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 A B S T R A C T

Tidal stream turbines (TSTs) are crucial for renewable energy generation but face challenges from marine 
biofouling, significantly impacting their efficiency. Traditional methods for predicting performance and 
detecting biofouling rely on empirical models and manual inspections, which are often time-consuming and 
less accurate. This study introduces RegStack, a novel machine learning-based ensemble model, to enhance 
the prediction of power and thrust coefficients (𝐶𝑃  and 𝐶𝑇 ) and accurately classify biofouling levels in 
TSTs. Unlike conventional models, RegStack integrates L1 and L2 regularization into a stacking framework, 
improving robustness, generalization, and interpretability. The model dynamically balances the strengths of 
multiple regression and classification algorithms, optimizing predictive accuracy while mitigating overfitting. 
Comprehensive experiments were conducted using an extensive dataset of tidal stream turbine performance 
metrics under varying operational and environmental conditions. The RegStack model outperformed conven-
tional approaches, achieving a coefficient of determination (𝑅2) of 0.989 for performance predictions, with 
minimal mean absolute error (MAE) and mean squared error (MSE). Additionally, the model achieved 98.39% 
classification accuracy, with precision and recall of 0.97, and an F1-score of 0.97 in biofouling detection, 
demonstrating its effectiveness in real-time turbine health monitoring. By providing an automated, data-
driven alternative to traditional methods, this study underscores the potential of advanced machine learning 
techniques in optimizing TST operations, reducing maintenance costs, and enhancing the reliability of marine 
renewable energy systems. The proposed RegStack model offers a scalable framework applicable to other 
renewable energy technologies, supporting sustainable energy advancements.
1. Introduction

1.1. Background

Tidal Stream Turbines (TSTs) are an innovative technology that 
harnesses the kinetic energy of tidal currents to generate electricity. 
These turbines operate similarly to underwater wind turbines, with 
rotor blades that are turned by the moving water, driving a generator 
to produce electricity. The basic components of a TST include the 
rotor blades, nacelle, and support structure (Touimi et al., 2018). The 
rotor blades are designed to efficiently capture energy from the water 

I This work is supported by the PIA 3 CMQ Industries de la Mer Bretagne (IndMer), France.
∗ Corresponding author at: University of Brest, UMR CNRS 6027, 29238 Brest, France.
E-mail addresses: haroon.rashid@univ-brest.fr (H. Rashid), moh220@lehigh.edu (M. Hanzla), t.berghout@univ-batna2.dz (T. Berghout), 

yassine.amirat@isen-ouest.yncrea.fr (Y. Amirat), arb612@lehigh.edu (A. Banerjee), Abdeslam.Mamoune@univ-brest.fr (A. Mamoune), 
mohamed.benbouzid@univ-brest.fr (M. Benbouzid).

currents. As tidal currents flow over the blades, they spin, turning the 
generator within the nacelle to produce electricity (Liu et al., 2017). 
The support structure ensures the turbine is securely anchored to the 
seabed.

Tidal energy offers several advantages over other forms of renew-
able energy. Firstly, it is highly predictable, with tidal cycles being 
well understood and easily forecasted. This predictability enhances grid 
stability and makes tidal energy a dependable complement to more 
variable renewable sources like wind and solar (Liu et al., 2011; Rashid, 
Benbouzid, TitahBenbouzid, Amirat, Mamoune et al., 2023). Secondly, 
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TSTs have a lower visual impact and smaller footprint compared to 
wind farms, as they are installed underwater (Fox et al., 2018).

Tidal energy has a high energy density, meaning a small area of 
tidal turbines can produce a substantial amount of electricity (Gunawan 
et al., 2014). This efficiency, combined with the predictability of tidal 
flows, makes TSTs an attractive option for regions with strong tidal cur-
rents. By integrating tidal energy into the renewable energy portfolio, 
countries can diversify their energy sources, enhance energy security, 
and contribute to the reduction of greenhouse gas emissions (Ellabban 
et al., 2014).

The performance of TSTs is fundamentally assessed using two key 
parameters: the power coefficient (𝐶𝑃 ) and the thrust coefficient (𝐶𝑇 ). 
These coefficients are critical for evaluating the efficiency and opera-
tional dynamics of tidal turbines (Zhang et al., 2020).

The 𝐶𝑃  is defined as the ratio of the actual power output of 
the turbine to the maximum power available in the tidal stream. 
Mathematically, it is expressed as: 

𝐶𝑃 = 𝑄𝛺
0.5𝜌𝐴𝑈3

(1)

where 𝑄 is the rotor torque, 𝛺 is angular speed of the turbine, 𝜌 is the 
density of seawater, 𝐴 is the swept area of the turbine blades, and 𝑈
is the velocity of the tidal stream. The 𝐶𝑃  is a measure of the turbine’s 
efficiency in converting the kinetic energy of the water into electrical 
energy. A higher 𝐶𝑃  indicates better performance and efficiency of the 
turbine.

The 𝐶𝑇  is defined as the ratio of the thrust force exerted on the 
turbine to the dynamic pressure force of the tidal stream. It is given 
by: 

𝐶𝑇 = 𝑇
0.5𝜌𝐴𝑈2

(2)

where 𝑇  is the thrust force. The 𝐶𝑇  is significant because it quantifies 
the force exerted by the water on the turbine blades, which affects the 
structural load and stability of the turbine. Understanding 𝐶𝑇  is crucial 
for designing turbines that can withstand the load they encounter 
during operation.

Both 𝐶𝑃  and 𝐶𝑇  are essential for optimizing the design and op-
eration of TSTs. The 𝐶𝑃  directly impacts the energy yield of the 
turbine, while the 𝐶𝑇  influences the mechanical stresses and main-
tenance requirements. High 𝐶𝑇  values can lead to increased wear 
and potential damage to the turbine structure, necessitating a balance 
between maximizing 𝐶𝑃  and managing 𝐶𝑇  (Volponi, 2014).

Monitoring and predicting these coefficients under various oper-
ational conditions, are vital for maintaining optimal performance of 
TSTs. Accurate prediction models enable better planning for mainte-
nance and operational adjustments, ensuring the reliability of tidal 
energy systems (Arafat et al., 2024).

The TSTs are susceptible not only to severe hydrodynamic load-
ing but also to the occurrence of biofouling on the TST blades and 
support structures (Hosna et al., 2023). Biofouling is the accumula-
tion of marine organisms such as algae, barnacles, mussels, and other 
biological matter on submerged surfaces. This phenomenon occurs as 
microorganisms attach to surfaces in the water, forming a biofilm that 
attracts larger organisms over time. Biofouling is a significant challenge 
for marine renewable energy technologies, including TSTs, due to its 
impact on efficiency and maintenance. Walker et al. (2020) reported 
the growth of solid barnacles with heights of approximately 11 mm 
(0.02c, where c is the chord length), primarily on the trailing edge 
of the AHH HS1000 full-scale tidal turbine deployed at EMEC from 
December 2011 to early 2015. Similarly, biofouling accumulation has 
been reported for several other full-scale tidal turbines, including the 
Kobold tidal current turbine, the ducted axial-flow turbine at Canada’s 
Race Rocks, and the OpenHydro TST (Rashid, Habbouche et al., 2024; 
Satrio et al., 2024).

Xu et al. (2025) proposed a multi-view and multi-type feature fusion 
(MVTFF) method for improved biofouling recognition on TST rotors. 
2 
Their method enhances recognition accuracy by mitigating background 
interference and addressing target blending with water through the 
fusion of key boundary, semantic, and contour features. Experimen-
tal results demonstrated superior performance across varying water 
turbidity levels, improving mIoU, mPA, Precision, and Recall metrics. 
This approach contributes to optimizing TST maintenance and power 
generation efficiency. Fig.  1 shows the accumulation of biofouling on 
a tidal turbine after 28 days of installation.

A notable full-scale experimental investigation was conducted by 
SCHOTTEL HYDRO, where four drivetrains with 6.3-m rotors were 
deployed on the surface platform PLAT-I. The system underwent sea 
testing from 2017 to 2021 in Scotland and Nova Scotia, Canada. The 
study revealed that biofouling led to a significant power drop of up 
to 43% and a thrust reduction of 25%. These findings underscore the 
importance of maintaining turbine access for inspection and mainte-
nance to mitigate performance degradation due to fouling (Rivier et al., 
2018).

The process of biofouling begins with the initial colonization by 
bacteria and microalgae, which produce a slimy substance that fa-
cilitates the attachment of other organisms. Over time, this biofilm 
thickens and becomes a habitat for more complex organisms such as 
barnacles, mussels, and seaweed. The extent and type of biofouling can 
vary depending on environmental factors such as water temperature, 
salinity, and nutrient availability (Hong, Lv et al., 2024).

