, including effects
such as nonlinear hydrodynamics or mooring dynamics) which are
therwise neglected if standard linearisation approaches are adopted
n a physics-based modelling stage.

.2. Data-based control: Type II

DB2 constitutes control strategies which are directly synthesised
ffline from a static dataset, without any preliminary modelling stage.
ll the strategies belonging to this category exploit data in an attempt

o solve some of the issues related to the adoption of optimisation-
ased control strategies that make explicit use of models (see also
he discussion provided in Section 3.2). In particular, DB2 controllers
re often synthesised from data obtained in simulated environments,
here limitations given by real-time computational capabilities are
ot present/considered. In such cases, the controller is optimised to
eplicate an optimal control solution that would not be implementable
n practice, due to its potentially prohibiting computational burden.

An example of a controller synthesised from simulated data is shown
n [109], where a nonlinear MPC strategy (presenting substantial com-
utational requirements) is first applied in a simulated environment,
nd the obtained controller data are used to train an artificial neural
etwork (ANN) to mimic the nonlinear MPC behaviour. The ANN
utput layer activation function is designed to guarantee the same
onstraint on the control action as the original MPC. In [110], the
ptimal velocity profile for a PA constrained in heave displacement,
hich is shown to be quadratic, is solved in simulation, with the
roduced data used offline to synthesise a controller able to generate
online) the optimal velocity to be tracked. The study in [111] analyses

controller based on an ANN trained on simulated data from an
WC model. The controller obtained computes an optimal velocity

eference able to avoid the stall condition [119], and its performance
as been experimentally assessed on a hardware-in-the-loop facility. In
he studies [63,112,117], and [116], ANNs are also adopted to control
WC reference velocity in constrained conditions. Advancing further,

63,117] constrain the turbine flow coefficient [48], while [112,116]
ound the grid active, and reactive, power signals in an attempt to
7

avoid voltage dips faults [120]. Another application of an ANN is
proposed in [113], in which the parameters of height and spread
describing the Gaussian neurons of the network are optimised using an
evolutionary algorithm in a simulated environment. Such a trained net-
work guides a time-varying damping to maximise the extracted energy.
In [114,115], a biologically inspired ANN, termed a central pattern
generator, is used to define the latching period of a latching control
law [121]. The ANN (which tries to replicate the neurological system
that controls the locomotion mechanism of lampreys) weights are op-
timised offline to maximise the absorbed power, using simulated data.
Finally, in [118], an ANN is used to approximate the solution (which is
not available in closed-form) of a nonlinear non-causal optimal control
strategy. Network training (and consequent weight optimisation) is
performed offline by means of a policy iteration mechanism, on the
basis of data coming from the application of the original control law in
simulated irregular wave conditions.

To compare the studies detailed to this point (and also those pre-
sented in the following sections), a summary table with all the consid-
ered characteristics (legends described in Table 2) is offered in Table 3.
Alongside each corresponding classification, each reference has been
evaluated in terms of the type of control law (i.e. direct control action,
reference velocity to be tracked, or parametrised controller), constraint
handling capabilities (input/output constraints, and if constraints are
treated in a soft or hard manner — see the discussion provided in
Section 3). Moreover, since one of the issues to be solved within the
WEC control problem is the inclusion of any kind of information related
to the wave disturbance, we highlight the way in which this is treated
by each study. In addition, any proofs of convergence and stability
are also highlighted, to underline eventual opportunities for further
theoretical development on the reviewed control strategies. Finally, the
design complexity (considered in terms of number of parameters to be
designed) is detailed, together with the conditions under which each
strategy has been assessed (i.e. simulation with linear/nonlinear model
and/or experimental tests, type of waves adopted, and device class),
and the performance of an optimisation process in real-time during the
computation of the applied control action.

Regarding the DB2 studies discussed within this Section, we note
that all the analysed studies employ some sort of ANN to synthesise the
controller. In particular, these networks are ostensibly used to mimic a
strategy that is considered optimal (e.g. biologically inspired networks
which mimic the behaviour of real fish in [114,115], or a deep neural
network which mimics a nonlinear MPC in [109]). From Table 3,
note that none of the DB2 strategies perform online optimisation. The
entire control synthesis is performed once offline, and the data-based
approach is adopted precisely to avoid real-time implementation of
what can be a potentially prohibiting control solution. Finally, it can be
highlighted that, in a field like wave energy, in which obtaining data
in a controlled environment is not trivial, DB2 strategies, potentially
coupled with high-fidelity simulation, can (at least partially) provide a
solution to the issues related to the modelling uncertainty linked to the
(usually linear) approximation of WEC hydrodynamics [11,12]. Data
obtained following this methodology can also be employed in direct
control synthesis approaches based on data [122,123] which, in other
renewable energy applications, such as wind energy [124], are already
well-established.

6. Data-driven control

As defined in Section 4.3, DD control strategies adopt a dynamic
dataset, continuously updated using an online data flow (see also
Fig. 3). DD strategies can be divided into three main classes (DD1, DD2,
and DD3), depending on the presence of a model, and the adoption of
a data storage mechanism prior to the control synthesis, as discussed in
Section 4.4. It is important to highlight that this classification already

reflects well-known classes of controllers [125]: (Indirect) adaptive
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Table 2
Reference guide to read Tables from 3 to 7.

Column Brief description

Ref. List of reviewed studies.
Type Classification of the control strategy, i.e. DB1, DB2, DD1, DD2, DD3.
Control Type of control law that the study proposes:

• 𝑓𝑃𝑇𝑂 : Output of the control strategy is the direct optimisation of the PTO force.
• 𝑣𝑟𝑒𝑓 : Output of the control strategy is the optimisation of the WEC reference velocity.
• Par.: Control law that describes the 𝑓𝑃𝑇𝑂 is parametrised, and the output of the control strategy is the optimisation of the parameters

characterising it.
 Type of objective function that the control strategy under study tries to optimise:

• 𝑓 (𝐸): Objective function that depends directly and only on the absorbed energy.
• 𝑓 (𝐸, ⋅): Objective function that depends directly on the absorbed energy, but includes other terms/goals.
• Oth.: Objective function that depends indirectly on absorbed energy (e.g. on physical considerations that attempt to drive the WEC into

maximum absorption conditions), or on other terms/goals.
Constr. handl. Way in which the constraints on 𝑓𝑃𝑇𝑂 (control force) and on measured outputs 𝑦 (like position 𝑧, velocity 𝑧̇, etc.) are handled:

• Nothing: The analysed study does not mention any constraint handling.
• ⧫: Constraint handled in a soft manner.
• ⧫: Constraint handled in an hard manner.

