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Abstract: Diffuser technology placed around hydrokinetic rotors may improve the conversion of the
fluid’s kinetic energy into shaft power. However, rotor blades are susceptible to the phenomenon
of cavitation, which can impact the overall power efficiency. This paper presents the development
of a new optimization model applied to hydrokinetic blades shrouded by a diffuser. The proposed
geometry optimization takes into account the effect of cavitation inception. The main contribution
of this work to the state of the art is the development of an optimization procedure that takes into
account the effects of diffuser efficiency, ηd, and thrust, CTd. The authors are unaware of any other
work available in the literature considering the effect of ηd and CTd on the cavitation of shrouded
hydrokinetic blades. The model uses the Blade Element Momentum Theory to seek optimized blade
geometry in order to minimize or even avoid the occurrence of cavitation. The minimum pressure
coefficient is used as a criterion to avoid cavitation inception. Additionally, a Computational Fluid
Dynamics investigation was carried out to validate the model based on the Reynolds-Averaged
Navier–Stokes formulation, using the κ −ω Shear-Stress Transport turbulence and Rayleigh–Plesset
models, to estimate cavitation by means of water vapor production. The methodology was applied
to the design of a 10 m diameter hydrokinetic rotor, rated at 250 kW of output power at a flow
velocity of 2.5 m/s. An analysis of the proposed model with and without a diffuser was carried out to
evaluate the changes in the optimized geometry in terms of chord and twist angle distribution. It was
found that the flow around a diffuser-augmented hydrokinetic blade doubles the cavitation inception
relative to the unshrouded case. Additionally, the proposed optimization model can completely
remove the cavitation occurrence, making it a good alternative for the design of diffuser-augmented
hydrokinetic blades free of cavitation.

Keywords: diffuser; hydrokinetic turbine; cavitation; blade optimization; blade element momentum
theory; Rayleigh–Plesset model

1. Introduction

Hydrokinetic turbines are attractive renewable technologies as they can harness the
kinetic energy from rivers, estuaries, tidal and marine currents and convert it into elec-
tricity. The technological challenges of hydrokinetic and wind turbines are similar from a
theoretical point of view. The classical Betz limit states that a maximum power coefficient
of 16/27 for bare turbines in idealized flow conditions [1,2]. However, diffuser-augmented
hydrokinetic turbines (DAHTs) can even overcome this limitation with a properly designed
shroud that increases the mass flow over the rotor blades, improving power output. On the
other hand, as the axial fluid velocity increases, cavitation reduces the advantage of the
diffuser due to the appearance of cavitation bubbles. The development of non-cavitating
blades for DAHTs is indeed important for the renewable energy industry, as it contributes
to the efficient design of hydrokinetic turbines.
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Although many papers have recently reported the use of diffusers on hydrokinetic
or tidal turbines [3–5], only a few have established the implementation of optimized
design of non-cavitating blades with a diffuser. For example, in [5], an optimization
methodology for diffuser-augmented hydrokinetic blades free of cavitation was developed.
Their work shows that cavitation is indeed sensitive to the diffuser speed-up ratio, and such
a phenomenon needs to be considered in the design of shrouded hydrokinetic blades.
However, no mention was made of diffuser efficiency, ηd, and thrust, CTd.

In [6], the Blade Element Momentum Theory (BEMT) for the hydrodynamic design
of marine current turbines was implemented. In that model, an investigation was carried
out considering cavitation on shallow tip immersion. It was found that cavitation can be
avoided with the suitable design of 2D blade sections. Although the work presented some
interesting thoughts about cavitation, studies on optimization of hydrokinetic blades free
of cavitation were not addressed.

In [7], supported by a Computational Fluid Dynamics (CFD) investigation, an opti-
mization approach based on BEMT for horizontal axis hydrokinetic turbines, taking into
account the effect of cavitation, was developed. The model was applied only to bare
turbines, using the minimum pressure coefficient as a criterion in the optimization model.
The research demonstrated that by modifying the blade geometry, the cavitation inception
can be reduced even further.

In [5], the authors extended the optimization model presented in [2]. They developed a
cavitation criterion for hydro turbines. Additionally, this work used the minimum pressure
coefficient as a criterion to maintain the tip pressure above water vapor pressure, including
the diffuser effect. To obtain the blade-optimized geometry, the chord is determined using
the diffuser speed-up ratio as the manipulated variable to assess the corrected chord and
twist angle for each blade section. The diffuser thrust and efficiency are not considered in
the procedure.

As such, in wind turbines, the enhancement of DAHT’s performance depends on the
diffuser and rotor geometries. In the case of diffusers, the design parameters are inlet and
outlet diameters, length, entrance angle, efficiency, area ratio and thrust coefficient. The last
three parameters influence the turbine performance, but the authors are unaware of any
work in the current literature showing the impact of them regarding cavitation. The concept
of a good design for a DAHT must consider the effects of each of these parameters on the
DAHT performance.

Cavitation may lead to a decrease in the hydrodynamic performance of a hydrokinetic
rotor since pulses or fluctuations in local pressure significantly contribute to vapor bubble
formation, also causing noise, vibrations and erosion of the blades [8–10]. Several CFD
methods have been developed in recent decades to numerically investigate cavitation.
Liquid and vapor are often treated as an homogeneous mixture with variable densities.
This two-phase method uses an empirical transfer equation for the local volume fraction,
and the interaction between water and vapor can be computed. In [11], the authors
investigated two-dimensional sheet cavitation of three different mass transfer models
for cavitating flows around hydrofoils, including the Zwart model, also in ANSYS/CFX.
They applied an optimization strategy to properly tune the empirical coefficients of each
model. They concluded that the results were nearly the same for the three models, in good
agreement with experiments.

