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Abstract
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Chair of the Supervisory Committee:
Associate Professor Michael Motley

Department of Civil and Environmental Engineering

In recent decades, the push for reliable renewable energy sources has led

researchers to explore an ever-expanding array of novel devices capable of har-

vesting such energy. Of the current available renewable energy sources, marine

energy is one of the least-utilized categories with wave energy being the least

common. However, given their high amount of energy extraction potential, wave

energy converter (WEC) devices are gaining interest in the global energy mar-

ket. One such device is a WEC known as the oscillating wave surge converter

(OWSC). OWSCs are paddle-like devices which rotate about a fixed hinge when

driven by wave surges (or wave motions). Most research on OWSC devices to

date has primarily been based on experimental, scale model testing. Experi-

mental tests on OWSC devices in wave tanks are expensive, time-consuming,

and testing facilities are limited. To improve the quality of such tests, compu-

tational fluid dynamics (CFD) models may be used to assess and fine-tune a

design before running a physical experiment.

Modeling an OWSC using available CFD software poses a number of chal-

lenges related to model geometry, mesh quality, and solution stability. The high

degrees of rotation experienced by these devices make typical mesh-morphing

methods untenable. Alternative methods for dealing with the large mesh de-

formation issues have been devised and implemented; however, many of these



alternatives require modifications to the available CFD software. This work

presents two CFD models which utilize an overset mesh approach to simu-

late an OWSC device and require no software modification. The overset mesh

approach uses a background and overset (body-fitted) mesh where the over-

set mesh overlays the static background mesh and moves relative to it. This

method avoids mesh deformation altogether and instead relies on interpolation

between the two meshes. CFD models were created using the OpenFOAM and

STAR-CCM+ software so that the numerical model results could be compared

across platforms. These CFD models are also compared to a scale model wave

tank test.
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Chapter 1

INTRODUCTION

1.1 Motivation

In recent decades, the push for reliable renewable energy sources has led re-

searchers to explore an ever-expanding array of novel devices capable of har-

vesting energy from sources such as wind, solar, and marine. Of these, wave

energy is one of the least-utilized renewable energy sources, despite the large

amount of energy extraction potential available around the globe [1, 2]. In the

last forty years, many different wave energy converter (WEC) prototypes have

been designed with varying levels of success [3]. However, most of these are

still in the research and development phase and have not been implemented

at full scale [2]. Wave energy has some significant benefits when compared to

other renewable energy sources such as wind and solar. Firstly, in relation to

other major renewable energy sources, wave energy has the highest energy den-

sity. This means that fewer wave devices would be needed to generate the same

amount of energy as other renewable energy sources. Additionally, wave en-

ergy devices have been reported to have more reliable energy generation. Wave
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energy devices are capable of generating power up to 90 percent of the time,

unlike wind and solar power devices, which generate power approximately 20-30

percent of the time [2].

In order to take advantage of these benefits, there are a number of technical

challenges that must be dealt with to ensure proper performance and, thus,

competitiveness in the global energy market [2]. For instance, wave energy is

distributed unevenly throughout the globe such that regions with the highest

wave energy potentials are located between latitudes of approximately 30 and

60 degrees in both hemispheres [3]. Thus, WECs located within these bands

can perform better than those located elsewhere. Contending with extreme

weather conditions presents another key challenge; rough sea states often result

in extreme hydrodynamic loading of marine structures such as WECs, which

may result in loading up to 100 times higher than that at normal operating

conditions. Designing WECs to withstand such harsh conditions may result

in increased WEC price to ensure robustness of the device [3]. More specifi-

cally, WECs require rigorous testing and evaluation procedures to ensure their

expected performance is achieved as well as to convince investors and commer-

cial developers to implement the devices at a large scale [3, 4]. However, such

design expenses may be significantly reduced by conducting preliminary com-

putational fluid dynamics (CFD) modeling of WECs. CFD models avoid the

need to physically construct and test prototypes until the final design phase

and allow engineers to explore a wider range of design variations and features

where cost would otherwise be prohibitive. Additionally, the advent of afford-

able, high-performance computing (HPC) resources, such as cloud computing,

has allowed for CFD to emerge as a crucial engineering design tool, making it

the most viable approach for advancing WEC research.