𝑓𝑒𝑥, 𝜂 know. Strategies that involves the knowledge of the excitation force 𝑓𝑒𝑥 or wave elevation 𝜂:
• 𝑆𝜂 : Strategies that exploit the knowledge of the wave elevation spectrum 𝑆𝜂 , or of some of its characteristics, e.g. energetic period 𝑇𝑒, peak

period 𝑇𝑝, or significant height 𝐻𝑠.
• 𝑡: Strategies that exploit the knowledge of 𝑓𝑒𝑥, 𝜂 at the current instant (either via estimators or by assuming full knowledge).
• 𝑃 : Strategies that exploit the knowledge of 𝑓𝑒𝑥, 𝜂 over a time window of future instants (either via predictors or by assuming full

knowledge).
RT opt. Studies involving the online solution in real-time (RT) of an optimisation problem to compute the control action.
Proof Studies that report a proof (analytical and/or numerical) of convergence (Conv.) and/or stability (Stab.), or that at least refer to studies

reporting such proofs for the control strategy under study.
Design compl. Design complexity of the control strategy under study (in terms of design parameters):

• ■: The strategy presented in the study involves the design of 1 to 4 parameters during the control development.
• ■: The strategy presented in the study involves the design of 5 to 8 parameters during the control development.
• ■: The strategy presented in the study involves the design of 9 to 12 parameters during the control development.
• ■: The strategy presented in the study involves the design of more than 12 parameters during the control development.

Res. eval. Conditions in which the study assesses the strategy performances:
• L: Performance is assessed by means of a linear model of the WEC system.
• NL: Performance is assessed by means of a nonlinear model of the WEC system.
• Ex.: Performance is assessed by means of experimental results.

Wave eval. Studies that tested the proposed strategy under regular (R) and/or irregular (I) wave conditions.
WEC type The type of WEC that is adopted in the studies (as described in [46]):

• PA: Point absorber.
• OWC: Oscillating water column.
• Ter.: Terminator.
• Att.: Attenuator.
Table 3
Summary review table: DB2 studies.

Ref. Type Control  Constr.
handl.

𝑓𝑒𝑥,𝜂
know.

RT
opt.

Proof Design
compl.

Res. eval. Wave
eval.

𝑓𝑃𝑇𝑂 v𝑟𝑒𝑓 . Par. 𝑓 (𝐸) 𝑓 (𝐸, ⋅) Oth. 𝑦 𝑓𝑃𝑇𝑂 𝑆𝜂 𝑡 𝑃 Conv. Stab. L NL Ex. R I

[109] DB2 ∙ ∙ ⧫ ∙ ■ ∙ ∙
[110] DB2 ∙ ∙ ⧫ ∙ ∙ ∙ ■ ∙ ∙
[111] DB2 ∙ ∙ ⧫ ■ ∙ ∙ ∙ ∙
[63] DB2 ∙ ∙ ⧫ ∙ ■ ∙ ∙
[112] DB2 ∙ ∙ ⧫ ∙ ∙ ■ ∙ ∙
[113] DB2 ∙ ∙ ∙ ∙ ■ ∙ ∙ ∙
[114] DB2 ∙ ∙ ∙ ■ ∙ ∙
[115] DB2 ∙ ∙ ∙ ■ ∙ ∙
[116] DB2 ∙ ∙ ⧫ ∙ ■ ∙ ∙
[117] DB2 ∙ ∙ ⧫ ∙ ■ ∙ ∙
[118] DB2 ∙ ∙ ⧫ ⧫ ∙ ∙ ∙ ∙ ■ ∙ ∙
8
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Table 4
Summary review table: DD1 studies.

Ref. Type Control  Constr.
handl.

𝑓𝑒𝑥,𝜂
know.

RT
opt.

Proof Design
compl.

Res. eval. Wave
eval.

𝑓𝑃𝑇𝑂 v𝑟𝑒𝑓 . Par. 𝑓 (𝐸) 𝑓 (𝐸, ⋅) Oth. 𝑦 𝑓𝑃𝑇𝑂 𝑆𝜂 𝑡 𝑃 Conv. Stab. L NL Ex. R I

[130] DD1 ∙ ∙ ⧫ ⧫ ∙ ∙ ∙ ∙ ∙ ■ ∙ ∙ ∙
[131] DD1 ∙ ∙ ⧫ ⧫ ∙ ∙ ∙ ∙ ∙ ■ ∙ ∙
[132] DD1 ∙ ∙ ⧫ ∙ ∙ ∙ ∙ ∙ ■ ∙ ∙
[133] DD1 ∙ ∙ ⧫ ∙ ∙ ∙ ∙ ∙ ■ ∙ ∙
[134] DD1 ∙ ∙ ⧫ ⧫ ∙ ∙ ∙ ■ ∙ ∙ ∙
[135] DD1 ∙ ∙ ⧫ ⧫ ∙ ∙ ∙ ∙ ■ ∙ ∙
[136] DD1 ∙ ∙ ⧫ ⧫ ∙ ∙ ∙ ∙ ■ ∙ ∙ ∙
[137] DD1 ∙ ∙ ∙ ∙ ■ ∙ ∙
[138] DD1 ∙ ∙ ⧫ ⧫ ∙ ∙ ∙ ■ ∙ ∙
[139] DD1 ∙ ∙ ⧫ ⧫ ∙ ∙ ∙ ■ ∙ ∙
[140] DD1 ∙ ∙ ⧫ ⧫ ∙ ∙ ∙ ■ ∙ ∙
[141] DD1 ∙ ∙ ⧫ ⧫ ∙ ∙ ∙ ■ ∙ ∙
control strategies [126] are allocated to DD1, learning-based con-
trol [127] is in DD2, while extremum-seeking control (ESC) [128] and
maximum power point tracking (MPPT) [129] controllers constitute
DD3. Note that DD3 has no equivalent in the DB controller class,
existing only due to the presence of online data flow.