Different dynamics of cavitating behaviors can be observed in liquid flows. According
to [12], incipient cavitation, shear cavitation, sheet/cloud cavitation and supercavitation
regimes can be found depending on the nondimensional cavitation number. The authors
carried out a numerical investigation into the dynamics of the transition between sheet
and cloud cavitation regimes around the NACA0012 hydrofoil, in a study considering an
oscillating hydrofoil. They used a barotropic law approach to numerically predict the cyclic
transition between regimes at a large angle of attack. They concluded that the hydrofoil´s
main oscillation component has the same frequency as the shedding of a vapor cloud.
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Large Eddy Simulation (LES) has been extensively used in recent works to investigate
cavitation dynamics of fluid around hydrofoils. In [13], the authors investigated unsteady
sheet-cloud cavitating flow around a twisted 3-D NACA foil, using LES and VOF tech-
niques. They illustrated the detailed dynamics of cavitation evolution by depicting cavity
growth, shedding and downstream collapse. The radial and lateral jet flows concerning
the three-dimensional effects of a twisted wing were also reported. In [14], the authors
studied the dynamic characteristics of cavitating flow around a sinusoidal wavy leading
edge hydrofoil with a NACA 634-021 profile by means of multiphase modeling. They
found that the geometrically modified hydrofoil, named the Wavy Leading Egde (WLE)
hydrofoil, exhibits a significantly reduced level of unsteady fluctuations in dynamic forces.

Therefore, this paper proposes a new optimization procedure for the geometric defi-
nition of rotor blades free of cavitation applied to DAHTs. The main contribution of this
work is the demonstration that ηd and CTd can strongly impact the cavitation condition on
a DAHT. Additionally, the proposed optimization can correct the chord and twist angle
distributions, avoiding cavitation inception. The minimum pressure coefficient is used
as the criterion to avoid cavitation in the BEMT model. A hydrokinetic turbine with a
10 m diameter was used to evaluate the effects of those diffuser parameters concerning
cavitation. Comparisons with other models available in the literature are addressed. CFD
calculations were carried out to investigate water vapor pressure over cavitating blades.

As a result, the proposed model shows that cavitation can increase under the effect
of a diffuser, suggesting that such a phenomenon needs to be considered in the design
of DAHT. In addition, the optimization method corrects the blade chord distribution,
reducing the cavitation inception at the design condition when comparing the water vapor
production rate for both corrected and uncorrected blade geometries. Even though it
requires experimental validation, it is expected that the proposed methodology can be used
in real applications.

This paper is organized as follows. The next section shows the optimization model for
DAHTs. Section 3 presents the CFD methodology using the Rayleigh–Plesset cavitation
model. In Section 4, the results and discussion are stated. Section 5 shows the conclusions
of this study.

2. The Optimization for Hydrokinetic Blades Shrouded by Diffuser
2.1. Cavitation Criterion on Hydrokinetic Rotors

According to [15,16], cavitation is a major problem for horizontal axis marine current
turbines, usually leading to vibration, blade surface damage and performance loss, mainly
for large and medium rotors, where the relative velocities are higher. These issues need
to be considered in the early stages of hydro rotor projects [7]. During the third regime of
liquid flows (cavity flows [17]), a large amount of liquid vaporizes, forming vapor bubbles
which make pressure and velocity fields significantly different from those in non-caviting
flows. The condition for cavitation to occur is that the local pressure p should have dropped
to below the vapor pressure of water. For shrouded hydrokinetic rotors, the diffuser
increases the flow axial velocity at the rotor plane. This characteristic can lead to a severe
cavitation condition, having increasing adverse effects on the lift force generated at the
blades. In non-caviting flows, the cavitation criterion that relates the cavitation number
σ and the minimum pressure coefficient cpmin should be cpmin + σ ≥ 0, where cpmin is the
minimum value of the pressure coefficient cp, defined by

cp =
p− patm

1
2 ρW2

, (1)

where ρ is the fluid density, p and patm are the local and atmospheric pressures, respectively,
and the relative velocity of water on each blade section is defined by [2] as

W =

√
[V0(1− ab)]

2 +
[
Ωr
(
1 + a′b

)]2, (2)



Sustainability 2022, 14, 7067 4 of 22

where V0 is the free-stream velocity. The parameters ab and a′b are the axial and tangential
induction factors at the blades, respectively, while Ω and r are the angular velocity and
radial position of the turbine. The expression for the number of cavitation, σ, is described
by [7] as:

σ =
patm + ρgh− pv

1
2 ρW2

, (3)

where g is the gravitational acceleration, h is the submerged distance and pv is the vapor
pressure. Another way to consider the cavitation at each blade section of a rotor is through
Equation (4) [7], where the cavitation velocity is

VCAV =

√
patm + ρgh− pv

− 1
2 ρcpmin

. (4)

VCAV denotes the minimum flow velocity at which cavitation will occur for a specific
radial position on the hydrokinectic blade, i.e., VCAV ≥ W. Figure 1 illustrates the static
pressure condition on a DAHT blade section.

Inlet O utlet

Free Surface

D iffuser

R otor

H
h

r

B lade section

p = patm + gh

h = H  -r

Inlet
Outlet

Diffuser

Free Surface

H=h+r

p=patm + gh

Blade section

Rotor

Figure 1. Static pressure condition on a DAHT blade section.

2.2. The Optimization Model

As reported in [18], to model a diffuser with losses, an approach similar to that used
to determine duct flow in the presence of losses is required. It is assumed that the fluid
surrounding the rotor is frictionless, and the rotational velocity component is ignored.
The dashed lines in Figure 2 show the control volume used to analyze diffuser-augmented
turbine performance. The optimum expressions for shrouded turbines come from the
momentum equations with rotational velocities in the flow [4,19]. According to [20],
for modern turbines, it is necessary to consider the effect of the tangential induction factor,
a′. The elemental torque can be obtained directly from the momentum equation applied to
the control surface shown in Figure 2, in which the infinitesimal area at the rotor plane is
dA = 2πrdr, allowing the power coefficient as [18].