Thus, the focus of this research is on simulating WEC devices using available

2



computational fluid dynamics (CFD) software. In particular, near-shore WEC

devices were focused on, owing to several key advantages they possess over

offshore devices. Near-shore devices have the benefit of a more predictable wave

direction due to the natural phenomena of refraction and reflection than offshore

devices, where wave direction is difficult to predict due to the random nature of

offshore sea states [2]. Near-shore devices are also easier to install and maintain

since they are near land. Their proximity to land – and therefore the electrical

grid – has the added benefit of requiring shorter transmission lines, resulting

in smaller electricity losses [2]. On the other hand, the proximity of near-shore

devices to coastlines results in the device-driving waves possessing less energy

compared to those out at sea, and appropriate sites are harder to come by [3].

The near-shore device of interest to this study is called an oscillating wave

surge converter (OWSC). This type of WEC is fixed to the seabed, consisting of

a buoyant flap which is free to rotate about a hinge near its base [5]. OWSCs are

different than the majority of wave devices in that they operate predominantly

due to wave surge, producing horizontal oscillations, instead of heave, which

produces vertical oscillations and is more common of offshore devices [6]. These

structures must be capable of bearing stresses due to waves that pass over them

at varying degrees of flap rotation [3].

Some notable experiments involving OSWCs include the Oyster prototypes

(1 and 2) [6] and the wave tank experiment by Schmitt and Elsaesser 2015 [5]

from the Queen’s University Belfast. Experiments such as these are expensive

and the available testing facilities are limited. In an effort to develop improved

OWSC technology, numerical simulations can be conducted in conjunction with

experimental testing to streamline the design and testing.

However, the dynamic behavior of OSWC devices presents an obstacle for

some CFD simulation approaches since these devices experience very large ro-
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tations. There are a variety of CFD approaches that are capable of dealing with

large values of rigid body rotation; however, the default approach of most CFD

packages for body motion is mesh-morphing, for which large rotations can be

problematic. Large rotations of the OWSC in turn create large mesh deforma-

tions in the mesh-morphing approach; without any kind of mesh deformation

management method, such as re-meshing, these deformations will cause poor

mesh quality, which may result in increased computational errors, numerical

instabilities, and ultimately simulation divergence if the mesh quality is poor

enough. Thus, alternate CFD approaches must be used. Three such alternate

approaches are detailed herein: the re-meshing approach, the arbitrary mesh

interface (AMI) approach, and the overset mesh approach. The overset mesh

approach is the main focus of this study.

1.2 Previous Work

Simulating an OWSC device is not straightforward, which is why most research

on these devices has primarily been based on experimental, scale model testing

to date [5]. There are a few significant reasons for this. The idea of combining

the computational power of computers with CFD has been around since at least

the 1960s; however, the resources and software were not widely available [7]. One

of the programs used in this research, OpenFOAM, was originally developed

in 1989 under the name “FOAM” and was not released as the open source

“OpenFOAM” until December 2004 [8]. Additionally, the default functionality

of available CFD software is not capable of accurately modeling an OWSC.

In typical operating conditions, OWSC devices rotate up to approximately 40

degrees in either direction and up to 80 degrees in extreme conditions. At

these large values of rotation, typical mesh distortion methods are not sufficient,

resulting in highly distorted cells and simulation failure [5]. There are a number
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of options to avoid this issue that include: re-meshing, arbitrary mesh interfaces

(AMI), and overset meshes. Each method has its own set of advantages and

challenges.