Biofouling has several adverse effects on the performance of TSTs:

• Altered Hydrodynamic Characteristics: Biofouling changes the 
hydrodynamic profile of turbine blades, affecting the lift-to-drag 
ratio. This alteration can compromise the optimal performance of 
the blades, further decreasing their ability to harness kinetic en-
ergy from tidal currents efficiently. The additional surface rough-
ness disrupts the smooth flow of water over the blades, leading 
to increased resistance and decreased rotational speed. Conse-
quently, the 𝐶𝑃  drops, resulting in lower energy output.

• Increased Structural Load: The additional weight and surface 
area of biofouling organisms increase the standard deviation of 
the thrust force (𝐶𝑇 ) exerted on the turbine blades. This height-
ened load can accelerate wear and tear on mechanical com-
ponents, leading to more frequent maintenance and potentially 
shorter turbine lifespans.

• Maintenance and Operational Costs: Addressing biofouling in-
volves regular cleaning and maintenance, which can be costly and 
time-consuming. Anti-fouling coatings and technologies add to 
the operational expenses but are necessary to mitigate the adverse 
effects of biofouling.

The impact of biofouling on TSTs underscores the importance of 
developing accurate predictive models for 𝐶𝑃  and 𝐶𝑇  under varying 
biofouling conditions. By understanding and anticipating the effects 
of biofouling, operators can implement more effective maintenance 
schedules and design strategies to enhance the efficiency of tidal en-
ergy systems. Based on the above studies, there is broad agreement 
within both the scientific community and the industry on the need to 
develop robust algorithms capable of predicting and detecting biofoul-
ing, enabling preventive maintenance. Most antifouling paints last for 
only 3–5 years, whereas these devices are designed for a lifespan of 
20–30 years (Satrio et al., 2024).

The primary contributions of this study are as follows:

• Development of a novel hybrid model for turbine prediction, 
integrating ensemble learning techniques, feature selection opti-
mization, and hybrid deep learning architectures.

• Introduction of a systematic approach to address data imbalance 
in turbine prediction.

• Demonstration of improved performance through the integration 
of L1 and L2 regularization.
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Fig. 1. Biofouling accumulation on a tidal stream turbine.
Source: Courtesy of Prof. Kyozuka (2018).
• Classification models development based on bead distribution 
patterns on turbine blades to categorize turbine biofouling levels 
into distinct classes (clean, lightly fouled and densely fouled). 
This classification is crucial for effective maintenance planning 
and optimizing turbine operational performance.

2. Literature review

Turbine prediction methods can be broadly categorized into three 
main approaches:

Physics-Based Models: These models rely on fundamental fluid 
dynamics equations to predict turbine performance. Examples include 
Blade Element Momentum Theory (BEMT) and Computational Fluid 
Dynamics (CFD), which provide detailed flow analysis but require 
extensive computational resources and may struggle with real-time 
adaptability.

Data-Driven Models: These include machine learning (ML) and 
statistical models, such as Support Vector Machines (SVMs), Decision 
Trees, and DNNs. They excel at handling complex, nonlinear rela-
tionships but are prone to overfitting and require large, high-quality 
datasets.

Hybrid Approaches: These models combine physics-based and ML 
techniques to improve accuracy and adaptability.

A major challenge in turbine prediction is data imbalance, where 
most datasets are dominated by normal operating conditions, leading 
to biased models that fail to accurately predict rare failure events 
(Chen et al., 2024). Recent research suggests methods such as over-
sampling, cost-sensitive learning, and hybrid modeling to mitigate this 
issue (Chen et al., 2025, 2020). This study integrates these insights 
by developing a regularized ensemble learning approach that balances 
prediction accuracy while addressing data imbalance.

BEMT is one of the most widely used traditional computational 
models for predicting the performance of TSTs (Mannion et al., 2020; 
Masters et al., 2011). In Malki et al. (2013), the authors present an 
innovative hybrid modeling approach that integrates BEMT with Com-
putational Fluid Dynamics (CFD) to enhance prediction accuracy. This 
method improves upon conventional BEMT by incorporating detailed 
flow analysis, making it more reliable for design optimization and op-
erational strategies. However, purely physics-based models like BEMT 
3 
and CFD require extensive computational resources and lack adapt-
ability to dynamic environmental conditions, limiting their practical 
application in real-time performance monitoring.

Recent advancements have explored ML approaches as data-driven 
alternatives for predicting 𝐶𝑃  and 𝐶𝑇 . Various ML techniques, including 
SVMs, Decision Trees, and Deep Neural Networks (DNNs), have been 
employed to improve accuracy (Kishore et al., 2024; Yang et al., 2024). 
While these models outperform traditional computational methods in 
handling non-linearity, they often suffer from overfitting, interpretabil-
ity challenges, and high sensitivity to dataset size. Furthermore, most 
existing ML models are designed exclusively for either performance 
prediction or biofouling classification, rather than integrating both 
tasks within a unified framework. Different machine learning models 
are summarized in Table  1, which provides a comparison of various 
machine learning techniques for performance analysis.

Traditional biofouling detection methods, such as visual inspection 
and periodic cleaning, are costly, time-consuming, and operationally 
disruptive (Hong, Deng et al., 2024; Rashid, Benbouzid, TitahBen-
bouzid, Amirat, Mamoune et al., 2023). Advanced sensor technologies 
have been introduced to address these challenges. Acoustic sensors, 
for example, use sound waves to detect and characterize biofouling 
based on changes in signal reflection (Kong et al., 2024). While ef-
fective, acoustic sensors are susceptible to environmental noise and 
require complex signal processing techniques to extract meaningful 
information.

Pretext tasks, such as contrastive learning and masked autoencod-
ing, have emerged as powerful techniques in self-supervised learn-
ing for biofouling detection. These methods enable models to learn 
meaningful and robust feature representations from unlabeled data, 
addressing the challenge of limited annotated datasets (Prexl & Schmitt, 
2025; Wang et al., 2024).

Optical imaging techniques, utilizing cameras, provide visual evi-
dence of biofouling growth on turbine surfaces. These systems offer 
potential for automated image analysis but may be ineffective in turbid 
waters or environments with low optical clarity (Rashid, Benbouzid, 
Amirat et al., 2023). Recent studies have integrated ML-based image 
processing techniques to enhance biofouling classification accuracy. 
However, such methods still require extensive labeled datasets and 
suffer from domain adaptation issues when applied to different water 
conditions.
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Table 1
Comparison of machine learning techniques for performance analysis. 
 ML technique Key features Advantages Limitations Reference  
 Artificial Neural 
Networks (ANNs)

Multi-layer perceptrons, 
non-linear modeling

High accuracy, good 
generalization

Requires large dataset, risk of 
overfitting

Rotor and Hefazi 
(2022)

 

 Support Vector 
Regression (SVR)

Sensorless MPPT using the 
relationship between the 
generator’s output power and 
rotational speed.

Avoids reliance on tidal 
current speed sensor, improves 
reliability, and reduces 
maintenance costs.

Performance influenced by 
parameter selection; requires 
offline training.

Abo-Khalil and 
Alghamdi (2021)

 

 Random Forests (RF) Ensemble of decision trees, 
feature importance

High accuracy, interpretable, 
handles missing data

Computationally expensive, 
may overfit with noisy data

Breiman (2001)  

 Gaussian Process 
Regression (GPR)

Probabilistic modeling, 
uncertainty quantification

Accurate predictions, provides 
confidence intervals

Computationally intensive, less 
effective with 
high-dimensional data

Banerjee et al. (2013)  

 Deep Learning (DL) Convolutional neural 
networks, deep architectures

Superior accuracy, captures 
complex patterns

Requires large computational 
resources, risk of overfitting

Li et al. (2024)  

 Generative–Predictive 
Models

Data-driven multi-objective 
optimization, combines 
generative and predictive 
approaches

Capable of handling multiple 
objectives, high prediction 
accuracy

Complexity in model 
development and 
interpretation

Xia et al. (2024)  

 Statistical Models Univariate Analysis, MDA, 
LPM

Simple interpretation, widely 
used

Limited for complex datasets Mohanty et al. (2025)  

 Artificial Intelligence 
and Expert Systems

Inductive Learning, CBR, 
Neural Networks

Effective for decision making, 
adaptive

Computationally expensive, 
may require expert knowledge

Ducange et al. (2025) 
and Liu et al. (2025)

 

Mo et al. (2024) proposed a deep learning-based method for the 
identification of pollutant adhesion in tidal energy generation sys-
tems. Their approach utilizes underwater image datasets and image 
segmentation algorithms to accurately identify and quantify biofouling 
on turbine blades, significantly improving detection accuracy. These 
findings highlight the potential of machine learning in biofouling mon-
itoring, further motivating the need for robust predictive models like 
RegStack.