CP = ε1

[
1− ε2

4 − (1− ηd)
(

1− β2
)

ε2
1

]
, (5)

where V4 is the velocity in the far-wake, ε4 = V4/V0 is the dimensionless far-wake velocity,
ε1 = V1/V0 is the velocity ratio, and V1 = V2 the velocity at the rotor plane. β = A/A3,
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where A is assumed equal to the diffuser area at the rotor, A3 is the cross-sectional area
of the diffuser outlet and ηd is the diffuser efficiency. For a shrouded rotor, the power
coeffcient can be written using the pressure coefficient, cp3, at the diffuser outlet, which is
defined as

cp3 =
p3 − p0

1
2 ρV2

0
, (6)

where p0 is the static pressure in the freestream. The thrust is obtained by dividing CP by
ε1, resulting in CT = CP/ε1 [21]. CP, CT and cp3 strongly depend on ε4, as demonstrated
by [22,23]. In [18], an expression for ε4 was demonstrated by applying the momentum
equation to the control volume shown in Figure 2, resulting in

ε4 = ε1 −
√
(1− ε1)

2 + CTd − ε2
1(1− β2)(1− ηd), (7)

where CTd is the diffuser thrust coefficient, which is important even if there were no losses
in the diffuser (ηd = 1). Note further that solving Equations (5) and (6), and making
CT = CP/ε1 for the turbine thrust coefficient in terms of ε4, yields:

CP = 2ε2
1

[
1− ε1 +

√
(1− ε1)

2 + CTd − ε2
1(1− β2)(1− ηd)−

CTd
2ε1

]
, (8)

cp3 = ε2
1

(
2− β2

)
−2ε1

[
1 +

√
(1− ε1)

2 + CTd − ε2
1(1− β2)(1− ηd)

]

+ 1 + CTd − ε2
1(1− β2)(1− ηd), (9)

and

CT = 2ε1

[
1− ε1 +

√
(1− ε1)

2 + CTd − ε2
1(1− β2)(1− ηd)−

CTd
2ε1

]
. (10)

D iffuser

r
V 0 V 1

dA
B lade

section

C ontrol

surface

C Td

D iffuser

thrust

0 1 2 3
4

Diffuser

Blade

section

thrust

Diffuser

surface

Control

1 2
3

40

Figure 2. Simplified illustration of the flow velocities through an ideal DAHT. Control volume
locations are: (0), free flow; (1) and (2), rotor plane; (3), diffuser end; and (4), far-wake.

The optimum values for ε1 and ε4 are determined by maximizing CP in Equation (5),
giving [18]:

6ε3
1opt

[
β2(1− ηd) + ηd

]
− CTd∆ + 4ε1opt(1 + CTd + ∆) − 2ε2

1opt
(5 + 3∆) = 0, (11)
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where ε1opt = 1− abopt and

∆ =

√
1 + CTd + ε1opt

{
−2 + ε1opt [β

2(1− ηd) + ηd]
}

. (12)

Only the diffuser effect is considered in this optimization procedure, via three im-
portant parameters: ηd, β and CTd. After determining ε1opt , the far-wake velocity, ε4opt , is
calculated using Equation (7). On an annular control volume at radius r, considering the
non-dependency of diffuser thrust, the elemental thrust coefficient is:

dCT
dr∗

= 4ε1(1− ε4)r∗, (13)

where r∗ = r/R. The Prandtl tip loss factor, F, is included in ε4 from Equation (7) with
a = abF as the streamtube average, resulting in [18]

ε4 = 1− abF−
√
(abF)2 − (1− abF)2(1− β2)(1− ηd) + CTd, (14)

From the blade element theory, the elemental thrust coefficient at each blade section is

dCT
dr∗

= 2ε2
1

σsCnr∗
sin2 φ

, (15)

where σs = Nc/(2πr) is the local solidity, Cn = Cl cos φ + Cd sin φ is the normal force
coefficient and φ the flow angle (Figure 3), defined as

φ = tan−1
[

1− ab
x(1 + a′b)

]
, (16)

where x = Ωr/V0. Therefore, from [5] the optimum corrected chord, cco
opt, for each blade

section is given by:

cco
opt = cuc

opt

[
W

(1− fS)VCAV

]2
, (17)

where fS is a safety factor, and cuc
opt is

cuc
opt =

4πr∗
(

1− ε4opt

)
sin2 φ

NCnε1opt

. (18)

The correction on chord distribution is important because the diffuser increases the
axial velocity at the rotor plane, consequently increasing the angle of attack, making
cavitation relevant to be accounted for through the condition, W ≥ VCAV .

Equation (17) is the same as for a bare turbine. This is an interesting result because
it is obtained by [7] for hydrokinetic turbines with no diffuser, demonstrating that, even

for shrouded turbines, the term
[

W
(1− fS)VCAV

]2
can be applied to correct the optimum

chord distribution in order to avoid cavitation. After obtaining ε1opt from Equation (11),
the optimized aopt can be easily calculated using abopt = 1− ε1opt . The tangential induction
factor, a′, as a function of ε1opt is found using conservation of energy, resulting in the
optimum element power:

dPopt =
1
2

ρV3
0

[
ε1opt

(
1− ε2

4opt

)
− ε2

1opt

(
1− β2

)
(1− ηd)

]
dA. (19)

Additionally, applying the angular momentum equation to a blade section,

dPopt = 2ρV0a′bε1opt Ω
2r2dA. (20)
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Equations (19) and (20) give

a′bopt
=

2ε1opt

(
1− ε4opt

)
− CTd

4x2 , (21)

with ε4opt given by

ε4opt = ε1opt −
√(

1− ε1opt

)2
+ CTd − ε2

1opt
(1− β2)(1− ηd). (22)

Hence, the optimum flow angle, φopt, can be determined through Equation (16).
To compute a given DAHT blade free of cavitation, the methodology is described in the
Algorithm 1, in which the procedure for the calculation of the optimum chord and twist
angle at each radius is shown.
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Figure 3. Blade element velocity diagram.