6.1. Data-driven control: Type I

DD1 accommodates all the strategies that make use of a modelling,
or model adaptation, stage using a dynamic dataset prior to the control
synthesis stage. In this way, during operation, data affect the control
synthesis process by actively acting on the adopted model of the plant,
and the corresponding evaluation of  over time, reflecting both the
actual WEC process and its estimated performance. As detailed in
Section 3.2, the presence of a model enables the incorporation of
wave estimation and forecasting tools (and, consequently, the possible
inclusion of the wave contribution in  ). For this reason, most of the
strategies belonging to DD1 are predictive control strategies.

Examples of DD1 predictive controllers can be found in [135,136],
developing adaptive pseudo-spectral control for a point absorber. These
strategies exploit a fixed model structure previously built by means
of Jacobian linearisation of first principles equations, and perform
online adaptation of the parameters of a model on the basis of data
collected from the real system (which, in the case of [135,136], is
the WEC simulated in a high-fidelity environment). In [132,133], a
previously built first principle model is adopted, and the uncertain pa-
rameters related to mechanical and hydrodynamic effects are adapted
online following an exergy minimisation approach. Such a continuously
adapted model is used to generate an optimal velocity reference to be
tracked, in a standard cascade loop fashion. Similarly, in [130], an
adaptive parameter estimation algorithm continuously modifies (on-
line) the radiation and excitation parameters within a simplified model
structure, and the resulting model is employed to synthesise a linear
non-causal optimal control strategy. A comparable adaptive parameter
estimation mechanism is employed in [131], to identify and update
online frequency-dependent parameters in a WEC model, subsequently
used by a MPC strategy to adapt to possible changes in the system or
wave conditions. A nonlinear MPC strategy is also developed in [141],
where the model is built using a Gaussian process [142] representation
from data obtained online. This continuously updated model, claimed
to have low computational requirements, is used to perform real-time
optimisation required by the nonlinear MPC. A nonlinear model is
repeatedly built from online data using an ANN in [137], and then
used, after an inversion process, to compute the corresponding optimal
control action. In [134], a model is continuously identified online and
utilised in the optimisation of a fuzzy logic controller [96] while,
9

in [138–140], an adaptive dynamic programming [143] approach is
used to control a point absorber. The strategy adopts a model of the
system, and uses data to adapt online the optimal cost value, in an
attempt to reduce the error given by the mismatch between model and
real system, potentially improving the energy absorption capabilities
of the controller. Table 4 presents a summary of the reviewed studies,
confirming the diversity of approaches within this category.

Table 4 demonstrates that all the reviewed strategies exploit in-
formation regarding the present contribution of the wave, possible
due to the availability of a WEC model (as discussed before in Sec-
tion 3.2), characteristic of this category. Moreover, with the exception
of
[138–140], all DD1 strategies assume availability of future wave in-
formation. The use of such knowledge, typical of predictive controllers,
allows hard constraints (both on the outputs and corresponding control
action) to be handled, as clarified in Table 4. Finally, we note that,
in DD1 strategies, the model provides an additional output (that can
also be exploited offline for other purposes, such as simulation or
performance assessment). Given the nature of wave energy systems
(which are continuously excited even in uncontrolled scenarios), the
fundamental lemma [82] on the need of persistent excitation holds,
allowing the process of identification and adaptation which charac-
terise DD1 controllers. In [131–133,135,136], the output is an adapted
model, coming from an initial system obtained from first principle
modelling. Other studies, such as [137,141], do not adapt a model, but
generate a new one from the data produced online. Finally, [138–140]
adapt an additional contribution (the critic in the adaptive dynamic
programming field), whose adaptation is used to compensate the mis-
match between data and model of the system. All these approaches aim
to mitigate the problem of modelling error that characterise control-
oriented WEC models, combining the advantages of direct system
information and model-based strategies.

6.2. Data-driven control: Type II

DD2 consists of all the control strategies employing a dynamic
dataset containing past and present data to synthesise the control sys-
tem, without incorporating any modelling or model adaptation stage.
The data is used to gather ‘past experiences’ in a process of ‘learning’
towards optimal control. Consequently, this category of controller con-
tains a structure able to exploit the past experiences within a learning
process, by suitably linking the actions taken by the controller with
their consequences on  . This structure tries to provide information
that substitutes that obtained from the adoption of dynamical models
in model-based strategies. In this context, among most DD2 controllers,
a distinction can be made between algorithms that fall into the category
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Table 5
Summary review table: DD2 studies.

Ref. Type Control  Constr.
handl.

𝑓𝑒𝑥,𝜂
know.

RT
opt.

Proof Design
compl.

Res. eval. Wave
eval.

𝑓𝑃𝑇𝑂 v𝑟𝑒𝑓 . Par. 𝑓 (𝐸) 𝑓 (𝐸, ⋅) Oth. 𝑦 𝑓𝑃𝑇𝑂 𝑆𝜂 𝑡 𝑃 Conv. Stab. L NL Ex. R I

[146] DD2 ∙ ∙ ⧫ ∙ ∙ ∙ ■ ∙ ∙ ∙
[147] DD2 ∙ ∙ ⧫ ⧫ ∙ ∙ ∙ ■ ∙ ∙
[148] DD2 ∙ ∙ ∙ ∙ ■ ∙ ∙
[149] DD2 ∙ ∙ ∙ ■ ∙ ∙ ∙
[150] DD2 ∙ ∙ ⧫ ⧫ ∙ ∙ ∙ ■ ∙ ∙ ∙
[151] DD2 ∙ ∙ ⧫ ∙ ∙ ∙ ■ ∙ ∙ ∙
[152] DD2 ∙ ∙ ∙ ∙ ■ ∙ ∙
[153] DD2 ∙ ∙ ⧫ ⧫ ∙ ∙ ∙ ■ ∙ ∙ ∙
[154] DD2 ∙ ∙ ⧫ ⧫ ∙ ∙ ∙ ■ ∙ ∙ ∙
[155] DD2 ∙ ∙ ∙ ∙ ∙ ■ ∙ ∙ ∙
[156] DD2 ∙ ∙ ∙ ∙ ∙ ■ ∙ ∙ ∙ ∙
[157] DD2 ∙ ∙ ∙ ■ ∙ ∙
[158] DD2 ∙ ∙ ∙ ∙ ■ ∙ ∙ ∙
[159] DD2 ∙ ∙ ⧫ ∙ ∙ ■ ∙ ∙
[160] DD2 ∙ ∙ ∙ ∙ ∙ ■ ∙ ∙ ∙
[161] DD2 ∙ ∙ ⧫ ⧫ ∙ ∙ ∙ ∙ ■ ∙ ∙ ∙
[162] DD2 ∙ ∙ ⧫ ⧫ ∙ ∙ ∙ ■ ∙ ∙
[163] DD2 ∙ ∙ ∙ ∙ ∙ ■ ∙ ∙
[164] DD2 ∙ ∙ ⧫ ⧫ ∙ ∙ ∙ ■ ∙ ∙ ∙
D

of reinforcement learning (RL) [144] and those which can be compared
to surrogate optimisation [145] processes, applied to the solution of the
OCP.