A re-meshing scheme involves letting the OWSC device rotate until some

pre-selected time or until the mesh deforms some unacceptable amount. It is

computationally expensive and involves either checking the mesh quality often

or re-meshing often after an arbitrary amount of time. Both approaches are

time consuming, though the former is a bit more efficient. Such a simulation

was conducted by Winter and Motley (2020) using OpenFOAM v7 based on the

experimental set-up of [5]. This method was chosen because it had the most

straightforward implementation in OpenFOAM v7 using the solvers available

[1].

An AMI method requires a computational domain with two mesh regions:

a cylindrical moving mesh which surrounds the OWSC and rotates about the

bottom hinge, and a static mesh for the remaining tank geometry. The two

domains are coupled using two cylindrical AMI patches [5]. Due to the prox-

imity of the seabed to the OWSC, this method requires the use of a cylindrical

mesh that extends outside of the computational domain (past the tank floor).

The AMI mesh must rotate about the center of rotation (i.e. the hinge) and

encompass the entire OWSC. Due to geometry, the radius of this cylinder will

have to be larger than the distance from the hinge to the seabed. Thus, an

additional non-physical fluid region must be added to the simulation with an

assigned dissipation parameter. Such a simulation was conducted by Schmitt

and Elsaesser using OpenFOAM with a custom body motion solver of their own

making. However, this type of functionality is not included in the standard

OpenFOAM packages and must be implemented directly by the user.

The overset mesh method, like the AMI method, requires a computational
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domain with two mesh regions: an overset (or body-fitted) mesh, which sur-

rounds and moves with a body, and a static background mesh. The fluid so-

lution is interpolated between the two meshes at the fringe cells – cells near

the edge of the overset grid. Unlike the AMI method, the overset mesh need

not be a cylinder and need not rotate its center about the bottom hinge. It is

capable of creating an overset mesh which does not exceed the domain and so

does not require any kind of non-physical fluid region or dissipation parameter.

The overset compatible solver, overInterDyMFoam, in the OpenFOAM v2012

package was recently made available.

Schmitt and Elsaesser conducted CFD research on an OWSC device in 2015

in which they performed an experimental wave tank test as well as a corre-

sponding OpenFOAM simulation using the AMI method. They found good

agreement between their numerical model and their experimental model [5].

Additionally, in 2005, a commercial OWSC system called Oyster was devel-

oped by the Aquamarine Power Ltd after a study by the Queen’s University

Belfast concluded that “a flap hinged to the sea bed at its lower edge with the

top edge penetrating the water surface was the most promising form of this type

of [OWSC] device” [6]. The conclusion was based on meeting five desired design

criteria: 1) wide bandwidth response for good power capture over the entire

working frequency range, 2) decoupling from incident waves for dealing with

extreme conditions, 3) high structural efficiency, 4) minimal redundancy, and 5)

easily replaceable sub-assemblies for maintenance purposes [6]. The progressive

decoupling comes naturally to this type of OWSC device; as the flap rotates

farther from the vertical position, the projected frontal area reduces, putting

less and less force on the system. The proximity of the device to the seabed

allows for tightly spaced units and flexible power transmission connections to

help maximize energy extraction [6]. The deployment of Oyster 1 (2009) was
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the first instance of fixing a mobile machine of such size to the seabed in shallow

coastal waters. The results from its first year of operation showed that it is pos-

sible to convert ocean wave power into electrical energy delivered to a national

grid. However, OWSCs cannot be optimized on hydrodynamics alone. Other

factors such as structure, power conversion and transmission, installation, and

maintenance must be considered [6].

In this regard, the research herein hopes to better understand the effects

of structure on OWSC devices and how such factors can be effectively mod-

eled in the future. The work of Winter and Motley 2020 illustrated that, while

no CFD code modifications were necessary, the default mesh-morphing method

with re-meshing approach required time-consuming mesh quality monitoring

and re-meshing operations. The work of Schmitt and Elsaesser illustrated that

the AMI method, while effective for large rotations, is especially challenging

for OWSCs due to their proximity to the seabed and requires modifications to

existing CFD code. Meanwhile, the overset mesh method can handle large rota-

tions without any re-meshing or mesh quality monitoring like the AMI method

without requiring any CFD code modifications or non-physical fluid regions.