Algorithm 1 Chord and twist angle optimization

Require: r, Ω, CL(αopt), CD(αopt) and V0
for i = 1 to Ns (Number of sections) do

Compute abopt and a′bopt
using Equations (11) and (21), respectively;

Compute φopt using Equation (16) for abopt and a′bopt
;

Compute Cn = Cl cos φ + Cd sin φ, calculated for αopt obtained from maximum Cl/Cd;
Compute the relative velocity, W;
Compute cuc

opt, using Equation (18) and θopt = φopt − αopt;
Compute VCAV , using Equation (4);
if W > VCAV then

Compute cco
opt, using Equation (18) or (17)

end if
end for
Compute blade geometry.

3. Computational Fluid Dynamics Methodology

A numerical simulation using CFD (ANSYS-CFX) was carried out to investigate
the flow through the DAHT to verify the occurrence of cavitation on the rotor blades,
comparing the simulation to the results presented by [2,7]. Continuity and incompressible
three-dimensional Reynolds-Averaged Navier–Stokes equations (RANS) are solved with
the two equations k-ω SST turbulence model.
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CFD simulation has been considered in three different approaches. For the first case,
only the bare diffuser is placed in the fluid domain and simulation is carried out in order to
compare the diffuser speed-up ratio γ with the results presented by [24].

The second approach intends to validate the bare rotor’s overall efficiency with the
results presented by [7], including the cavitation phenomenon. The Rayleigh–Plesset
cavitation model [25] is used.

Finally, the cavitation model is applied to a diffuser-augmented hydrokinetic turbine
(diffuser and rotor) so that the effects of cavitation in the rotor power and thrust coefficients
can be achieved. Optimized blade geometry obtained by the procedure described in Section 2.2
was also simulated. The moment of inertia of the turbine was not taken into account in this
paper because it is not important for the runaway condition of the rotor. It only becomes
relevant during turbine starting for a constant flow velocity, as pointed out in [26].

3.1. Diffuser Geometry

Diffuser-augmented turbines have been published mainly for wind rotors [27–29].
In the present work, the geometry is modeled with a conical diffuser that encloses the
turbine rotor with Ld/Di = 1.425 and φd = 4◦, as shown in Table 1. Figure 4 shows an
illustration of the diffuser geometry.

Table 1. Diffuser dimensions.

Parameter Value

Inlet diffuser diameter (Di) 10.50 m
Outlet diffuser diameter (De) 12.60 m
Diffuser upstream length (L1) 3.700 m
Diffuser downstream length (L2) 11.263 m
Diffuser total length (Ld) 14.963 m
Diffuser thickness (td) 4.0 mm
Opening angle (φd) 4.0 deg

1
0
,5
0
0

1
2
,6
0
0

3,700 11,263

1
2
,6
0
0

1
0
,5
0
0

5
,0
0
0

(a) (b)

Figure 4. Diffuser geometry: (a) Centerline section view and (b) Front view. (Dimensions in mm).

3.2. Cavitating Flow Simulation

The fluid which passes through the diffuser-augmented hydrokinetic turbine is as-
sumed to be incompressible and fully turbulent. The flow is three-dimensional, statistically
stationary and represented by the Reynolds-Averaged Navier–Stokes (RANS) equations
and the continuity equation in a finite volume scheme. This approach has been largely
used to simulate wind turbines, as presented in [30]. Additionally, a similar CFD approach
has been used to analyze the performance curve of a tidal current turbine [31].

The Reynolds Stress Tensor τij = ρu′iu
′
j gives the contribution of the turbulent velocity

fluctuations u′i to the time-averaged velocity ui components and mean pressure p [32].
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Thus, the so-called k-ω Shear-Stress Transport (SST) model is applied [33]. This model has
been developed to handle strong adverse pressure gradient flows so that it can predict the
size and onset of flow separation caused by an adverse pressure gradient by calculating the
transport of turbulence shear stress using an automatic wall treatment [31]. In this sense,
the SST model is a natural choice for numerical simulation of flows through hydrokinetic
turbines, which show physical similarity to wind turbines.

The cavitation process can be described by governing equations that assume a two-
phase continuum mixture of liquid water and vapor. Thus:

∂rαρα

∂t
+

∂rαραui
∂xi

= ṁα, (23)

where ρ is the density and ṁα represents the rate of change of mass between the vapor and
liquid phases, per unit of mixture volume.

ṁv = −ṁl . (24)

The subscript α = (l, v) indicates the particular liquid or vapor phase, and rα is the
volume fraction scalar of each phase. With a thermal non-equilibrium approach between phases,
the sum of the two volume fractions must equal one, i.e., rl + rv = 1 [34]. Assuming that
both phases have the same velocity, the mean momentum conservation equation is derived by
replacing the fluid density ρ with the mixture density ρm = ρlrl + ρvrv, as shown below

ρm
∂uj

∂t
+ ρmui

∂uj

∂xi
= − ∂p

∂xj
+

∂

∂xi

(
2µSij − ρmu′iu

′
j

)
+ ρm f , (25)

where µ is the dynamic viscosity, f is the additional momentum source (e.g., the gravita-
tional, Coriolis and centrifugal forces). Sij are the components of the symmetric part of
the velocity gradient tensor. The Reynolds Stress Tensor ρmu′iu

′
j is supplied by the k-ω SST

turbulence model.
Equation (24) allows the two-phase calculations to be performed by solving the conti-

nuity equation and the momentum equation written in the form of Equation (25). The rate
of vapor production ṁv was calculated using the Rayleigh–Plesset Equation [25]. Thus, the
dynamic growth of a spherical nucleated bubble can be described as:

RB
d2RB

dt2 +
3
2

(dRB
dt

)2
+

2σst

ρl RB
=

pv − p
ρl

, (26)

where RB is the radius of a nucleation site, σst is the surface tension coefficient, pv is the
pressure in the bubble, assumed to be the vapor pressure at liquid temperature, and p is
the pressure outside the bubble.