RL algorithms belong to the class of unsupervised learning strate-
gies. They converge to optimal control solutions by learning through
punishment and reward, depending on the control actions applied
and the associated resulting system performance. Specifically, in RL,
an agent, in a certain state s (that describes the conditions of the
gent and the surrounding environment), applies an action a. As a

consequence of interaction with the environment, the agent moves
to a new state s’. Additionally, the action a generates a reward r,
related to the function  . The selection of a is modelled as a Markov
decision process, based on the value function, which is an estimated
value of the total future reward, with the aim to balance exploration
of different conditions and actions, and exploitation of the action
towards higher rewards. The outcome of this strategy over time is
the policy, i.e. the optimal behaviour the control is expected to learn.
Several approaches to RL control have been applied in wave energy.
In [150,151,155], Q-learning strategies [165] are implemented to guide
online the parameters of both passive (in [150,155]), and reactive
(in [151]) control laws. Different deep Q-learning strategies (which
employ deep ANNs to describe the agent behaviour) are implemented
in [147,158,159]. Progressively, [158,159] adopt this strategy to op-
timise a reactive controller, while the result of the learning process
in [147] is the direct optimisation of the control force 𝑓𝑃𝑇𝑂. Actor-critic
ersions of Q-learning have been considered and applied in [162–164].
hese two mainly differ in the type of technique employed in the
ynthesis of the actor-critic strategy. Specifically, [163] employs ANNs
o guide a reactive control law, while [162,164] follow a Bayesian
pproach, based on Gaussian process regression (GPR), to directly
ptimise the controlled force. It must be highlighted that, in [164],
he controller is employed to react to system faults, and has been
ested on hardware-in-the-loop facility. Monte Carlo methods [166]
ave been adopted in the formulation of a Q-learning strategy aimed
t optimising a declutching control law in [160], to deal with the
ariability, due to irregular wave conditions, in computation of the
ptimal declutching time. Different strategies, such as Q-learning, least-
quares policy iteration (LSPI) [167], and state–action–reward–state–
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ction (SARSA) [144], have been compared in [153], to assess their
capability to guide a passive controller. A similar least-squares policy
iteration approach is implemented in [154], to optimise a reactive
control law, taking into account (in a soft manner) eventual constraints.
Finally, in [149,157], data taken online from an array of point ab-
sorbers is used in a collaborative manner to train an ANN agent, aimed
at guiding reactive and latching control laws, respectively.

Surrogate-optimisation-like solutions make use of a metamodel to
store information obtained during the learning process. The metamodel
is updated with data obtained online, describing the mapping between
system inputs (control actions and disturbance) and an estimate of the
value that the function to be optimised takes under those conditions.
The output estimated by the metamodel is then used as the function
to be optimised in the control action computation. In this category,
different types of structures can be adopted to build the metamodel.
In wave energy, an approach based on ANN training is employed in
[146,148,152]. In these studies, the relationship between sea con-
ditions (given by 𝑇𝑒 and 𝐻𝑠), and control parameters (stiffness and
damping in [146,152] and only damping in [148]), along with the
corresponding average absorbed power, is retrieved from data using
ANNs. The ANNs are continuously updated and used to select the
parameters to be adopted to maximise energy absorption. In [156,161],
the same relationship is obtained using GPR, with the only difference
given by the output  which, in [161], is formulated as the perfor-
mance function for the WEC control competition described in [168]. A
summary of DD2 studies can be found in Table 5.

Table 5, with the exception of [147,162,164], indicates that all DD2
strategies aim to optimise a parametrised control law, rather than the
control force 𝑓𝑃𝑇𝑂 directly. This is a consequence of the definition of
both  and the constraints present for specific WEC systems. In fact,

D2 controllers, not having an available model of the system, define 
in an average fashion (e.g. the average value of absorbed power over
a certain past interval). The averaging process becomes necessary to
reduce of the inherent variability in power measurement induced by
the irregularity of waves [57]. The absence of a model precludes the
possibility to estimate the wave disturbance at each instant which is
alternatively considered via statistical synthetic parameters (i.e. wave
elevation spectral information 𝑆𝜂 , such as 𝑇𝑒 and 𝐻𝑠) obtained from
e.g. displacement measurements of specific observation buoys [169]
over a specific time window. The unavailability of a model and wave es-

timates also has an impact on constraint handling. Both these elements
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are required to ‘project’ the dynamics of the system into the future,
recognising any potential constraint violation. For this reason, in DD2,
whenever considered, constraints are almost always incorporated in a
soft fashion (with the only notable exception of [159], which proposes
a strategy able to bound WEC displacement), and implemented on
average as penalising terms in  .

6.3. Data-driven control: Type III

DD3 denotes strategies which synthesise the control system only on
the basis only of the information given by data currently produced
online, without any model or data storage involved. This category
includes MPPT and ESC [128] techniques, typically based on the con-
cept of perturb and observe (P&O) control. Such a process guides
the corresponding control action towards optimum performance by
adjusting itself only on the basis of the online observation of the
effects that a slight perturbation applied to the control law has on
the objective function. Such strategies have been successfully applied
in the conversion process of other renewable energy sources, such
as wind and solar. Comprehensive surveys on MPPT applications for
wind and solar can be found in [170], and in [171–173] respectively,
while relevant examples of ESC for these renewable energy sources
include [174] (wind), and [25] (solar). The success of such approaches
in these fields (which share the energy-maximising objective with wave
energy), together with the opportunity of having a direct controller
which does not employ any model, motivated a number of application
studies within WEC control. Preliminary surveys on MPPT and ESC
applications in wave energy are presented in [175,176], respectively.