1.3 Objectives

As stated previously, most research on OWSC devices has primarily been based

on experimental, scale model testing to date. Experimental tests on OWSC

devices in wave tanks are expensive, time-consuming, and testing facilities are

limited. Thus, it is advantageous to ensure that an experiment will provide

useful results before beginning a physical test. Numerical simulations on OWSC

devices can provide a preliminary screening of a wave tank experiment before

investing the time and resources in a scale model or full-scale test. They can

be used for fine-tuning of a design and prevent the necessity for quite as many
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physical tests if not all adjustments need be made in a lab. This can speed

the design process and conserve resources. However, such numerical models of

OWSC devices are neither numerous nor very straightforward, and there are

a variety of meshing methods for dealing with OWSC devices depending on

the available software and computational power. It is therefore of interest to

investigate the differences between the various mesh methods that can be used

to model an OWSC device and their results.

This research focuses primarily on the use of the overset grid method when

modeling the OWSC device detailed in [5]. Two different overset grid mod-

els were created using two different programs: OpenFOAM v2012 and STAR-

CCM+ 2021.3. The results of the two programs are compared to each other

and to the experimental results of [5] as well as to the re-meshing method used

in [1].
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Chapter 2

NUMERICAL MODELING

METHODOLOGY

The work presented in this thesis was performed using two computational fluid

dynamics software packages: OpenFOAM and STAR-CCM+. This chapter

provides an overview of both packages’ fluid and rigid body motion solvers used

for modeling a simplified OWSC device rotating about a single axis in two-

phase (air, water) flow. This overview includes brief discussions of the equations

and the numerical methods used by the solvers. Detailed discussions of the

theory can be found in many places, including the OpenFOAM User Guide [9],

the STAR-CCM+ User Guide [10] and many fluid mechanics textbooks (e.g.

Munson et. al., 2013 [11]).

2.1 OpenFOAM Fluid Solver

Open Source Field Operation and Manipulation (OpenFOAM) is a C++ library

with a large selection of executable applications. The version of OpenFOAM
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used for this research was OpenFOAM v2012, which was released in 2020 and

supports overset grid capabilities. OpenFOAM applications fall into two broad

categories: solvers and utilities. The solvers are designed to solve specific types

of physics, and the utilities are designed for data manipulation and process-

ing purposes. Some examples of OpenFOAM solvers include simpleFoam – a

steady-state, single-phase solver for incompressible, turbulent flows – and in-

terFoam – a transient, multiphase solver for two incompressible fluids which

uses a volume of fluid method to capture the interface between them [12]. A

wave tank is a multiphase problem with two phases: air and water. Thus, the

solver used in this study was chosen from OpenFOAM’s selection of multiphase

solvers. The multiphase solver compatible with the overset mesh method is

called overInterDyMFoam and is the solver used herein.

The fundamental underlying numerical method for all subsequent discussion

of OpenFOAM and STAR-CCM+ is based on the finite volume method. In this

method, a flow domain is divided up into cells of finite volume, often referred

to as the control volume. The flow governing equations are discretized in space

and time to form a system of linear algebraic equations that can be solved for

every control volume in the domain grid. The flow field values are solved at the

centroids of these finite volume cells, while flow field values at every other point

in the flow domain are solved using user-specified interpolation, discretization,

and matrix solution schemes [10, 13]. The finite volume method is an attrac-

tive option for CFD problems since the numerical flux between neighboring

discretized cells is conserved (i.e. locally conservative) and it may be used for

arbitrary mesh geometries [14]. The finite volume method is described in detail

in [10] and [14].