Neglecting smaller bubbles and surface tension term as stated by [25], first-order
approximation leads the Equation (26) to:

dRB
dt

=

√
2
3

pv − p
ρl

. (27)

Mass transfer needs to be modeled to describe the interphase mass transfer between
vapor and liquid considering vaporization and condensation processes, respectively. Defin-
ing the bubble density number, NB, as being the number of bubbles per unit of volume
of the mixture (note that mv = ρv

4
3 πR3

B), the rate of change of vapor mass per unit of
volume is:

ṁv = NBρv4πR2
B

√
2
3

pv − p
ρl

. (28)
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Equation (28), in terms of the vapor volume fraction rv = NB4πR3
B/3, is given by:

ṁv =
3rvρv

RB

√
2
3

pv − p
ρl

. (29)

Equation (29) only considers the vaporization, i.e., ṁv > 0, once pv − p is positive.
Equation (29) cannot handle a radius decrease (dRB/dt < 0) caused by condensation, when
p > pv. In addition, the original Rayleigh–Plesset model does not take into account the
nucleation phenomena. Vaporization begins at nucleation sites and, as the vapor volume
fraction increases, the nucleation site density decreases accordingly. Thus, in the expression
for vaporization, rv is replaced by rnuc(1− rv), where rnuc is the volume fraction of the nucle-
ation sites [35]. Finally, [36] proposed a modification that leads to Equation (30), where Fc is
dimensionless empirical coefficient for both the condensation and vaporization processes.

ṁv = Fc
3rnuc(1− rv)ρv

RB

√
2
3
|pv − p|

ρl
sgn(pv − p). (30)

Coefficients of Equation (30) found by [36] are given in Table 2.

Table 2. Material constants and conditions for the Rayleigh–Plesset Model at 25 ◦C.

Quantity Value

Fc 0.01 (Condensation) and 50 (Vaporization)
ρl 997 kg/m3

ρv 0.02308 kg/m3

rnuc 5× 10−4

Mean bubble diameter (RB) 1× 10−6 m
Pressure of vapor (pv) 3.170 kPa

3.3. Numerical Setup

The present work adopts a geometric model similar to that developed by [7] for
cavitation study on the blade rotor. The blade geometry uses a NACA 653-618 foil whose
distribution is described in Table 3. It is worth noting that NACA 653-618 was chosen only
to assess the optimization process proposed here, and airfoil selection is not the focus of
this study.

The computational domain is 31 m × 50 m × 150 m, as illustrated in Figure 5. The ro-
tor is positioned at 2.5 D from the inlet boundary and 12.5 D to the outlet boundary.
The diffuser and rotor center are located at 9 meters beneath the water´s surface (H = 9 m).

DIFFUSER AND ROTOR 

No slip condition

TOP, BOTTOM, LEFT, RIGHT FACES

Slip Condition

OUTLET

Reference 

Pressure

FRONT FACE

Inlet 

V0=2.5m/sy x

z

15
0m

25

12
5

50

31
9

Figure 5. General setup of the computational domain and boundary conditions.
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Table 3. Blade chord and twist distributions for the NACA 653-618 foil [7].

Radial Distance
(r)

Span Station
(r/R)

Chord Length Twist Twist Axis

[m] [−] [m] [deg.] [% chord]

0.793 0.148 0.27 24 30
0.949 0.189 0.56 20 30
1.185 0.237 0.55 16 30
1.400 0.280 0.51 13 30
1.635 0.327 0.47 11 30
1.860 0.372 0.43 10 30
2.086 0.417 0.39 8 30
2.311 0.462 0.35 7 30
2.536 0.507 0.33 6 30
2.761 0.552 0.30 5 30
2.985 0.597 0.28 5 30
3.210 0.642 0.26 4 30
3.432 0.686 0.26 4 30
3.657 0.731 0.26 3 30
3.880 0.776 0.26 3 30
4.101 0.820 0.25 2 30
4.328 0.865 0.26 2 30
4.550 0.910 0.26 2 30
4.776 0.955 0.26 2 30
5.000 1.000 0.11 1 30

The boundary conditions are defined as follows. A uniform velocity (V0) of 2.5 m/s
and a turbulence intensity of 5% are applied at the inlet section as a Dirichlet boundary
condition. At the outlet region, a pressure outlet boundary condition is specified with a
constant static pressure over the boundary mesh face to prevent inflow from occurring.
A non-slip condition is applied to the blades and diffuser surfaces. The free slip condition is
satisfied at the top, bottom and lateral faces of the prismatic domain. An angular velocity of
35 revolutions per minute is imposed on the moving reference zone. The main parameters
are given in Table 4. Boundary conditions are given in Table 5.

Table 4. Design parameters used in the simulation of the DAHT.

Parameter Value

Turbine diameter (D) 10 m
Hub diameter 1.5 m
Number of blades (N) 3
Free stream velocity (V0) 2.5 m/s
Water density (ρ) at 25 ◦C 997 kg/m3

Submergence of the turbine (H) 9 m
patm 1× 105 Pa
pv 3.17× 103 Pa
Gravity (g) 9.81 m/s2

Angular velocity (Ω) 35 rpm
Foil type NACA 653-618

The domain was divided into three different zones: a thin cylindrical zone around the
turbine rotor; a cylindrical zone that envelops the diffuser; and the remaining flow zone.
All domains were defined as stationary except for a thin cylinder of 10.5 m in diameter and
2 m in length which encompasses the blades. Here, the domain was defined with respect to
a moving reference frame where the governing equations are solved, taking into account
the Coriolis and centrifugal forces components in the frozen rotor approach used by the
CFD solver.
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Table 5. Boundary conditions.