Emerging trends in biofouling detection involve the use of ma-
chine learning for real-time anomaly detection. ML-driven approaches 
leverage sensor fusion techniques, combining acoustic, optical, and 
physical sensor data to enhance robustness (Rashid, Benbouzid, Titah-
Benbouzid, Amirat, Berghout et al., 2023). Despite these advancements, 
most existing models focus on either predictive maintenance or bio-
fouling classification, with limited research addressing an end-to-end 
framework for both tasks.

This study addresses the limitations of existing approaches by in-
troducing RegStack, a novel stacking-based ensemble learning model 
that incorporates both L1 and L2 regularization within its meta-learner. 
Unlike conventional ML models, which focus solely on either 𝐶𝑃  and 
𝐶𝑇  prediction or biofouling classification, RegStack provides a unified 
framework that effectively integrates both tasks. This comprehensive 
approach enhances predictive accuracy and operational efficiency in 
TST performance monitoring. Furthermore, RegStack improves model 
interpretability through SHAP-based feature importance analysis, mit-
igating the black-box nature of traditional ML techniques and offering 
deeper insights into the influence of key input variables.

3. Methodology

Fig.  2 outlines the general framework of the proposed methodology. 
The methodology involves several stages: Data collection, where raw 
data from TSTs is gathered; Data preprocessing, where the data is 
cleaned and prepared; Prediction of 𝐶𝑃  and 𝐶𝑇  using the proposed 
Regstack Method, leading to performance predictions; and Biofouling 
classification using the proposed Regstack Classifier to categorize the 
turbines as clean, lightly fouled, or densely fouled.

3.1. Data collection

3.1.1. Experimental facility
The experiments were conducted at the Tidal Turbulence Test Fa-

cility (𝑇 3𝐹 ) located at Lehigh University, Pennsylvania, USA, as shown 
in Fig.  3a. The water tunnel features an open surface test section with 
4 
dimensions of 1.98 m in length (7.08D: D-turbine diameter), 0.61 m 
in width (2.18D), and water level depth is maintained at 0.60 m 
(2.14D) (Kolekar & Banerjee, 2015; Vinod & Banerjee, 2019; Vinod 
et al., 2021). The flow speed in the tunnel is maintained using a 25HP 
single-stage axial flow pump with a variable frequency driver. The 
facility can achieve a maximum of 1 m/s inflow speed. However, all 
the experiments conducted in this work were run at an inflow speed of 
0.83 m/s.

A 1:20 scaled, three-bladed tidal turbine with a rotor diameter of 
11′′ (D = 0.279 m) and a constant chord c = 0.56′′ (0.014 m) having 
SG6043 profiled blades was tested as shown in Fig.  3b. The turbine 
design is the same as used in previous studies (Habbouche et al., 2024; 
Kolekar et al., 2019; Modali et al., 2021; Rashid, Benbouzid et al., 
2024; Vinod & Banerjee, 2019; Vinod et al., 2021) with a slightly 
shorter chord length. The rotor plane was fixed at 2D from the test 
section inlet with its axis along the tunnel centre line. An Anaheim 
Automation (23MDSI) stepper motor provided precise control of the 
rotor shaft’s rotational speeds. The sensor assembly, located within the 
nacelle, included a torque (Interface Model-MRT2P) and thrust (SML-
25) sensor to measure the loads on the rotor assembly. The nacelle 
having all the electronics is sealed with pressurized air around 20 kPa 
gauge pressure to prevent ingress of water inside it.

3.1.2. Measurement specifications
The thrust and torque data is sampled at 200 Hz sampling frequency 

for 120 s, which allows mean and standard deviations to converge 
with an error below 3% (see Fig.  2 in previous study (Vinod & Baner-
jee, 2019)). The non-repeatability of these sensors was ±0.0334 𝑁
and ±0.001 Nm, respectively. To minimize variability in the turbine 
data due to rotor degradation and supporting fixtures (shaft, bearings, 
coupling, stepper motor, to name a few), an initial dry (in-air) cali-
bration of the torque and thrust sensors is performed. Subsequently, 
the experimental values obtained during actual testing are corrected 
accordingly. The accounted variability is less than ±3.25%, determined 
after repeating each experiment three times. The inflow velocity was 
measured using Nortek Vectrino+ Acoustic Doppler Velocimetry (ADV) 
sampled at 50 Hz sampling frequency. The measurement accuracy 
of the ADV provided by the manufacturer was ±0.005 m/s, and the 
data was collected for 120 s. The measured velocity time series is 
filtered using the phase space thresholding (PST) technique to eliminate 
spikes (Goring & Nikora, 2002). After filtering, the velocity time series 
is then decomposed using Reynolds decomposition into mean 𝑈 and 
fluctuating 𝑢′(𝑡) components for further analysis.
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Fig. 2. General framework of the proposed methodology.
Fig. 3. (a) Schematic of Tidal Turbulence Test Facility (𝑇 3𝐹 ); (b) 1:20 scaled rotor used in the experiment.
3.1.3. Inflow characterization
Prior to the discussion on mimicking the effect of biofouling through 

roughness introduced by using beads, it would make more sense to 
elaborate on the inflow conditions. The current work uses a free-stream 
velocity of 0.83 m/s, which is quasi-laminar, i.e., having turbulence in-
tensity (= 100x

√

̄𝑢′2∕𝑈 ; overbar represents time-average) at the center-
point on the rotor plane around 2.2%. Similar values of freestream 
turbulence intensity in the same setup were reported in previous studies 
(Vinod & Banerjee, 2019; Vinod et al., 2021). Since the honeycomb 
mesh upstream of the test section can introduce variability due to 
ADV particle tracers getting trapped, it is regularly cleaned, and the 
tunnel is calibrated periodically to minimize any effects. Further, the 
generated inflow condition is homogeneous, as shown in the contour 
plots (Fig.  4a,b) for streamwise mean velocity and turbulence intensity 
(Ti%) at the rotor plane. The dashed line marks the trajectory of the 
blade tip shown only for the upper half-rotor plane. Clearly, a good 
homogeneity can be seen in the inflow condition, having variability in 
the mean velocity and turbulence intensity within ± 1.2% and ± 0.8%, 
respectively, at the rotor plane. Velocity spectra of the streamwise 
velocity time series data were also examined and plotted using Pwelch 
(MATLAB), as shown in (Fig.  4c). It can be seen that the velocity 
spectra do not have Kolmogorov -5/3 scaling and, hence, the inflow 
condition is not representative of the turbulent inflow (Pope, 2000) and 
can be regarded as quasi-laminar. The turbulence intensity reported is 
merely a measure of the background disturbances. This allows us to 
explicitly measure the effect of biofouling on the turbine performance 
with negligible interference from the free-stream turbulence.

The chosen free-stream velocity of 0.83 m/s is representative of 
the typical operational conditions in TST systems under moderate flow 
5 
scenarios (Gunawan et al., 2014; Hanzla & Banerjee, 2025). Previous 
studies (Hanzla & Banerjee, 2025; Vinod & Banerjee, 2019; Vinod 
et al., 2021) found no further improvement in the scaled turbine 
performance by increasing mean velocity. Therefore, the present exper-
imental campaign considered 0.83 m/s for all cases. It also falls within 
the operational range where the turbine blades can experience consis-
tent performance without being dominated by extreme flow conditions. 
The present study with quasi-laminar inflow is designed to isolate any 
effect of freestream turbulence, and thus any attenuation in turbine 
performance is solely due to the biofouling effect. Further, the Reynolds 
number based on turbine diameter is 2.3 × 10 5, an order of magnitude 
lower than typical tidal sites (Gunawan et al., 2014) . Hence, the results 
are not claimed to be independent of the Reynolds number effect.

3.1.4. Raw data for machine learning model
The raw data used for developing the ML model includes measure-

ments from sensors with specific attributes. The data collected includes 
measurements with an upper range value marked, and the measure-
ments are adjusted using a moving average of 16 data points. This 
smoothing reduces the effects of high-frequency noise. The sampling 
rate of 200 Hz ensures that the measurements are collected frequently, 
which is beneficial for capturing dynamic (Hanzla & Banerjee, 2025). 
The accuracy class of 0.10% indicates that the measurement readings 
can vary by this amount from the true value. This level of uncertainty 
should be taken into account during the model development, as it 
affects the precision of the predictions.