The overInterDyMFoam multiphase fluid solver is defined as a “Solver for

two incompressible, isothermal immiscible fluids using a VOF (volume of fluid)

10



phase-fraction based interface capturing approach, with optional mesh motion

and mesh topology changes including adaptive re-meshing.” by the OpenFOAM

User Guide [12]. The VOF approach works by tracking the volume fraction of

water (via a parameter called alpha) in each mesh cell over the course of the

simulation. A cell containing only water would have an alpha value of 1.0 and

a cell containing only air would have an alpha value of 0. A cell containing

both water and air would have some fractional value that would then apply

to the entire cell. For this reason, it is important to have a sufficiently fine

mesh near the air-water interface to ensure the VOF method appropriately

captures the free surface, minimizing interface smearing and maintaining and a

sharp interface. In addition to mesh-refinement near the interface, OpenFOAM

employs a built-in interface capturing scheme to help maintain sharp free surface

interfaces [15, 16].

The goal of CFD solvers, such as overInterDyMFoam, is to solve a set of

partial differential equations for flow field properties over a domain of interest.

To this end, pressure and velocity are predicted by the Navier-Stokes equations

and the continuity equation solved together for the given boundary conditions

and geometry. The Navier-Stokes equations are derived via a momentum bal-

ance and represent the conservation of momentum. They are valid everywhere

in the flow field of the fluid continuum [11]. The continuity equation expresses

the conservation of mass. These derivations can be found in most standard

fluid dynamics textbooks (e.g. Munson et al.’s Fundamentals of Fluid Mechan-

ics [11]). For the case of incompressible Newtonian fluids, the Navier-Stokes

equation can be expressed by Equation 2.1 and the continuity equation can be

expressed by Equation 2.2 [10].

∂(ρu)

∂t
+∇ · (ρu⊗ u) = −∇ · (pI) +∇ ·T+ fb (2.1)
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∇ · (u) = 0 (2.2)

In Equation 2.1, the left side of the equation represents the inertial forces,

fb represents the external forces (gravity, g), and the remainder represents the

pressure and viscous forces. While Equations 2.1 and 2.2 can be used directly to

solve a limited set of very simple problems analytically, more complex problems,

such as modeling an OWSC, require numerical simulations where these partial

differential equations are approximated with discretized algebraic equations and

solved cell by cell. A CFD simulation numerically solves these equations for the

relevant flow field values at discrete points specified by the user-defined mesh,

and flow field values at non-grid point locations are determined via specified

interpolation schemes [11].

It should be noted that the overInterDyMFoam solver assumes the governing

equations have been divided by the density of the fluid; thus, all post-processed

pressure values must be multiplied by the density to obtain the real physical

results.

overInterDyMFoam uses the PIMPLE algorithm to iteratively solve equa-

tions for pressure and velocity. The pressure-implicit method for pressure-linked

equations (PIMPLE) algorithm is a combination of the pressure-implicit split-

operator (PISO) and semi-implicit method for pressure-linked equations (SIM-

PLE) algorithms. Both the PISO and SIMPLE algorithms are iterative solvers

that involve evaluating initial conditions and then performing corrections. The

PISO algorithm is used for transient cases and requires more than one correction

while the SIMPLE algorithm is used for steady-state cases and only makes one

correction. The PIMPLE algorithm can be adjusted with different numbers of

inner (nCorrectors) and outer (nOuterCorrectors) correctors. Setting nOuter-

Correctors to 1 makes the PIMPLE algorithm act like the PISO algorithm. The

outer correctors specify the number of times the system of equations (coupled
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pressure and velocity) are solved, and the inner correctors specify the number

of times the pressure is corrected per iteration [17]. For this study, the number

of outer correctors was set to 2 and the number of inner correctors was set to

3. The time integration scheme (ddtSchemes) used was the Euler implicit time

scheme (Euler). This time-stepping scheme is first-order, implicit, and designed

for transient problems [18].