Several application attempts of MPPT control in wave energy have
been made. In [177,178], a fixed-step P&O MPPT algorithm, aimed
at maximising average absorbed power, is developed, to control the
PTO by guiding its load conditions, with performance assessed on a
hardware-in-the-loop facility. In [179,180], the results of the appli-
cation of two MPPT strategies (a fixed-step P&O, and an alternative
technique termed cycling MPPT) on a half-scale device (WET-NZ [181])
are presented, in realistic ocean conditions. Similarly, fixed-step P&O
algorithms have been implemented for passive control for a gyroscopic
WEC in [182], a point absorber in [183], and a duck-like WEC in [184,
185]. A latching controller, defining the mass flow rate of a Wells
turbine in an OWC, is optimised with a similar P&O strategy in [186].
Definitions of performance functions  that differ from (the typical)
average absorbed power can be found in [186–188]. In particular, in
an attempt to reduce the influence of sea-state variability on power
absorption, in [186,187], the authors define  as the mean capture
width, instead of the classical average absorbed power (as presented
in Eq. (2)). In [188], the effects choosing either mechanical or electrical
average power, in a P&O MPPT control, are analysed. Adaptive step size
in P&O MPPT algorithms have been adopted in the control of point
absorbers, gyroscopic, and pendulum WECs in [189,190], and [191],
respectively, in the attempt to improve convergence to optimal con-
ditions. With the same goal, multi-level-step P&O MPPT algorithms
have been studied in [192,193]. In [194,195], a P&O with an adaptive
perturbation size, based on a hill-climbing algorithm, is employed.
Optimisation algorithms have been reformulated to solve the MPPT
problem in [196], where a genetic algorithm-like strategy [197] is
used to guide a reactive controller, using data from an array of WECs.
Finally, in a similar fashion, [198] employs a MPPT approach based
on particle swarm optimisation [199], to optimally control a point
absorber using a reactive control law.

To the best of our knowledge, the first ESC application in WEC
control was presented in [89], where a continuous-time perturbation-
based ESC is employed to optimise the power absorption of a point
absorber system, following the implementation described in a seminal
study [200]. A discrete-time version [201] of this algorithm is adopted
11

in [202], to guide a reactive control law. A comparison study is t
presented in [203], where five different ESC algorithms are imple-
mented and adopted for the optimisation of both passive and reactive
control laws, with application to a submerged point absorber, com-
paring a continuous-time sliding mode ESC [204,205], a discrete-time
relay ESC [206], a discrete-time least-squares ESC [207], a continuous-
time self-driving ESC [208], and a continuous-time perturbation-based
ESC [200], (indicated in the summary Table 6 as [203]a, [203]b,
[203]c, [203]d, and [203]e, respectively). These strategies are com-
pared in different regular and irregular wave conditions, in terms of
convergence capabilities and oscillations once the optimal condition is
reached. In [209], the same perturbation-based ESC developed in [203]
is modified to accommodate soft constraints on 𝑓𝑃𝑇𝑂 and 𝑧̇. Finally,
in [210,211], an ESC, based on a flower pollination algorithm is
implemented to control a Wavestar buoy [212], with a reactive control
law.

Table 6 summarises the reviewed studies within this section, show-
ing that the DD3 strategies optimise an (often simple) parametrised
control law. This trend, already seen in the DD2 controller class,
directly relates to the lack of assumptions made on the system to be
controlled (no model), precluding the optimisation of a control force
or velocity profile; weaker initial assumptions and available WEC infor-
mation at the control synthesis stage leading to simpler control laws.
A further explanation is given by the need for an averaging process
in the evaluation of  , as also observed in DD2 (see the discussion in
Section 6.2). Since the behaviour of the controlled process is evaluated
in an average fashion, adjustments made to optimise the control action
tend to happen at a slower pace than the dynamics characterising the
WEC itself, preventing the immediate and direct optimisation of the
applied force or velocity.

Regarding  , the same averaging process employed in DD2 is
eeded to ameliorate the stochastic power conversion introduced by the
rregular wave behaviour [57,176]. However, if only pure averaging
s applied, the required time window 𝑇 𝑒𝑣𝑎𝑙. can be of the order of
undreds of wave periods [176]. This, together with the need to reduce
he sensitivity of  to diverse sea conditions, led several studies to
irectly modify the performance function. In [203], prior to averaging,
he absorbed power is filtered with a low-pass filter. Then, after the
veraging process, a logarithmic compression operation is applied to
he obtained function. This reduces 𝑇 𝑒𝑣𝑎𝑙., diminishing the sensitivity
f the design parameters to wave conditions. Similarly, in [186,187],
he average power is normalised by the energy transport of the incident
ave per unit width of wave front, which is a function of the wave
levation spectrum 𝑆𝜂 . For ESC, there are additional requirements on

to guarantee stability [200], and  must be a convex function of
he control law parameters optimised by the ESC [176]. This further
imits the type of parameterisation available for the control law which,
n most of the reviewed cases, is either simple (two parameter) reactive
r passive control.

Finally, Table 6 shows that no online optimisation is required by the
arious DD3 strategies. Since  cannot be defined in terms of a model
as done in DD1), or by a storing structure (as in DD2), the solution of
he WEC OCP (as defined in Section 3) cannot be optimal. Nonetheless,
D3 strategies are effectively optimisation algorithms applied in real-

ime to compute the associated control action. Most of these are based
n the same working principles as gradient-based solvers, and each
ction taken corresponds with a solver iteration. This is particularly
vident with ESC, whose theoretical principles also have applications
n the field of numerical optimisation (see e.g. [213]), or in studies such
s [109,198] where control algorithms are directly defined in terms of
opular global optimisation solvers.

. Inter-class comparative analysis

In this section, WEC controllers identified by the classification pre-
ented in Section 4 are compared, an initial comparison focussing on
he degree to which state-of-the-art research has advanced the different
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Table 6
Summary review table: DD3 studies.

Ref. Type Control  Constr.
handl.

𝑓𝑒𝑥,𝜂
know.

RT
opt.

Proof Design
compl.

Res. eval. Wave
eval.