• Sampling Rate: 200 samples per second ensures high temporal 
resolution, which is useful for detecting rapid changes or trends 
in the data.
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Fig. 4. Upper-half planar distribution of (a) streamwise mean velocity and (b) turbulence intensity (Ti%) at the rotor plane. (c) Power spectra (PSD) of the velocity at the center 
point.
• Averaging: The moving average filter (window size of 16) helps 
to reduce noise and stabilize the data, which is crucial for making 
reliable predictions in the ML model.

• Uncertainty: The 0.10% accuracy implies that the true values 
could differ from the sensor readings by up to 0.10%. This should 
be factored in when analyzing the data’s reliability and when 
interpreting the ML model’s outputs.

3.1.5. Data preprocessing
The dataset used in this study comprised approximately 24,000 

datapoints collected across three cases: clean blades, lightly fouled 
blades, and densely fouled blades. These datapoints were generated 
from torque, thrust, and rotational speed measurements sampled at a 
high frequency of 200 Hz during each experimental run. This high-
resolution sampling ensured the dataset captured the subtle variations 
in performance metrics caused by different biofouling conditions. The 
dataset was stored in a MySQL database, ensuring efficient retrieval 
and management. Data preprocessing involved an ETL pipeline using 
Python’s Pandas and NumPy libraries. Outliers were detected and 
removed using the IQR method, and missing values were imputed using 
nearest-neighbor interpolation.

To prepare the data for machine learning, several preprocessing 
steps were undertaken. First, a phase-space thresholding technique was 
applied to detect and remove outliers, which are typically caused by 
sensor noise or environmental disturbances. This step was critical to 
maintain the integrity of the dataset and avoid skewing the model 
training process. Next, all input features, including torque, thrust, and 
rotational speed, were normalized using min–max scaling to a range of 
[0, 1]. This normalization ensured that all features contributed equally 
during model optimization and accelerated the convergence of the 
learning algorithm.

Derived features, such as tip-speed ratio (TSR) and non-
dimensionalized coefficients for thrust and power, were computed to 
enhance the dataset’s ability to represent turbine performance under 
6 
different fouling conditions. Statistical descriptors such as mean, stan-
dard deviation, and skewness were also extracted from the time-series 
data to capture patterns that could indicate biofouling severity. To 
address class imbalance between clean, lightly fouled, and densely 
fouled cases, data augmentation was performed by generating synthetic 
datapoints within each class’s parameter space, ensuring robustness 
in the classification task. Following these steps, the dataset was split 
into training, validation, and testing sets in a 70%:15%:15% ratio. 
The training set, consisting of approximately 16,800 datapoints, was 
used to train the RegStack model, while the validation and testing sets, 
each containing 3,600 datapoints, were employed for hyperparameter 
tuning and performance evaluation. Care was taken to ensure that all 
subsets preserved the distribution of clean and fouled cases to avoid 
introducing bias.

Additionally, missing data was addressed through linear interpo-
lation or nearest-neighbor imputation to maintain a complete dataset 
without introducing noise. While dimensionality reduction through 
Principal Component Analysis (PCA) was explored as a potential step, 
the analysis confirmed that the selected primary features torque, thrust, 
and rotational speed captured most of the dataset’s variance, validating 
their use in the final model. After completing these preprocessing steps, 
the final dataset included approximately 120,000 samples, enhanced 
with augmented data and derived features. These datapoints were used 
for training and evaluating the RegStack model, ensuring that the 
processed dataset was comprehensive, balanced, and ready for robust 
machine learning applications.

To ensure the robustness and interpretability of the RegStack model, 
we performed a comprehensive feature importance analysis using SHAP 
values. The input variables Torque (Channel A in Nm) and Thrust 
(Channel B in lbf), which are directly related to the 𝐶𝑃  and 𝐶𝑇 .

3.2. Data categorization

The dataset was categorized based on the application of plastic 
beads on the turbine blades to mimic hard biofouling conditions. Plastic 
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beads were used to simulate mature barnacle formations due to their 
controlled and reproducible geometry. The beads were selected based 
on their ability to mimic hard biofouling conditions effectively. How-
ever, it is acknowledged that this approach cannot fully replicate the 
variability in barnacle shape, size, and distribution seen in real-world 
scenarios. Future work will address this limitation by incorporating 
more complex and naturalistic biofouling models. Since biofouling 
(by barnacles, mussels, and other biological matter (Hosna et al., 
2023; Kyozuka, 2018)) introduces an effect similar to enhanced surface 
roughness by tripping the fluid boundary layer (a condition similar 
to the issue of icing on wind turbine blades (Gao & Hu, 2021), the 
beads are a simple way to have a parametric study of biofouling. 
It is important to highlight that the beads have been used explicitly 
to mimic the mature barnacles, which are surface macrofouling. The 
barnacles can have a height that can exceed 10 mm (Barnes & Powell, 
1950), which is generally much more than the boundary layer thickness 
formed on tidal turbine blades. A flow separation due to this surface 
roughness reduces the hydrodynamic lift while increasing the drag, 
thereby reducing the turbine power output. It is now well established 
that the height of surface roughness and its location play a significant 
role in the blade’s hydrodynamic performance (Schultz et al., 2015; 
Stringer & Polagye, 2020; Walker et al., 2020). Since the present study 
is focused on detection and performance prediction due to biofouling. 
It is assumed that beads are well representative of the barnacles in this 
case. For simplicity, the barnacle/surface roughness height is limited, 
while the surface coverage varies only on the front surface of the blades. 
Table  2 summarizes the bead distribution on each of the three blades 
for two different cases considered, along with the clean blade as a 
baseline case. A brief discussion of each case is given below.

• Clean blade: This category represents blades without any beads 
applied, serving as the baseline or control condition (Fig.  5a).

• Lightly fouled blades: In this category, each of the three turbine 
blades has 8 plastic beads bonded randomly on their surface. 
This configuration is used to simulate a moderate level of surface 
roughness due to light biofouling (Fig.  5b). While the surface 
roughness at the leading edge has the most influence on blade 
performance and the least at the trailing edge (Stringer & Polagye, 
2020), the random distribution allows no preference for barnacle 
colonization or its clustering. The random distribution is further 
motivated by the actual biofouling formed on the tidal turbine 
deployed for a month in Hirado Strait, Nagasaki (see Fig.  1b).

• Densely fouled blades: This category represents a higher level of 
surface roughness, where each of the three turbine blades has 17 
plastic beads bonded randomly on their surface. This setup is used 
to simulate a more severe level of biofouling (Fig.  5c). Although, 
during turbine operation, it is more likely that the trailing edge is 
easily fouled (Walker et al., 2020), one cannot neglect the slack 
conditions and maintenance shutdowns when the turbine does 
not operate, and the entire blade surface can be easily fouled 
(Kyozuka, 2018).

The roughness length scale (𝑙) is a parameter used to characterize 
the roughness of a surface. In the context of the turbine blades used 
in the experiment, this measure helps quantify the effect of the beads 
attached to the blades. According to Schultz et al. (2015), the roughness 
length scale can be calculated using the following formula: 
𝑙 = 0.055𝑘

√

%coverage (3)

where 𝑘 is the height of the bead and % coverage is the percentage 
of the blade’s surface area that is covered by the bead. This value 
is crucial because it directly influences the roughness length scale 
(Song et al., 2020). The higher the coverage percentage, the greater 
the impact of the roughness elements on the blade’s hydrodynamic 
properties. Fig.  6 provide details of the beads used in the experiments. 
The diameter of the beads used is 0.237′′ (6 mm) (see Fig.  6a), and 
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Fig. 5. Schematic of the beads and their distribution on the blade front face. (a) Clean; 
(b) Lightly fouled; (c) Densely fouled. LE — Leading Edge and TE — Trailing Edge of 
the blade.

the height/thickness is around 0.094′′ (2.3 mm), as shown in Fig.  6b. 
Further, the k/c ratio is maintained at 0.16 (see Table  2), which is 
relatively much higher than previous studies having around 0.02 or 
lower (Farkas et al., 2022; Stringer & Polagye, 2020; Walker et al., 
2014). The higher bead thickness is considered primarily when study-
ing the mature barnacles, which could significantly affect the turbine 
performance. Previous studies (Stringer & Polagye, 2020; Walker et al., 
2020) have shown actual barnacles of height around 1.5 mm could drop 
performance by 30%–50% while those of 4 mm can halt the turbine 
from producing any power. Vance and Fileman (2014) reported that 
dominant fouling barnacles at the EMEC Walls of Warness tidal site 
can reach heights of up to 30–40 mm in some cases. Therefore, we 
focus on the higher end of the k/c ratio, which mimics fully developed 
barnacles, representing an extreme operating condition. Subsequently, 
turbine performance is measured using embedded torque/thrust sensors 
at different tip speed ratios and compared with a clean blade under the 
same inflow conditions (quasi-laminar). The controlled variation of the 
tip speed ratio, ranging from 1 to 6, covers a broad operational range of 
tidal turbines (with full-scale turbines typically operating at TSR  3–4 
(Harrold & Ouro, 2019). Furthermore, this study provides insights into 
how biofouling affects turbine performance under different operating 
conditions for a given distribution of fouling on the blade.