Though the Navier-Stokes equations are valid everywhere in the fluid do-

main, the results are affected by how the domain is discretized, notably for

capturing phenomena such as turbulence. Depending on the size of the mesh

and fineness of the grid, effects of turbulence may not be captured well, and

a turbulence model is generally required to obtain practical solutions. If no

turbulence model is used, the governing equations (2.1 and 2.2) must be solved

for an extensive range of temporal and spatial scales to capture turbulence,

the degree of which typically ranges from impractical to impossible. This ap-

proach is referred to as Direct Numerical Simulation (DNS) [19]. OpenFOAM

v2012 supports three types of turbulence models: Reynolds Averaged Simu-

lation (RAS), Detached Eddy Simulation (DES), and Large Eddy Simulation

(LES). It should be noted that the RAS model specified by OpenFOAM is more

commonly known as Reynolds Averaged Navier-Stokes (RANS). RANS is the

most commonly used turbulence model in industrial applications and is the

model used for this study [19]. The RANS equations are obtained via Reynolds

averaging, which results in a modified form of the Navier-Stokes equations which

include additional unknown terms called Reynolds stresses [19, 20]. LES mod-

els resolve turbulent phenomena at smaller scales than RANS models, providing

greater accuracy; however, they are more computationally costly due to time

step and mesh resolution requirements. LES works by filtering out small scale

turbulence while the “large eddies,” or most energy-intensive turbulence areas,
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are resolved directly. This requires a higher mesh resolution in order to capture

the large eddy turbulence details at small scales, which involves using smaller

cells sizes and, thus, a larger number of cells, increasing computational cost sig-

nificantly [19]. DES is a hybrid RANS-LES approach designed to mitigate the

computational drawbacks of LES due to near-wall meshing requirements [12].

It employs RANS modeling near the walls and LES modeling elsewhere in order

to reap the benefits of LES while maintaining RAS efficiency [19]. The mean

flows computed by RANS are sufficient for determining engineering quantities

of interest for an OWSC device in a wave tank with typical waves and help keep

the computational costs down. The RANS formulation is detailed in [20].

OpenFOAM includes a selection of RANS turbulence closures based on linear

and non-linear eddy viscosity models, and Reynolds stress transport models

[20]. Two of the most common turbulence model families are the k-epsilon

(k-ϵ) and k-omega (k-ω) models where k is the turbulent kinetic energy, ϵ is

the turbulent kinetic energy dissipation rate, and ω is the turbulence specific

dissipation rate [12, 21]. Both are two transport-equation linear-eddy-viscosity

(Boussinesq hypothesis, [22, 23]) closure models. OpenFOAM v2012 does not

offer a standard k-omega model; instead, it offers the Shear Stress Transport

(SST) k-omega model, which is essentially a hybrid between the k-epsilon model

and the standard k-omega model [12, 9]. The version of the SST k-ω model used

in OpenFOAM v2012 is described in [21] and is based on the 2003 model by

Menter et al. [24]. Generally, the standard k-omega model works well near

walls and the k-epsilon model works well away from walls; thus, the combined

SST k-omega model attempts to combine the best performance of each and is

the model used in this study [25]. The SST k-ω model is capable of capturing

flow separation and, unlike k-ϵ, it does not require any near-wall treatment [12,

21]. Additionally, a comparison study from [26] found that the SST k-ω model
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produced more accurate fluid force and pressure results on a stationary test

structure impacted by both broken and unbroken waves than four different k-ϵ

models. The increased accuracy of the SST k-ω model over the k-ϵ models was

due primarily to the fact that the SST k-ω model handled flow separation around

static bodies (e.g. concrete blocks) better than the k-ϵ models, whose standard

versions were originally developed for unseparated flows around airfoils [26].