𝑓𝑃𝑇𝑂 v𝑟𝑒𝑓 . Par. 𝑓 (𝐸) 𝑓 (𝐸, ⋅) Oth. 𝑦 𝑓𝑃𝑇𝑂 𝑆𝜂 𝑡 𝑃 Conv. Stab. L NL Ex. R I

[177] DD3 ∙ ∙ ■ ∙ ∙
[178] DD3 ∙ ∙ ■ ∙ ∙
[182] DD3 ∙ ∙ ■ ∙ ∙
[202] DD3 ∙ ∙ ∙ ∙ ■ ∙ ∙ ∙
[89] DD3 ∙ ∙ ∙ ■ ∙ ∙
[179] DD3 ∙ ∙ ■ ∙ ∙
[180] DD3 ∙ ∙ ■ ∙ ∙ ∙

DD3 ∙ ∙ ∙ ∙ ■ ∙ ∙ ∙ ∙ ∙
[189] DD3 ∙ ∙ ■ ∙ ∙
[203]a DD3 ∙ ∙ ∙ ∙ ■ ∙ ∙ ∙
[203]b DD3 ∙ ∙ ∙ ∙ ■ ∙ ∙ ∙
[203]c DD3 ∙ ∙ ∙ ∙ ■ ∙ ∙ ∙
[203]d DD3 ∙ ∙ ∙ ∙ ■ ∙ ∙ ∙
[203]e DD3 ∙ ∙ ∙ ∙ ■ ∙ ∙ ∙
[209] DD3 ∙ ∙ ⧫ ⧫ ∙ ∙ ■ ∙ ∙
[196] DD3 ∙ ∙ ∙ ∙ ■ ∙ ∙
[190] DD3 ∙ ∙ ■ ∙ ∙ ∙
[210] DD3 ∙ ∙ ■ ∙ ∙
[192] DD3 ∙ ∙ ■ ∙ ∙
[191] DD3 ∙ ∙ ∙ ■ ∙ ∙
[194] DD3 ∙ ∙ ■ ∙ ∙
[195] DD3 ∙ ∙ ∙ ■ ∙ ∙
[193] DD3 ∙ ∙ ∙ ■ ∙ ∙ ∙
[211] DD3 ∙ ∙ ■ ∙ ∙ ∙
[184] DD3 ∙ ∙ ■ ∙ ∙
[188] DD3 ∙ ∙ ■ ∙ ∙ ∙ ∙
[198] DD3 ∙ ∙ ∙ ∙ ■ ∙ ∙
[187] DD3 ∙ ∙ ∙ ∙ ∙ ■ ∙ ∙
[186] DD3 ∙ ∙ ∙ ■ ∙ ∙
[183] DD3 ∙ ∙ ■ ∙ ∙
[185] DD3 ∙ ∙ ■ ∙ ∙ ∙
Fig. 4. Inter-class comparative analysis: number of reviewed studies per control type.

types of strategies. Fig. 4 illustrates the number of studies reviewed
for each of the control types (DB1 is excluded here since, as already
mentioned in Section 5.1, all the model-based control strategies which
employ a model obtained following one of the data-based procedures
in Table 1 fall in this category).

Note that the greatest percentage of reviewed studies relates to DD3
controllers (41.7%), demonstrating the popularity that MPPT strategies
have in the field of electrical engineering in general, and the simplicity
of implementation that characterises most algorithms belonging to
12
this category. It should be also highlighted that an increasing inter-
est in learning-based control strategies observed in other application
fields [214] is also witnessed here, as per the number of reviewed
studies from DD2 (26.4%).

A second important comparison relates to the capabilities of WEC
controllers in handling constraints, specifically considering the way in
which constraints are handled (i.e. not included, soft formulation, or
hard formulation), and in terms of the constrained variables (i.e. 𝑦
and/or 𝑓𝑃𝑇𝑂). The results of this analysis, from the data in Tables 3 to
7, are shown in Fig. 5. Most DD1 strategies consider constraints (with
the exception of [137]), and this category is also able to implement
hard constraints. Similarly, the availability of appropriate data at the
control synthesis stage facilitates constraint handling in the DB2 con-
trollers. In contrast, the opposite is true of DD2 and DD3 controllers. For
DD2, only roughly half of the studies consider constraints during the
control synthesis procedure, typically using soft constraints. For DD3,
this trend is even more evident, since, apart from [209], none of the
strategies consider constraints. The difficulty of handling constraints in
the case of DD2 and DD3, as already analysed in Sections 6.2 and 6.3,
can be explained by the averaging process that these strategies adopt to
deal with the stochastic wave disturbance. Since all the information ex-
ploited by such strategies is averaged, handling constraints in real-time
becomes a more difficult task to be accomplished.

Another comparison relates to the availability of theoretical guaran-
tees with respect to convergence and stability, which are of fundamen-
tal importance. Here, we provide information on the availability of such

guarantees, demonstrated either numerically or analytically, reported
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Fig. 5. Inter-class comparative analysis: constraint handling capabilities.

Fig. 6. Inter-class comparative analysis: convergence and stability proves.

in Tables 3 to 7, and summarised in Fig. 6. Clearly, the DD1 category
is, on average, most populated with stability and convergence results.
This can be explained by the adoption of well-established model-based
control techniques, already analysed theoretically and applied to a vast
number of processes (e.g. standard MPC). Fig. 6 also highlights the
lack of stability proofs for DD2 controllers, typically rely on ANNs in
the learning process, with the stability of ANN-based controllers still
a relatively open question in control theory [215–217]. The presence
of several stability and convergence proofs in DD3 (which enjoys even
less information on the controlled system than DD2) can be explained
by the percentage of DD3 studies belonging to the ESC category, where
proofs of stability and convergence have been an active topic of interest
in recent decades, culminating in the seminal study of Krstić in [200].
The stability of classical ESC scheme is proven for a general class of
nonlinear systems, using tools from averaging and singular perturbation
analysis. Some MPPT P&O approaches [187,191,195] also provide
some stability results, articulating the relationship between the size and
frequency of the perturbation and closed-loop stability [218,219].