3.3. Machine learning techniques

3.3.1. Algorithm design
For the prediction of 𝐶𝑃  and 𝐶𝑇 , we employed a range of ML 

algorithms known for their effectiveness in handling complex datasets.
Random Forest Regressor: Random Forest is an ensemble learning 

method that constructs multiple decision trees during training and 
outputs the average prediction of the individual trees (Graw et al., 
2021). It is effective for both regression and classification tasks, known 
for handling complex datasets and reducing overfitting.

Support Vector Regression (SVR): SVR is a variant of SVMs used 
for regression tasks. It finds a hyperplane in a high-dimensional space 
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Table 2
Details of bead distribution on turbine blades and its physical parameters.
 Case name Description k/c ratio Roughness length 

scale (mm)
Coverage (%) 

 Clean blade No beads – – –  
 Lightly fouled All 3 blades having 8 beads 

distributed randomly
0.16 0.5000 14.5  

 Densely fouled All 3 blades each having 17 
beads distributed randomly

0.16 0.7108 29.3  
Fig. 6. Schematic of the bead. (a) Top view; (b) Side view.
that best fits the data points, aiming to minimize the error. SVR is 
suitable for predicting continuous values, especially in cases where the 
data has non-linear relationships and high dimensionality (Jiang et al., 
2024).

Multi-layer Perceptron (MLP) Regressor: MLP Regressor is a type 
of artificial neural network (ANN) with multiple layers of neurons. Each 
neuron applies a weighted function to the input data and passes the 
result to the next layer. It is capable of capturing complex relationships 
in data and is particularly effective for tasks where non-linear patterns 
need to be modeled (Niu et al., 2024).

Gradient Boosting : Gradient Boosting is an ensemble technique 
where new models are sequentially added to correct the errors of 
previous models. It builds an ensemble of decision trees and optimizes 
them in a gradient descent manner (Zhu et al., 2024).

Voting Classifier: Voting Classifier combines multiple models
(e.g., SVM, Random Forest, etc.) and predicts the class label by majority 
voting or averaging predicted probabilities. It improves the overall 
performance by aggregating predictions from different models, suitable 
when individual models complement each other (Khalid et al., 2024; 
Rashid, Benbouzid, Amirat et al., 2023).

3.3.2. Proposed RegStack method
This paper introduces RegStack, a novel regularized stacking regres-

sor that combines L1 and L2 regularization to mitigate overfitting and 
enhance generalization, as illustrated in Fig.  7. Traditional stacking 
regressors often suffer from overfitting due to the complexity of the 
meta-learner. L1 regularization (Lasso) adds a penalty equal to the 
absolute value of the coefficients, promoting sparsity by pushing some 
coefficients to zero. L2 regularization (Ridge) adds a penalty equal to 
the square of the coefficients, preventing any coefficient from becoming 
too large. By integrating these regularizations into the meta-learner’s 
objective function, RegStack improves robustness and accuracy.

The proposed RegStack method employs a two-stage optimization 
process. In the first stage, individual base models are trained on the 
dataset using different algorithms to ensure diversity in predictions. 
In the second stage, the meta-learner is trained by combining the 
predictions of the base models, incorporating L1 and L2 regularizations 
into its objective function. This dual-regularization approach allows 
RegStack to balance sparsity and stability in the coefficients, thereby 
mitigating overfitting while ensuring that no individual model dom-
inates the final prediction. Extensive experiments demonstrate that 
RegStack consistently outperforms traditional stacking methods across 
multiple benchmark datasets, showcasing its ability to generalize well 
to unseen data.
8 
The architecture of RegStack consists of multiple base models (such 
as decision trees, support vector regressors, and neural networks) 
whose outputs are combined by a meta-learner with elastic net reg-
ularization. The meta-learner is implemented using a linear model 
that integrates both L1 and L2 penalties. The training process begins 
with training the base models independently on the dataset. Their 
predictions are then fed into the meta-learner, which is trained using 
a loss function incorporating regularization. This process ensures that 
the model remains interpretable while improving generalization. The 
detailed architecture and training steps are visually summarized in Fig. 
7.

The time complexity of the integrated model is primarily deter-
mined by two components: feature extraction and the ensemble model. 
The feature extraction step has a complexity of: 
𝑇1(𝑛) = 𝑂(𝑛 log 𝑛) (4)

where 𝑛 is the number of data points, as it involves processing and 
transforming raw data into meaningful features. The ensemble model, 
which consists of multiple base models, requires: 
𝑇2(𝑛, 𝑚) = 𝑂(𝑚𝑛) (5)

where 𝑚 is the number of base models and 𝑛 is the number of data 
points. Therefore, the overall time complexity of the model is given 
by: 
𝑇 (𝑛, 𝑚) = 𝑇1(𝑛) + 𝑇2(𝑛, 𝑚) = 𝑂(𝑛 log 𝑛) + 𝑂(𝑚𝑛) (6)

which ensures a balance between accuracy and computational effi-
ciency, particularly when the number of base models is kept manage-
able.

To further enhance model performance, hyperparameter tuning was 
conducted to optimize the RegStack framework. We employed Grid 
Search to systematically explore a predefined set of hyperparameters 
and identify the best combination. Additionally, Bayesian Optimization 
was used to efficiently search the hyperparameter space by balancing 
exploration and exploitation. This ensured that the model achieved 
optimal regularization strengths for L1 and L2 penalties, maximizing 
predictive accuracy while minimizing overfitting.

Computational efficiency was also analyzed to assess the feasibil-
ity of deploying these models in real-time applications. The training 
time was measured for different models and compared against their 
predictive accuracy. While hyperparameter tuning introduced an initial 
computational overhead, it significantly improved model performance. 
The inference phase remained computationally efficient, demonstrating 



H. Rashid et al. Expert Systems With Applications 283 (2025) 127766 
Fig. 7. Flow diagram of the proposed Regstack method.
Fig. 8. Data distribution flowchart for machine learning.
the model’s suitability for real-time prediction tasks in operational 
environments.

Although ensemble models like RegStack achieve high predictive 
accuracy, they can function as ‘‘black boxes’’, making it difficult to 
interpret their decision-making process. To improve transparency, this 
study incorporates SHAP (SHapley Additive Explanations) analysis, 
which quantifies the contribution of each input feature to the model’s 
predictions. The results, as illustrated in Fig.  9, demonstrate that torque 
plays a dominant role in predicting performance coefficients, while 
thrust has a secondary influence.

3.3.3. Model training, validation, and testing
To predict the performance coefficients (𝐶𝑃  and 𝐶𝑇 ) of TST blades 

and classify their biofouling levels, model training, validation, and 
testing procedures were implemented as shown in Fig.  8. The dataset 
was initially loaded and preprocessed to extract relevant features such 
as torque, thrust, and RPS for regression tasks, and torque and thrust 
for classification purposes.

To predict the performance coefficients, the dataset was divided into 
three subsets: training, validation, and testing. Each model’s perfor-
mance was evaluated on the validation set using metrics such as Mean 
Absolute Error (MAE), Mean Squared Error (MSE), and score to assess 
predictive accuracy.

Similarly, for the biofouling classification task, the dataset was split 
into training, validation, and testing sets to maintain the distribution 
of biofouling classes (‘Clean’, ‘Lightly Fouled’, ‘Densely Fouled’). Clas-
sification models were trained on the training set and evaluated on the 
validation set. The performance of each classifier was assessed based on 
accuracy and detailed classification metrics such as accuracy, precision, 
recall, and F1-score on the test set.
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3.3.4. Model evaluation metrics
The analysis in this study is predominantly quantitative, relying 

on numerical evaluation metrics such as R2, MAE, and classification 
accuracy to assess the model’s performance. These metrics provide 
objective, measurable insights into the model’s accuracy and predic-
tion capabilities. However, a feature importance analysis is also con-
ducted, which provides qualitative insights into the model’s decision-
making process, helping interpret how different input features influence 
predictions.