Region Condition

Inlet V0 = 2.50 m/s
Outlet p = constant
Blade surface No-slip
Rotor surface No-slip
Top, bottom and lateral surfaces Slip
Rotatory domain Frozen rotor
Turbulence intensity 5%

Discretization of the fluid domain heavily interferes with the numerical solution and
refinement must obey the importance of the region in the representation of the flow physics.
In fact, the rotor wall, diffuser wall and diffuser interior are regions where mesh refinement
must be performed with care in the present case. The resolution of the mesh in the boundary
layer close to the rotor walls is still important due to the pressure drop at the suction side
of the rotor blade and the consequent occurrence of cavitation when pressure is lower than
vapor pressure at the nuclei of bubbles. According to the value of the parameter y+ [37],
defined as

y+ =
∆yu+

ν
(31)

where u+ is the wall shear velocity, ∆y the wall distance, and ν the kinematic viscosity,
the region close to the wall can be divided into three distinct layers: viscous layer (y+ < 5),
buffer layer (5 < y+ < 30) and the fully turbulent layer (y+ > 30) [38]. To accurately solve
the viscous sublayer, the values of y+ must be less than 5. In the present numeric model,
the boundary layer near the rotor wall zone was defined using 25 cell elements, increasing
the spatial scale by a factor of 1.2 between adjacent layers. The first mesh element was set
to 10−6 m, resulting in a y+max = 1.01, which is appropriate for the κ − ω SST turbulence
model. The mesh distribution along the zones defined is shown in Figures 6–8.

Before all simulations, a mesh convergence study using 5 different meshes was con-
ducted in order to verify the most appropriate distribution, number of cells, and nodes.
In all meshes, the value of power and the y+ variables were verified. This analysis dis-
covered that a mesh with 20.5 × 106 cells exhibits no variation in these variables with
further refinement, so this distribution was used in all simulations. More details about this
evaluation are shown in Section 4.2.1.

(a) (b)

Figure 6. (a) Outer semi domain grid. Dark region in the center of the figure corresponds to the diffuser
and rotor location. (b) Grid close to the diffuser (outer domain and MRF cylindrical meshes suppressed).
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(a) (b)

Figure 7. (a) Plan view in the cylindrical MRF grid surrounding the rotor. (b) 3-D close-up view near
hub and blade.

(a) (b)

Figure 8. (a) View of the unstructured grid at a blade section. (b) Close-up view of the hydrofoil
profile near the leading edge.

4. Results and Discussion

To assess the proposed optimization model, the design and geometric parameters
shown in Tables 3 and 4 are used for all simulations. The results are divided into two
phases: (i) the optimization model is evaluated considering the diffuser efficiency and
thrust, and (ii) CFD simulations are performed to verify the optimization considering a
model based on the volume fraction of water vapor.

4.1. The Optimization Model

To analyze the optimization procedure with and without a diffuser, chord and twist
angle distributions are presented in Figure 9. These results are obtained for a constant
diffuser area ratio according to Table 6. The diffuser efficiency, area ratio and thrust shown
in Table 6 are calculated from the dimensions and simulations made according to the
computational methodology described in Section 3. The conical diffuser used here was
chosen only for the purpose of evaluating the model’s behavior. This work does not intend
to analyze the variation of diffuser geometry.

Figure 9a shows that when the turbine is under the effect of a diffuser, the local chord
does not tend to zero at the root and tip of the blade, as it is for a bare turbine case using
Prandtl tip/root loss factor, F. In this case, the twist angle distribution is heavily impacted
by the diffuser (Figure 9b). As recently pointed out by Vaz, Okulov and Wood [39], for a
bare turbine optimization procedure using the Prandtl loss factor, the chord is always zero
at the root and tip of the blade, as shown in Figure 10. This is because Equation (14) reduces
the far wake velocity, ε4, to ε4 = 1− abF for a bare turbine, and then, if F → 0, c → 0,
as ε4 → 1. For a turbine with diffuser, the extra term in Equation (14), results in a value of
ε4 that is always less than unit, causing c > 0. This result demonstrates that, even when
using tip loss models, any optimization that takes the diffuser effect into account, the chord
will never be zero at root and tip of the blade. Consequently, the increased chord along the
entire blade increases the torque produced by the rotor, which is important for starting the
turbine, as starting behavior requires higher torque at low stream velocity [26,40].
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Table 6. Diffuser design parameters.

Parameter Value

β 0.7511
ηd 0.4712
CTd 0.6458

0 1 2 3 4 5
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)
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(b)

Figure 9. (a) Chord and (b) twist angle distributions along the blade under the effect of a diffuser.
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r - (m)

0

0.2

0.4

0.6

0.8

1

F
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Figure 10. Prandtl tip loss factor under the effect of a diffuser.

To assess the performance of the optimization procedure under cavitation conditions
for a turbine with a diffuser, the design parameters shown in Table 4 are taken into account.
The uncorrected and corrected chord distributions in relation to the cavitation are shown in
Figure 11a. Note that cavitation occurs at approximately 80% of the blade length, and the
model corrects the chord to avoid it. When W becomes higher than VCAV , the model
imposes a correction in order to modify the relative velocity, as shown in Figure 11b for
radial positions r > 4.12 m. The method assumes W to always be lower than VCAV . This
optimization methodology is similar to that described in [5], with the main difference being
the addition of diffuser efficiency and thrust into the mathematical approach, which is not
reported in [5]. In the next section, CFD simulations are performed with optimized turbines
with and without a diffuser.
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Figure 11. (a) Cavitation effect on the chord distribution along the blade. (b) Relative and cavitation
velocities as functions of the radial position.

4.2. CFD Simulations and Validation
4.2.1. Verification of Optimal Point of Rotor Position and Mesh Independence Study

To ensure reliable and accurate results for the optimization model, mesh convergence
studies and numerical validations must be carried out. The diffuser speed-up ratio ob-
tained by CFD simulation was compared with experimental data obtained in [24]. Their
measurements were performed with a 0.255-meter-long diffuser with a 0.5 mm thickness
and a 5-degree opening angle. In the numerical model, the diffuser is empty; no rotational
mesh has been implemented. The boundary layer near the rotor wall is defined with
25 layers, increasing by a factor of 1.2 between adjacent cells. The velocity ratio (Vx/Vo) in
the diffuser centerline is depicted with the relative position (X/Ld) in Figure 12 and shows
good agreement between the numerical and experimental results at the peak of the curve.
This point is important because it is the location where the turbine is placed.