As reported in Tables 3 to 7, and summarised in Fig. 7, each
reviewed study has been classified on the basis of the parameters re-
quired to be tuned by the designer. Four ranges (reported in the legend
provided in Table 2) are identified. Fig. 7 (where also the relative
percentages are reported) shows the strong correlation between the
amount or retained system information and the number of parameters
that require tuning. The most frequent number of free parameters to be
designed in DD1 controllers is 9–12 (41.7%), while in DB2 and DD2 this
13

number decreases to 5–8 (72.7% and 36.8%). In DD3, the most frequent
Fig. 7. Inter-class comparative analysis: number of design parameters per control type.

range is also 5–8 (50.0%), but closely followed by 1–4 (43.3%). This
trend reflects the greater design freedom when prior information on the
systems (given by a model, or by stored data) are available, translating
into the possibility of developing more complex control laws, requiring
more design parameters. However, a greater number of design param-
eters does not necessarily mean that the tuning stage is more complex. As
observed in the reviewed studies, when less parameters are considered,
these are typically more sensitive to the wave conditions in which the
WEC has to be controlled, making the control design, and hence the
choice of parameters, potentially non-trivial.

7.1. On the relation between data and optimisation-based WEC control

Attention is now devoted to optimisation-based control strategies,
excluding DB2 and DD3, given their lack of online optimisation activity
(see Tables 3 and 6) once the control strategy is implemented (one of
the main aims of DB2 is to reduce the computational effort required on-
line while, as mentioned in Section 6.3, DD3 techniques are, in essence,
optimisation solvers). As also analysed in [220], optimisation-based
controllers, which make use of data, can be divided in data-driven
learning-based control (belonging to DD2), and data-driven adaptive
control (subset of DD1). The way in which data and the optimisation
process interact with the rest of the elements in the control loop is
different, as graphically explained, and compared with classical optimal
model-based control, in Fig. 8, show that online data (green lines)
directly modify the optimisation problem in DD2. In DD1, these data
can potentially affect the model of the system, which can also be
constructed/computed from an offline dataset (red lines). The presence
of a model indirectly facilitates the wave estimation process (as in
model-based WEC control).

Regarding the goal of the optimisation process, similarly to model-
based optimal WEC control, DD1 optimisation maximises  . Apart
from penalisation of constraint violations, the sole goal is energy-
maximisation. In DD2, the presence of learning affects the optimisation,
balancing the activities of exploration and exploitation. Depending on
the type of DD2 controller (i.e. RL or surrogate optimisation-like),
and the structure used to memorise past experiences, the learning
strategy interacts differently with the optimisation process. Other than
ANN-based surrogate optimisation-like algorithms, which separately
define the learning strategy, all other learning algorithms (GPR-based
optimisation-like and reinforcement learning) incorporate management
of the learning strategy within the optimisation process (and objec-
tive function). Consequently, the optimisation goal is not only energy

maximisation, but also optimisation of the learning process
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Fig. 8. Optimisation-based control working principles: the differences between model-based and data-driven approaches (adapted from [220]). Different line colours emphasise
the different data flows and the elements influenced by them (green lines for online data, red lines for offline data).
7.2. Perspectives and future directions

WEC control based on, or driven by, data is a relatively young,
but promising, field of research within the wave energy community,
with a diversity of proposals reported. Each of the identified control
categories within this paper has its own strengths and limitations
and, as a result, there is no clear ‘winner’. Specifically, further re-
search on DB1 control strategies should focus on developing models,
based on data, that are well-validated even in controlled conditions
to circumvent the WEC modelling paradox [12]. The availability of
suitable experimental data from tests should act as a key contributing
factor in this direction. Regarding DB2, these solutions have potential
when considered together with high-fidelity simulation environments,
both in solving the problems related to unmodelled hydrodynamics in
control-oriented models, and the relatively high computational effort
required by optimal control strategies. In this context, high-fidelity
hydrodynamic solvers [221] based on computational fluid dynamics
(CFD), or smooth particle hydrodynamics (SPH), can provide valuable
simulated data for the synthesis of DB2 controllers. Moreover, since
most DB2 strategies employ ANNs in their synthesis procedure, stability
proofs are also a topic to be further investigated, to guarantee reliable
utilisation of these strategies in realistic WEC systems. Concerning DD1
controllers, we believe that the combination of well-established model-
based control algorithms with an online dataset make this category
appealing, in terms of applicability in real world scenarios. However,
the computational effort required by the multiple optimisation loops
that characterise this category, not only to compute the optimal control
action, but to adapt the model employed in online synthesis can pre-
clude effective real-time implementation. In relation to DD2 strategies,
we recognise the potential that a learning process can have in control-
ling devices on which standard control-oriented modelling assumptions
can be limiting. In particular, when highly nonlinear effects are domi-
nant, learning control can provide a good alternative, also in terms of
14
adaptability, if the device operates for long periods of time. However,
for the sake of completeness, we also witness a lack of stability proofs
in the development and application of DD2 strategies for wave energy
systems that, together with the common averaging approach to the
definition of  and associated constraint handling, leave room for
further research. Finally, regarding DD3, the avoidance of the adoption
of either model or storage structures seems attractive for the WEC
control problem. However, most of these studies are based upon simple
control laws, which ultimately limit the capability of DD3 strategies.
Moreover, among the considered studies, there is a consistent lack
of constraint handling ability, mostly due to the averaging approach
which characterises the DD2 and DD3 categories. This topic is, hence,
still an open point, worthy of further investigation.

8. Conclusions

This study provides a critical overview of the different control
strategies applied to wave energy systems which exploit information
coming from data. This research field is rapidly evolving, and it is ex-
pected to grow significantly over the next decade. A precise definition
of data-based and data-driven control of wave energy systems is offered
and, on the basis of that, a classification of state-of-the-art studies on
WEC control employing data is identified. Five distinct categories are
formulated, detailing their working principles, and the specific role of
data in the control synthesis. In particular, this work analyses each
of the considered studies in terms of type of control law, constraint
handling capability, performance function adopted, convergence and
stability proofs, and available/utilised information on the wave dis-
turbance. A critical comparison between the different categories is
provided, highlighting issues and limitations, in the attempt to provide
the WEC control designer with a general and fair overview of the
pros and cons of each approach. With the current state-of-the-art, the
adoption of data is still not able to provide an ‘ultimate’ solution to the
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Table 7
Summary review table: total table comparison.