The solution algorithm setup and controls are specified in the fvSchemes, fv-

Solutions, controlDict, and decomposeParDict files. The fvSchemes dictionary

specifies the numerical schemes for terms appearing in various applications be-

ing run. This includes things like interpolation schemes, including setting the

overset interpolation scheme used, derivatives (e.g. the first time derivative),

divergence schemes (e.g. a typical convection term), and more [18]. The fv-

Solution dictionary specifies equation solvers, tolerances, and algorithms. This

includes the settings for the PIMPLE algorithm used in this study as well as

solver settings for flow field values like the volume fraction (alpha), pressure

(p rgh), and velocity (U ), among others [17]. The files used for this study are

included in the appendix and detail all algorithm and control settings.

2.2 OpenFOAM Rigid Body Motion

The body motion solver used in this study is the sixDoFRigidBodyMotion solver.

This solver allows six degrees of freedom of motion (rotation and translation in

the x, y, and z directions) for a rigid body. Restraints (springs) and constraints

(rotation constrained to single axis) can be added. The rigid body motion

is setup in the dynamicMeshDict. There, the mass of the rigid body, mass

moment of inertia, acceleration relaxation and damping factors, motion solver,

constraints, and restraints must be specified. For the case of an overset grid

simulation, the dynamicFvMesh type must be set to dynamicOversetFvMesh.
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The dynamicFvMesh type specifies the type of motion to be solved [12].

For the purposes of this study, constraints were specified such that the

OWSC hinge location was fixed and rotation was only permitted about the

hinge (y-direction). This was done by imposing a sixDoFRigidBodyMotionCon-

straint constraint type in the dynamicMeshDict. A fixed line constraint was

created by using the sixDoFRigidBodyMotionConstraint type line with a cen-

treofrotation value located at the center of the hinge, (0, 0, 0), rotating about

the y-axis, 〈0,1,0〉. In addition, a torsional spring restraint was added using the

sixDoFRigidBodyMotionRestraint of type linearAxialAngularSpring about the

y-axis with a prescribed stiffness of 5 N/m to represent some bearing friction.

The sixDoFRigidBodyMotion solver solves for the motion of a rigid body

based on the computed forces acting upon it. These forces are comprised of

components such as fluid forces (i.e. pressure, viscous forces), gravity, and

spring forces. The tangential and angular accelerations are calculated using

Newton’s second law from the given state and forces. The new tangential and

angular velocities for the next time step are determined by corrections made

using the Newmark-beta time integration scheme [27]. Velocity corrections are

made in accordance with Equation 2.3 [28].

q̇ = q̇o +∆t(γq̈ + (1− γ)q̈o) (2.3)

Once the new velocities are known, they can be used to determine the degree

of rotation and the translational distance moved over the course of one time step.

The new position is determined by Equation 2.4 [28].

q = qo +∆tq̇o +
√
∆t(βq̈ + (0.5− β)q̈o) (2.4)

The type of Newmark method used for this simulation was the average con-
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stant acceleration method, which uses a gamma value of 0.5 and a beta value of

0.25. This method is unconditionally stable, regardless of the time step used.

For each time step, OpenFOAM reports the new values of angular velocity,

linear velocity, center of mass, center of rotation, body orientation, and spring

moment in the overInterDyMFoam log file. In the case of the OWSC device,

only single-axis, rotational movement is of interest.

After calculating the incremental change in rotation of the rigid body, both

the rigid body (OWSC) and the overset (body-fitted) grid must be displaced

accordingly [29]. There is no mesh deformation in an overset grid simulation,

instead interpolation is performed between the overset and background meshes.

This will be discussed in more detail in the following chapter.

The other setting of note in the dynamicMeshDict are the accelerationRe-

laxation and accelerationDamping factors. These factors help maintain the sta-

bility of the rigid body motion solver. Such stability issues arise in situations

of high acceleration where sudden high acceleration values cause divergence of

the solver. The accelerationDamping factor is similar to a damping coefficient

in that it reduces the computed acceleration on a body proportionally to the

body’s acceleration magnitude. Meanwhile, the accelerationRelaxation factor is

a direct reduction on the acceleration. Both factors can range from 0.0 to 1.0

[30]. For this study, the accelerationRelaxation factor was set to 0.4 and the

accelerationDamping factor was set to 0.8. There was also an attempt to con-

duct the simulation with an accelerationRelaxation factor of 0.6; however, this

attempt resulted in the solution divergence issues mentioned above where the

solution suddenly experienced extremely high values of acceleration and numer-

ical instability. Thus, the accelerationRelaxation factor was decreased to 0.4.