[17]Experimental (Barbosa et al, 2015)

Figure 12. Comparative CFD-experimental velocity ratios on bare diffuser. Adapted from [24].

A grid refinement is applied in the interior and surrounding regions of the diffuser,
downstream and upstream of the rotor, to assess the mesh dependence. As shown in
Table 7, although there is a difference of one million between Meshes D and E for the
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shrouded case, there is no significant change in values of mechanical power, evidencing
the independence of the grid from the numerical results.

Table 7. Grid independence results—shrouded turbine.

Mesh Cells [×106] y+
max Power

Mesh A 16.2 1.32 388 kW
Mesh B 17.6 1.01 337 kW
Mesh C 18.9 1.15 333 kW
Mesh D 19.4 1.10 325 kW
Mesh E 20.5 1.11 324 kW

4.2.2. Numerical Simulation of Cavitation Effect on Diffuser-Augmented
Hydrokinetic Blades

The hydrokinetic energy of the water passing over the rotor is proportional to the mass
flow. Shrouding the rotor with a diffuser is a common method to increase the axial velocity
and, consequently, the turbine power coefficient. However, due to the change in speed and
pressure fields, cavitation can occur and affect the performance of the rotor. Optimized
blade geometry should be able to mitigate this prejudicial effect. As previously described,
cavitation occurs when cPmin + σ < 0. The bare and shrouded turbines were subjected to
the cavitation criterion as a function of radial position, Table 8. Indeed, the bare condition
shows that cavitation occurs beyond 3.50 m up to the tip of the blade. These results seem
strictly consistent with those reported by [7]. For the case of shrouded turbine, cavitation
begins earlier, from 3.00 m of the blade length up to the tip. Figure 13 shows the cavitation
at the suction side of the upward blade of the rotor.

Table 8. Cavitation criterion at upward blade.

Bare Turbine Shrouded Turbine

r [m] W [m/s] σ cPmin W [m/s] σ cPmin

1.00 4.4366 17.9746 −4.4438 4.8882 14.8072 −4.5960
1.25 5.2192 12.8085 −3.8261 5.6089 11.0903 −4.2369
1.50 6.0395 9.4309 −3.1398 6.3809 8.4489 −3.6099
1.75 6.8841 7.1554 −2.8491 7.1868 6.5652 −3.4404
2.00 7.7450 5.5713 −2.4387 8.0165 5.2003 −3.0272
2.25 8.6173 4.4344 −2.2454 8.8635 4.1915 −2.8229
2.50 9.4979 3.5959 −2.1149 9.7230 3.4313 −2.5876
2.75 10.3847 2.9625 −2.0876 10.5926 2.8474 −2.5156
3.00 11.2762 2.4740 −1.9430 11.4700 2.3911 −2.2933
3.25 12.1714 2.0904 −1.7277 12.3537 2.0292 −2.0685
3.50 13.0695 1.7843 −1.7887 13.2425 1.7379 −1.7737
3.75 13.9700 1.5365 −1.5611 14.1354 1.5008 −1.5322
4.00 14.8724 1.3336 −1.3559 15.0299 1.3058 −1.3339
4.25 15.7764 1.1654 −1.1897 15.9229 1.1441 −1.1691
4.50 16.6818 1.0247 −1.0465 16.8117 1.0089 −1.0314
4.75 17.5882 0.9060 −0.9224 17.6833 0.8963 −0.9166
5.00 18.4957 0.8049 −0.8194 18.5221 0.8026 −0.8180

As discussed in Section 3.2, the total vapor volume is used to quantify cavitation.
In this way, cavitation occurs only when the volume fraction of vapor is greater than 0.01.
For the bare turbine, the simulation indicates a vapor volume equal to 383.6 mL, while
for the shrouded turbine, it indicates 779.2 mL. In other words, the numerical simulations
show that the shrouded turbine produces twice the amount of vapor as compared to the
bare turbine. Figure 14a shows the top blade region where cavitation occurs on the suction
side of the bare turbine. Figure 14b shows the same region where cavitation occurs for the
shrouded turbine. This increase in cavitation occurs because the blade optimized by [7] did



Sustainability 2022, 14, 7067 17 of 22

not consider the diffuser effect. This fact demonstrates the need to account for the changes
promoted by the diffuser on the flow during the blade optimization process.

 0
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 12
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 0  1  2  3  4  5  6

C
P

m
in

 +
 σ

r (m)

Bare Turbine

Shrouded Turbine

Figure 13. Cavitation criterion at upward blade (suction side).

The optimization due to the effect of the diffuser and cavitation correction were
applied, as stated in Section 4.1, also shown in Figure 14c. The optimized blade was tested
in the same simulation conditions applied to the previously shrouded configuration. It
can be noticed that there is a complete absence of cavitation for the proposed optimized
rotor blade. Note that the proposed methodology can integrally avoid cavitation inception.
This occurs due to the optimization technique considering the increase in the axial velocity
through the rotor blades, consequently increasing chord and twist angle distributions,
as shown in Figure 9. This is a direct consequence of Equation (17), in which the chord is
strongly dependent on the relative velocity, W.

After the correction of the blade geometry using the procedure shown in Section 2,
the CFD simulation was carried out again, keeping the mesh distribution and data param-
eters used in Mesh E. In Figure 15, the pressure contour and streamlines for a shrouded,
not corrected turbine are shown. Additionally, in Figure 16, the same data are shown for
a shrouded turbine with blade correction. For a more detailed view of the pressure field
in the fluid around the tip of the blade, a radial section at a radius r = 4.9 m was selected.
These data are shown in Figure 17, for all cases studied. After blade geometry correction,
no cavitation is found because the pressure values are all above the water vapor pressure.