Ref. Type Control  Constr.
handl.
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Proof Design
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𝑓𝑃𝑇𝑂 v𝑟𝑒𝑓 . Par. 𝑓 (𝐸) 𝑓 (𝐸, ⋅) Oth. 𝑦 𝑓𝑃𝑇𝑂 𝑆𝜂 𝑡 𝑃 Conv. Stab.

[109] DB2 ∙ ∙ ⧫ ∙ ■ PA

[110] DB2 ∙ ∙ ⧫ ∙ ∙ ∙ ■ PA

[111] DB2 ∙ ∙ ⧫ ■ OWC

[63] DB2 ∙ ∙ ⧫ ∙ ■ OWC

[112] DB2 ∙ ∙ ⧫ ∙ ∙ ■ OWC

[113] DB2 ∙ ∙ ∙ ∙ ■ PA

[114] DB2 ∙ ∙ ∙ ■ PA

[115] DB2 ∙ ∙ ∙ ■ Att.

[116] DB2 ∙ ∙ ⧫ ∙ ■ OWC

[117] DB2 ∙ ∙ ⧫ ∙ ■ OWC

[118] DB2 ∙ ∙ ⧫ ⧫ ∙ ∙ ∙ ∙ ■ PA

[130] DD1 ∙ ∙ ⧫ ⧫ ∙ ∙ ∙ ∙ ∙ ■ PA

[131] DD1 ∙ ∙ ⧫ ⧫ ∙ ∙ ∙ ∙ ∙ ■ PA

[132] DD1 ∙ ∙ ⧫ ∙ ∙ ∙ ∙ ∙ ■ PA

[133] DD1 ∙ ∙ ⧫ ∙ ∙ ∙ ∙ ∙ ■ PA

[134] DD1 ∙ ∙ ⧫ ⧫ ∙ ∙ ∙ ■ PA

[135] DD1 ∙ ∙ ⧫ ⧫ ∙ ∙ ∙ ∙ ■ PA

[136] DD1 ∙ ∙ ⧫ ⧫ ∙ ∙ ∙ ∙ ■ PA

[137] DD1 ∙ ∙ ∙ ∙ ■ PA

[138] DD1 ∙ ∙ ⧫ ⧫ ∙ ∙ ∙ ■ PA

[139] DD1 ∙ ∙ ⧫ ⧫ ∙ ∙ ∙ ■ PA

[140] DD1 ∙ ∙ ⧫ ⧫ ∙ ∙ ∙ ■ PA

[141] DD1 ∙ ∙ ⧫ ⧫ ∙ ∙ ∙ ■ PA

[146] DD2 ∙ ∙ ⧫ ∙ ∙ ∙ ■ PA

[147] DD2 ∙ ∙ ⧫ ⧫ ∙ ∙ ∙ ■ PA

[148] DD2 ∙ ∙ ∙ ∙ ■ PA

[149] DD2 ∙ ∙ ∙ ■ PA

[150] DD2 ∙ ∙ ⧫ ⧫ ∙ ∙ ∙ ■ PA

[151] DD2 ∙ ∙ ⧫ ∙ ∙ ∙ ■ PA

[152] DD2 ∙ ∙ ∙ ∙ ■ PA

[153] DD2 ∙ ∙ ⧫ ⧫ ∙ ∙ ∙ ■ PA

[154] DD2 ∙ ∙ ⧫ ⧫ ∙ ∙ ∙ ■ PA

[155] DD2 ∙ ∙ ∙ ∙ ∙ ■ PA

[156] DD2 ∙ ∙ ∙ ∙ ∙ ■ PA

[157] DD2 ∙ ∙ ∙ ■ PA

[158] DD2 ∙ ∙ ∙ ∙ ■ PA

[159] DD2 ∙ ∙ ⧫ ∙ ∙ ■ PA

[160] DD2 ∙ ∙ ∙ ∙ ∙ ■ PA

[161] DD2 ∙ ∙ ⧫ ⧫ ∙ ∙ ∙ ∙ ■ PA

[162] DD2 ∙ ∙ ⧫ ⧫ ∙ ∙ ∙ ■ PA

[163] DD2 ∙ ∙ ∙ ∙ ∙ ■ PA

[164] DD2 ∙ ∙ ⧫ ⧫ ∙ ∙ ∙ ■ PA

[177] DD3 ∙ ∙ ■ PA

[178] DD3 ∙ ∙ ■ PA

[182] DD3 ∙ ∙ ■ PA

[202] DD3 ∙ ∙ ∙ ∙ ■ PA

[89] DD3 ∙ ∙ ∙ ■ PA

[179] DD3 ∙ ∙ ■ PA

[180] DD3 ∙ ∙ ■ PA

[189] DD3 ∙ ∙ ■ PA

[203] DD3 ∙ ∙ ∙ ∙ ■ PA

[209] DD3 ∙ ∙ ⧫ ⧫ ∙ ∙ ■ PA

[196] DD3 ∙ ∙ ∙ ∙ ■ PA

[190] DD3 ∙ ∙ ■ PA

[210] DD3 ∙ ∙ ■ PA

[192] DD3 ∙ ∙ ■ PA

[191] DD3 ∙ ∙ ∙ ■ Ter.

[194] DD3 ∙ ∙ ■ PA

[195] DD3 ∙ ∙ ∙ ■ PA

[193] DD3 ∙ ∙ ∙ ■ PA

[211] DD3 ∙ ∙ ■ PA

[184] DD3 ∙ ∙ ■ Ter.

[188] DD3 ∙ ∙ ■ PA

[198] DD3 ∙ ∙ ∙ ∙ ■ PA

[187] DD3 ∙ ∙ ∙ ∙ ∙ ■ PA

[186] DD3 ∙ ∙ ∙ ■ OWC

[183] DD3 ∙ ∙ ■ PA

[185] DD3 ∙ ∙ ■ Ter.
15
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WEC control problem, although each of the analysed approaches can
represent a viable alternative to classical model-based strategies under
the right circumstances, and specific further development. Finally,
considerations on future directions that, from the authors’ perspective,
research on data-based and data-driven control should pursue, are
formulated, in an attempt to provide guidance and support in the
pathway towards effective implementation of these techniques in the
field of ocean wave energy absorption.
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Appendix. Total table comparison

An additional table, summarising all the reviewed studies, is re-
ported here, together with type of WEC on which the proposed control
strategies have been applied (Table 7). For a summary of adopted
terminology, and symbols, the reader is referred to Table 2.
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