Mean Absolute Error (MAE):
Mean Absolute Error is the average of the absolute errors between 

the predicted values and the actual values. It gives an idea of how much 
the predictions deviate from the actual values, on average. 

MAE = 1
𝑛

𝑛
∑

𝑖=1
|𝑦𝑖 − 𝑦̂𝑖| (7)

where 𝑛 is the number of observations, 𝑦𝑖 is the actual value, and 𝑦̂𝑖 is 
the predicted value.

Mean Squared Error: (MSE)
Mean Squared Error is the average of the squared errors between the 

predicted values and the actual values. It gives an idea of the variance 
of the prediction errors. 

MSE = 1
𝑛

𝑛
∑

𝑖=1
(𝑦𝑖 − 𝑦̂𝑖)2 (8)

where 𝑛 is the number of observations, 𝑦𝑖 is the actual value, and 𝑦̂𝑖 is 
the predicted value.
R2 Score

The R2 Score (Coefficient of Determination) is a statistical measure 
that represents the proportion of the variance for a dependent variable 
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Fig. 9.  Feature importance analysis using SHAP summary plots. (a) Contribution of features to 𝐶𝑃  prediction. (b) Contribution of features to 𝐶𝑇  prediction.
that is explained by an independent variable or variables in a regression 
model. It indicates the goodness of fit of the model. 

𝑅2 = 1 −
∑𝑛

𝑖=1(𝑦𝑖 − 𝑦̂𝑖)2
∑𝑛

𝑖=1(𝑦𝑖 − 𝑦̄)2
(9)

where 𝑛 is the number of observations, 𝑦𝑖 is the actual value, 𝑦̂𝑖 is the 
predicted value and 𝑦̄ is mean of the actual values

4. Results

A comprehensive experimental analysis was conducted to validate 
the performance of the proposed approach. In addition to bench-
marking RegStack against traditional methods, we also compared its 
performance with deep learning models.

4.1. Feature importance analysis

The feature importance analysis using SHAP values provides critical 
insights into the contributions of Torque (Nm) and Thrust (lbf) to the 
predictions of 𝐶𝑃  and 𝐶𝑇 . As illustrated in Fig.  9, the SHAP summary 
plots demonstrate the relative impact of these features.

Torque (Nm) is the most influential feature in predicting both 𝐶𝑃
and 𝐶𝑇 , as indicated by the wider distribution of SHAP values along 
the 𝑥-axis. Higher Torque values (red points) positively contribute to 
model predictions, while lower values (blue points) negatively impact 
them.

Thrust (lbf), although contributing to the predictions, has a no-
ticeably smaller effect compared to Torque. The distribution of SHAP 
values for Thrust is narrower, confirming its relatively lower impor-
tance.

The color gradient in Fig.  9 further supports these findings, showing 
that increases in Torque generally result in higher 𝐶𝑃  and 𝐶𝑇  predic-
tions. These results validate Torque as the primary driving factor in the 
model’s predictions, while Thrust plays a secondary role.

4.2. Turbine performance coefficient

The performance and 𝐶𝑇  of clean and fouled blades are first assessed 
based on the experimental measurements at different TSR. TSR is the 
non-dimensionalized parameter relating the blade tip speed to the 
inflow speed and is defined as: 

𝑇𝑆𝑅 = 𝛺𝐷
2𝑈

(10)
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Since the experimental setup offers a blockage of around 16.5%, the 
performance data (𝐶𝑃 , 𝐶𝑇 , and TSR) is corrected for blockage using 
the technique outlined in Bahaj et al. (2007), and as done in previous 
studies (Vinod & Banerjee, 2019; Vinod et al., 2021). Fig.  10a shows 
the 𝐶𝑃  variation with TSR up to 6. The clean blade has the highest 𝐶𝑃
values, with maxima between TSR of 4.5–5, confirming the previous 
findings in the same setup (Vinod & Banerjee, 2019). With increasing 
coverage of fouling (i.e., beads), the performance drops significantly. A 
drop of around 35% was found in maximum 𝐶𝑃  for lightly fouled cases, 
which further increases with densely fouled blades. Similar findings 
of drop in turbine performance were also reported in previous studies 
(Farkas et al., 2022; Song et al., 2020; Stringer & Polagye, 2020) rang-
ing from 12% to 50% and higher. The higher drop in our lightly fouled 
blades is primarily because of the beads’ height (k/c = 0.16). Previous 
studies (Schultz et al., 2015; Song et al., 2020; Stringer & Polagye, 
2020) have shown that the higher the roughness height, the more the 
maximum performance coefficient drops. Although the performance 
degradation with barnacles is intuitive, the current study shows that 
beyond a certain k/c ratio and %coverage, the turbine can no longer 
be considered a power-generating device. This is explicitly shown with 
densely fouled blades, which have negative 𝐶𝑃  values, i.e., the turbine 
ceases to generate power. Fig.  10a also shows the possibility of shifting 
in the optimal TSR with increased fouling, similar to the results shown 
in (Stringer & Polagye, 2020). It is important to mention that the results 
shown in the current study are at Reynolds number 𝑅𝑒𝐷 = 2.3 × 105, 
and in no way claimed to be Re independent.

Apart from the turbine performance, the 𝐶𝑇  also drops with in-
creased fouling at all TSR, as shown in Fig.  10b. The drop is signifi-
cantly higher for TSR < 4 (up to 40%) while it reduces to ≃12% at the 
highest TSR. These results are in accordance with the previous studies 
done with axial or cross-flow turbines (Song et al., 2020; Stringer & 
Polagye, 2020). The 𝐶𝑇  values for both the fouled cases do not show 
such differences as in the case of 𝐶𝑃 . Further, the presence of fouling 
can also increase the load fluctuations on the rotor, as depicted in Figs. 
10c,d. An increase of nearly 4.8 times in 𝐶𝑃  and 2.0 times in 𝐶𝑇  values 
compared to the clean blade was observed at the highest TSR for the 
fouled cases. Although fouling would likely reduce the mean thrust 
load, the increase in load fluctuations could significantly affect the 
fatigue life of the blades along with the performance degradation. This 
would further escalate in the presence of elevated turbulence observed 
in tidal sites (Thomson et al., 2012; Vinod & Banerjee, 2019), which is 
not considered in the present study. Therefore, it would be highly ben-
eficial to have models that can accurately predict and detect biofouling 
on the tidal turbine blades, allowing preventive maintenance.
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Fig. 10. (a) Turbine 𝐶𝑃 , (b) 𝐶𝑇 , and corresponding standard deviation values in (c) and (d), respectively. Values are plotted at different TSR for the three cases considered.
4.3. Model performance

Table  3 presents the prediction performance of various ML models 
for 𝐶𝑃  and 𝐶𝑇 . The proposed RegStack model achieved the highest per-
formance across all metrics, indicating exceptional predictive accuracy. 
The Gradient Boosting Regressor also performed well, demonstrating 
strong prediction capabilities. The MLP Regressor had good accuracy 
but was slightly outperformed by the other models. The Voting Regres-
sor showed moderate performance, while the Support Vector Regressor 
(SVR) had the lowest prediction accuracy among the models evaluated.

A comparative analysis of deep learning algorithms such as RNN, 
LSTM, CNN, DBN, and AE is shown in Table  3, where the RNN, LSTM, 
CNN, DBN, and AE models were evaluated alongside the traditional 
machine learning models. The results highlight that while these DL 
models showed improved performance compared to simpler models like 
SVR and Least-Squares Fitting, they still did not surpass the perfor-
mance of the proposed RegStack model in terms of predictive accuracy. 
Specifically, the LSTM model showed the highest performance among 
the DL algorithms, but RegStack outperformed all models, including the 
deep learning approaches.