Figure 14. Volume fraction of water vapor at suction side: (a) bare turbine; (b) shrouded turbine; (c)
corrected blade.
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Figure 15. Streamlines colored by velocity magnitude and pressure contour in uncorrected blades
surfaces. (a) Pressure side. (b) Suction side.

[ms⁻¹]

(a)

300,000

275,000

250,000

225,000

200,000

175,000

150,000

125,000

100,000

75,000

50,000

25,000

0

(b)

Figure 16. Streamlines colored by velocity magnitude and pressure contour in corrected blades
surfaces. (a) Pressure side. (b) Suction side.

The power coefficient as a function of tip speed ratio, using BEMT, is shown in
Figure 18. Note that the curve for CP seems to be really flat when compared to that
calculated by Silva et al. [7]. This behavior is also pointed out by [39], in which the authors
suggest that diffuser-augmented wind turbines have much flatter power curves than bare
turbines. This characteristic is important because it means that at any operating condition,
a shrouded turbine tends to keep its efficiency higher.

(a) (b) (c)

Figure 17. Pressure contour at a blade radius 4.9m from the rotor center. (a) Bare turbine. (b) Shrouded
Turbine. (c) Shrouded optimized turbine.
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Figure 18. Power coefficient of the optimized blade with diffuser. Adapted from [7].

5. Conclusions

This work shows the development of a new optimization model applied to diffuser-
augmented hydrokinetic blades, taking into account the effect of cavitation inception.
The model demonstrates that diffuser efficiency, ηd, and thrust, CTd, directly impact the
cavitation on shrouded hydrokinetic blades. Such an impact occurs through the optimum
expressions to calculate chord and twist angle, which are dependent on W2, as depicted
in Equation (17). As shown in Figure 9, the optimization increases chord and twist angle
distributions, altering the pressure condition at each blade section. To avoid cavitation
inception, the results show that the model needs to account for the diffuser contribution
to the flow passing through the rotor. As a result, the chord and twist angle change in
order to keep the relative velocity W lower than the cavitation velocity VCAV at all times.
Another interesting result is that when the turbine is under the effect of a diffuser, the local
chord does not tend to zero at the root and tip of the blade (Figure 9a), as it occurs for a
bare turbine using the Prandtl tip/root loss factor, F, and the twist angle distribution is
heavily impacted by the diffuser (Figure 9b). Even though the model presents good results,
some limitations must be analyzed carefully. There is a need for model validation using
experimental data, as well as analysis of the model in off-design conditions. Nevertheless,
the work demonstrates that any optimization methodology needs to consider the diffuser
as it can intensify the cavitation on hydrokinetic blades.
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HT Hydrokinetic Turbine
MRF Moving Reference Frame
LES Large Eddy Simulation
RANS Reynolds-Averaged Navier–Stokes
VOF Volume Of Fluid Technique
Arabic Symbols
a, a

′
Streamtube average axial and tangential induction factors

ab, a
′
b Axial and tangential induction factors at the blade

A Area of the Disc (m2)
A3 Cross section at the diffuser outlet (m2)
c Chord (m)
cuc, cco Uncorrected and corrected chord (m)
Cl , Cd Lift and drag coefficients
CP Power coefficient
cp3 Pressure coefficient at the diffuser outlet
cpmin Minimum pressure coefficient
Cn Normal force coefficient
CT , CTd Thrust coefficient and diffuser thrust coefficient
D Turbine Diameter (m)
Di, De Inlet and outlet diffuser diameters (m)
dP Elementary power (W)
f Additional momentum source (m s−2)
fS Safety factor
F Prandtl’s tip loss factor
Fc Empirical constant of the cavitation model
g Gravity (m s−2)
h,H Distance between free surface and turbine radial or center position (m)
ṁl ,ṁv Rate of change mass per unit of volume for liquid and vapor phases
L1, L2 Upstream and downstream diffuser lengths relative to rotor center plane (m)
Ld Diffuser total length (m)
N Number of blades
NB Number of bubbles per unit of mixture volume
p Local pressure (Pa)
patm Atmospheric pressure (Pa)
p0 Pressure in the external flow (Pa)
p2 Pressure in the turbine upstream (Pa)
p3 Pressure in the diffuser outlet (Pa)
pv Vapor pressure (Pa)
r Radial position at the rotor plane (m)
R Radius of the rotor (m)
r∗ Dimensionless radial position
rl ,rv liquid and vapor volume fractions
rnuc Nucleation volume fraction
RB Bubble radius (m)
Sij Symmetric part of the velocity gradient tensor
ui,u

′
i Mean velocity and flutuations components (m s−1)

u′iu
′
j Reynolds Stress Tensor (m2 s−2)

td Diffuser thickness (m)
Vx X-component of the flow velocity at the diffuser centerline (m s−1)
V0 Freestream flow velocity (m s−1)
V1, V2 Axial velocity at the rotor (m s−1)
V3,V4 Axial velocity at the diffuser outlet and at the wake (m s−1)
VCAV Minimum cavitating flow velocity (m s−1)
X Longitudinal position at the diffuser centerline (m)
W Relative velocity of fluid
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Greek Symbols
α Angle of attack (rad)
β Cross sectional area ratio
∆y Wall distance (m)
ε1 Velocity ratio
ε4 Far-wake velocity ratio
ηd Diffuser efficiency
γ Diffuser speed-up ratio
µ Dynamic viscosity (kg m−1 s−1)
ν Kinematic viscosity (m2 s−1)
Ω Angular velocity of turbine (s−1)
ρ Fluid density (kg m−3)
ρl , ρv, ρm Liquid, vapor and mixture densities (kg m−3)
σ Cavitation number
σs Local solidity
σst Surface tension coefficient
φ Flow angle (rad)
φd Diffuser opening angle
τij Reynolds stress tensor (m2 s2)
θ Twist angle (rad)
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