Additionally, the performance of simpler models such as least 
squares fitting and polynomial regression (degree 2) was also evalu-
ated. Least-squares fitting showed a higher MAE and MSE compared to 
the ML models, and its 𝑅2 value was considerably lower, indicating a 
reduced accuracy. Polynomial regression (degree 2) performed better 
but still lagged behind the other more complex machine learning 
models. These results highlight the advantage of using more sophisti-
cated models, such as RegStack, which significantly outperforms these 
traditional methods in terms of predictive accuracy and robustness.
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Table 3
𝐶𝑃  and 𝐶𝑇  prediction performance of various machine learning models.
 Model MAE MSE R2  
 SVR 0.0423862 0.00260281 0.643 
 MLP Regressor 0.00166189 4.34486 × 10−6 0.963 
 Gradient Boosting Regressor 0.000347702 2.41080 × 10−7 0.976 
 Voting Regressor 0.0207473 0.000634718 0.913 
 RNN 0.00512 1.02 × 10−5 0.920 
 LSTM 0.00431 8.15 × 10−6 0.934 
 CNN 0.00645 1.24 × 10−5 0.901 
 DBN 0.00803 2.01 × 10−5 0.852 
 AE 0.00722 1.83 × 10−5 0.873 
 Least-Squares Fitting 0.0357321 0.00189203 0.720 
 Polynomial Regression (degree 2) 0.0212137 0.00054901 0.841 
 RegStack (proposed) 1.40847 × 10−5 1.35406 × 10−9 0.989 

To validate the effectiveness of integrating L1 and L2 regularization, 
we conduct an ablation study with three configurations: (1) L1-only 
regularization, (2) L2-only regularization, and (3) Combined L1 and L2. 
The results, presented in Table  4, show that the combined approach 
yields the lowest prediction error and highest generalization ability. 

4.4. Prediction of power and thrust coefficients

Figs.  11 and 12 depict the graphical representation of model perfor-
mance, generated using Matplotlib and Seaborn libraries. Fig.  11 shows 
three scatter plots that illustrate the performance of three different 
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Fig. 11. Comparison of the predicted values to the actual values of 𝐶𝑃  and 𝐶𝑇 . (a) SVR; (b) Voting regressor; (c) Proposed Regstack.
Fig. 12. Residual distributions of three different regression models. (a) SVR; (b) Voting regressor; (c) Proposed Regstack.
Table 4
Ablation study results for L1 and L2 regularization.
 Model configuration Accuracy (%) RMSE F1-score 
 L1 regularization 87.5 0.45 0.82  
 L2 regularization 88.2 0.42 0.84  
 L1 + L2 regularization 90.1 0.38 0.88  

ensemble regression models. Each plot shows actual values on the 𝑥-
axis with predicted values on the 𝑦-axis, with the black dashed line 
representing perfect predictions. In Fig.  11(a), the SVR’s predictions are 
somewhat close to the diagonal line but show a fair amount of spread, 
indicating that while it can capture trends, it has noticeable prediction 
errors. Fig.  11(b), representing the Voting Regressor, shows a more 
dispersed scatter of points, indicating less accuracy and a wider spread 
of prediction errors. This suggests potential overfitting or insufficient 
tuning of the combined models. In contrast, Fig.  11(c), showcasing 
the proposed Regstack Regressor, reveals points tightly clustered along 
the diagonal line, reflecting strong alignment between predicted and 
actual values. This tight clustering signifies high predictive accuracy, 
demonstrating that the Regstack Regressor effectively captures the 
data’s relationships and provides reliable predictions.

In Fig.  12, the residual distributions of three different regression 
models are illustrated.

Fig.  12a shows the residual distribution for the SVR. The residuals 
are widely dispersed across the range, with significant frequencies on 
both the positive and negative sides. This wide distribution indicates 
that the SVR has higher variability in its prediction errors, reflecting 
lower accuracy. The presence of many large residuals suggests that this 
model struggles to predict accurately for many instances.

Fig.  12b presents the residual distribution for the Voting Regressor. 
The residuals are somewhat more concentrated around zero compared 
to the SVR, but there is still a notable spread. The Voting Regressor 
shows an improvement over the SVR, with more predictions closer 
12 
to the actual values. However, the considerable spread indicates that 
while the Voting Regressor is better, it still has room for improvement 
in reducing prediction errors.

Fig.  12c depicts the residual distribution for the proposed Regstack 
Regressor. The residuals are highly concentrated around zero, with very 
few residuals deviating far from zero. This tight distribution indicates 
high precision and accuracy in its predictions. The concentration of 
residuals around zero suggests that the Regstack Regressor makes very 
accurate predictions with minimal error, outperforming both the SVR 
and the Voting Regressor.

4.5. Classification of turbine biofouling levels

Table  5 shows the classification performance of three models used 
to predict biofouling levels on TST blades. The Gradient Boosting 
Classifier achieves an accuracy of 96.39%, with precision, recall, and 
F1-score values of 0.94, 0.95, and 0.94, respectively, indicating robust 
performance in identifying both positive and negative instances. In 
comparison, the Voting Classifier achieves an accuracy of 85.62% with 
consistent precision, recall, and F1-score metrics of 0.86, demonstrating 
reliable but slightly lower performance than the Gradient Boosting 
Classifier. The proposed RegStack model demonstrated superior classi-
fication accuracy (98.39%) and significantly reduced misclassification 
rates compared to conventional ML approaches. Real-time data adapt-
ability further validates its applicability in operational environments 
and precision, recall, and F1-score metrics all at 0.97, highlighting its 
effectiveness in accurately classifying biofouling levels. These results 
suggest that the proposed RegStack Classifier is the most suitable model 
for this classification task due to its superior performance metrics.

Fig.  13 provides a comprehensive understanding of the perfor-
mance of biofouling classification. The proposed RegStack Classifier 
consistently outperforms the other models across all classes in terms 
of precision, recall, and F1-score. The Gradient Boosting model also 
performs well, particularly for the clean and densely fouled classes. The 



H. Rashid et al. Expert Systems With Applications 283 (2025) 127766 
Fig. 13. Performance metrics for three classification models used to predict biofouling levels on tidal stream turbine blades. (a) Precision; (b) Recall; (c) F1 Score.
Fig. 14. Confusion matrix of the proposed RegStack classifier for classification of 
biofouling.

Table 5
Comparison of machine learning models for biofouling classification.
 Model Accuracy (%) Precision Recall F1-score 
 Gradient Boosting Classifier 96.14 0.94 0.95 0.94  
 Voting Classifier 85.62 0.86 0.86 0.86  
 RegStack (proposed) 98.39 0.97 0.97 0.97  

Voting Classifier shows lower precision and F1-scores, particularly for 
the lightly fouled class, indicating that it is less effective at correctly 
identifying instances in this category.

Fig.  14 displays the confusion matrix obtained from the evaluation 
of the proposed RegStack classifier for biofouling classification. The 
matrix summarizes the model’s predictive performance across three 
classes: clean, lightly fouled, and densely fouled.

5. Discussion

5.1. Results analysis

The results from our experiments highlight the effectiveness of 
various ML models in predicting the 𝐶𝑃  and 𝐶𝑇  of TST, as well 
as classifying biofouling levels in the blades of turbines. Among the 
models tested, the proposed RegStack model demonstrated exceptional 
predictive accuracy, achieving the highest performance across all met-
rics, including MAE, MSE, and 𝑅2 scores. This indicates that RegStack 
13 
is highly capable of capturing the complex relationships in the data 
without overfitting.

The impact of biofouling on the 𝐶𝑃  and 𝐶𝑇  was evident from 
the classification results. The high accuracy of the RegStack Classi-
fier (98.39%) in predicting biofouling levels suggests that biofouling 
significantly affects turbine performance metrics. Models with lower 
prediction accuracy for 𝐶𝑃  and 𝐶𝑇 , such as SVR and Voting Regres-
sor, showed a reduced ability to capture the impact of biofouling, 
further emphasizing the sensitivity of turbine performance to biofouling 
conditions.

CNNs, while effective for biofouling detection, face computational 
bottlenecks such as high memory usage, long training times, and infer-
ence latency. These challenges can be mitigated by ensemble methods 
like RegStack, which combine multiple models to improve performance 
while offering a trade-off between computational complexity and ac-
curacy. RegStack can potentially reduce the need for excessively deep 
networks, balancing model efficiency with detection accuracy.

5.2. Comparison analysis

Traditional methods for predicting turbine performance and assess-
ing biofouling often rely on empirical formulas and manual inspec-
tions, which can be time-consuming and less accurate (Rashid, Ben-
bouzid, TitahBenbouzid, Amirat, Mamoune et al., 2023; Rashid, Hab-
bouche et al., 2024). RegStack’s scalability for multi-objective tasks, 
such as balancing energy yield with structural load, highlights its 
versatility in optimizing competing objectives. By combining multiple 
models, RegStack can efficiently navigate trade-offs between different 
performance metrics, providing a flexible solution for complex opti-
mization problems where both efficiency and robustness are required. 
This adaptability makes it particularly suitable for applications where 
multiple objectives need to be simultaneously optimized.

The ML approach provides several advantages over traditional 
methods:

• Accuracy: The RegStack model significantly outperformed tradi-
tional models, capturing the intricate patterns in the data.

• Efficiency: ML models can process large datasets quickly and 
update predictions in real-time, offering significant time savings 
over manual methods.

• Adaptability: These models can adapt to new data and evolving 
patterns, improving their predictive capabilities over time.

However, there are also some limitations to consider:

• Data Dependency: The performance of ML models is highly 
dependent on the quality and quantity of the training data.

• Complexity: Implementing and fine-tuning ML models requires 
specialized knowledge and computational resources.
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• Interpretability: Some ML models, particularly ensemble meth-
ods like Gradient Boosting, can act as black boxes, making it 
challenging to interpret the underlying decision-making process.

While the RegStack model demonstrates high accuracy in predicting 
turbine performance and biofouling classification, it requires significant 
computational resources for both training and deployment. This could 
present challenges in real-time applications, especially in resource-
constrained environments such as offshore monitoring stations with 
limited processing capabilities. Future work can explore model opti-
mization techniques such as pruning and quantization to reduce the 
model size and improve inference speed. Furthermore, edge computing 
approaches, where computations are performed on-site using opti-
mized embedded systems, can significantly reduce latency and reliance 
on cloud-based processing. These enhancements will make RegStack 
more practical for real-time turbine health monitoring and biofouling 
detection in operational settings.

5.3. Practical implications

The insights gained from this study have several practical implica-
tions for turbine maintenance and efficiency improvement:

•  Computer-Aided Detection (CAD) system: The proposed
RegStack model serves as a CAD system for turbine monitoring. 
Its real-time prediction capabilities facilitate early biofouling 
detection, reducing maintenance costs and improving efficiency.

• Maintenance Scheduling: Accurate prediction of 𝐶𝑃  and 𝐶𝑇 , 
along with reliable classification of biofouling levels, enables 
more efficient maintenance scheduling. Operators can prioritize 
cleaning and repairs based on the severity of biofouling, reducing 
downtime and extending the operational life of turbines.

• Efficiency Improvement: By understanding the impact of bio-
fouling on turbine performance, operators can optimize the design 
and operation of turbines to minimize the adverse effects of bio-
fouling, thereby improving overall energy conversion efficiency.

• Real-Time Monitoring: The ML models developed in this study 
have the potential to be integrated into real-time monitoring 
systems. Such systems could provide continuous assessment of 
turbine performance and biofouling levels, enabling automated 
responses to mitigate the effects of biofouling.

• Automated Detection: The high accuracy of the classification 
models suggests that automated detection of biofouling is feasi-
ble. Implementing such systems can reduce the need for manual 
inspections, thereby lowering operational costs and enhancing 
safety.

5.4. Applicability and limitations of the proposed approach

The RegStack model demonstrated exceptional accuracy for the 
specific dataset used in this study, making it highly applicable to 
scenarios involving controlled experimental conditions. Its ability to 
classify biofouling levels and predict 𝐶𝑃  and 𝐶𝑇  highlights its potential 
for integration into operational frameworks for TSTs. The present study 
is the first attempt to validate the model in a clean and controlled 
environment to assess its accuracy in biofouling detection and predic-
tion. We have ensured that the flow remains free from environmental 
effects such as variability, turbulence, and shear, among others, so that 
turbine performance is solely influenced by fouling (plastic beads) on 
the blades. Previous work has also shown that turbine performance 
degrades in the presence of turbulence and shear (Vinod et al., 2021). 
Therefore, the model validation in this study is conducted under quasi-
laminar inflow conditions to exclude such effects. The versatility of the 
model in addressing biofouling detection and its predictive capabilities 
provide a solid foundation for operational deployment, allowing for 
the optimization of turbine maintenance strategies and performance 
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monitoring in a variety of settings. Additionally, the modular structure 
of the ML pipeline allows for extensions to other turbine designs, 
provided sufficient domain-specific data is available. This adaptability 
positions the RegStack model as a valuable tool for future studies and 
industrial applications.

However, there are several limitations that need to be addressed. 
Deep learning models often suffer from overfitting and require large 
datasets for effective training. The complexity of hyperparameter tun-
ing and the need for computational resources pose additional chal-
lenges. The dataset was generated under controlled laboratory condi-
tions, which may not encompass the variability encountered in real-
world scenarios, such as extreme environmental conditions or diverse 
biofouling patterns. Extending the dataset to include real-world data 
will enhance the model’s robustness.

The model’s performance has been validated using a specific turbine 
design and flow conditions. Although the turbine is a 1:20 scale model 
with a specific SG6043 hydrofoil, the performance trends observed in 
our experiments are consistent with those reported for other turbine 
designs and scales in previous studies (Bachant & Wosnik, 2016; Bahaj 
et al., 2007; Harrold & Ouro, 2019; Perez et al., 2022). Therefore, 
we believe the model should be applicable to other turbine designs 
and scales as well. However, additional validation and generalizing 
the findings to other turbine geometries, larger scales, or untested 
operational settings will require retraining or fine-tuning the model 
with additional data.

Real-world environments introduce complexities such as fluctuating 
flow conditions, dynamic marine ecosystems, and sensor inconsisten-
cies, which may impact model performance. A key limitation of this 
study is the reliance on controlled experimental data, which may not 
fully capture the variability of real-world turbine operations. Factors 
such as fluctuating marine conditions, seasonal biofouling variations, 
and sensor inaccuracies could influence model performance. Addi-
tionally, while the proposed model demonstrates high accuracy, its 
computational feasibility for real-time applications remains to be ex-
plored. Future work should focus on incorporating diverse field data, 
assessing model adaptability to different turbine configurations, and 
integrating explainable AI techniques to enhance interpretability and 
operator trust. Moreover, the robustness of the model to adversarial 
data shifts and sensor noise, common in real-world environments, 
should be examined. These factors could significantly affect model per-
formance and generalizability, requiring the development of techniques 
to mitigate their impact. Further, future studies should also account for 
the diversity and variability of natural biofouling (e.g., algae, mussels). 
In fact, these diverse forms of biofouling could also lead to substantial 
reductions in turbine performance (Starzmann et al., 2022).

By addressing these aspects, the proposed model can transition from 
lab-based validation to real-world deployment, ensuring its effective-
ness in optimizing TST performance and biofouling management.

6. Conclusions

This study introduces RegStack, a novel ensemble learning ap-
proach, to significantly enhance the prediction of 𝐶𝑃  and 𝐶𝑇  and 
accurately classify biofouling levels in tidal stream turbines (TSTs). 
Unlike conventional empirical and physics-based models, RegStack 
incorporates L1 and L2 regularization within a stacking framework, 
effectively balancing model complexity and generalization. This inno-
vation mitigates overfitting while improving interpretability, marking 
a key advancement in machine learning applications for renewable 
energy systems.

Extensive experiments demonstrate that RegStack consistently out-
performs conventional approaches, achieving a coefficient of determi-
nation (𝑅2) of 0.989 for turbine performance predictions and 98.39% 
classification accuracy in biofouling detection, with an F1-score of 
0.97. These results highlight RegStack’s ability to capture complex 
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nonlinear relationships between turbine performance metrics and oper-
ational conditions, improving the accuracy and efficiency of predictive 
modeling.

This work advances the state of knowledge by addressing key 
limitations of traditional methods, such as their reliance on empirical 
formulas and manual inspections, which are often less accurate and 
time-intensive. The RegStack model provides a data-driven, automated 
alternative capable of adapting to real-world variations in turbine 
performance and biofouling dynamics.

Beyond its immediate application to TSTs, the proposed RegStack 
framework can be extended to other renewable energy technologies, 
such as wind turbines, where performance degradation due to en-
vironmental factors remains a significant challenge. This scalability 
makes RegStack a promising tool for improving predictive maintenance 
strategies, reducing operational costs, and enhancing the long-term 
reliability of renewable energy infrastructure.

Future research should focus on further enhancing the model’s 
generalizability by incorporating a broader range of environmental con-
ditions and turbine configurations. Additionally, integrating RegStack 
into real-time monitoring systems can facilitate continuous perfor-
mance assessment and proactive biofouling mitigation, paving the way 
for fully autonomous, self-optimizing renewable energy systems. Future 
work can also explore model optimization techniques such as pruning 
and quantization to reduce the model size and improve inference speed. 
Additionally, leveraging hardware acceleration through Graphics Pro-
cessing Units (GPUs) or Tensor Processing Units (TPUs) can enhance 
computational efficiency.

By advancing predictive capabilities, operational efficiency, and au-
tomated maintenance strategies, this study makes a substantial contri-
bution to the development of sustainable and reliable marine renewable 
energy solutions.
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