The application of the acceleration relaxation and damping factors is shown by

Equation 2.5 [31].
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q̈ = aDamp(aRelax ∗ q̈ + (1− aRelax)q̈prev) (2.5)

These kinds of relaxation factors have been used for both fluid flow and

body motion in CFD. In terms of body motion, an acceleration relaxation fac-

tor functions as an added mass term in the equation of motion (i.e. Newton’s

second law). An added mass effect must be considered since, in dense fluids, the

hydrodynamic force changes over the course of one time step. This force change

becomes especially significant for cases of light bodies subjected to high accel-

eration and can lead to solution divergence [5, 32]. The OpenFOAM default

functionality does not include a method for dealing with added mass effects

aside from the application of relaxation factors. Accounting for added mass

effects without using relaxation factors would involve creating custom code for

implementation in OpenFOAM as was done in [5] using one added mass algo-

rithm. Another added mass algorithm is detailed in [33]. Added mass has also

been dealt with by determining appropriate relaxation factors for corrector step

as was done in [34] using Aitken’s dynamic under-relaxation method. In this

method, the first under-relaxation factor was set conservatively between 0.1 and

0.5 and then updated each subsequent correction to the body motion to a value

between 0.1 and 1.0 based on another corrector equation [34].

For the sake of simplicity and ease of use for future research, the desire was to

work within OpenFOAM’s default functionality. This meant using the provided

relaxation factor settings and, subsequently, constant values for the relaxation

factors themselves. The accelerationRelaxation value of 0.4 was chosen for a

couple reasons. Firstly, the solution experienced a numerical instability when

accelerationRelaxation was set to 0.6; changing this value to 0.4 for the exact

same simulation resolved this instability. An accelerationRelaxation value of

0.4 was also used by Winter & Motley 2020 [1] using a mesh-morphing with
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re-meshing method for a very similar CFD problem with the same domain to

good effect. As another reference point, the accelerationRelaxation factors used

in the OpenFOAM v2012 tutorial cases for the overInterDyMFoam solver were

0.4 (case with a boat propeller: boatAndPropeller) and 0.6 (two floating body

cases: floatingBody and floatingBodyWithSpring) [35].

2.3 STARCCM+

The Simcenter STAR-CCM+ Software is proprietary software – originally cre-

ated by CD-Adapco before being purchased and subsequently developed by

Siemens – capable of solving a wide array of multi-physics problems includ-

ing fluid and solid continuum mechanics, rheology, aeroacoustics, reacting flows

(e.g. combustion), electro-chemistry (e.g. batteries), and electromagnetism

applications; although, the focus of this study was on its multiphase CFD and

rigid-body motion fluid-structure interaction modeling capabilities. The version

used herein was STAR-CCM+ 2021.3, which was released in 2021 and supports

the overset grid method. Unlike OpenFOAM, STAR-CCM+ has a graphical

user interface (GUI) where the model is set up using simulation trees. Since

the STAR-CCM+ simulation is being used as a method of model validation for

the OpenFOAM simulation, the physics and settings used in STAR-CCM+ are

very similar to those detailed in Sections 2.1 and 2.2 by design. Additionally,

although the STAR-CCM+ User Guide [36] provides an in-depth look at the

theory behind the software, the source code is not publicly available.

As with OpenFOAM, STAR-CCM+ solves the discretized form of the Navier-

Stokes partial differential equations and the continuity equation to predict pres-

sure and velocity over the computational domain using the finite volume method.

This is discussed in Section 2.1 and will not be repeated. Instead, this section

will focus on the various settings and solvers used in by the STAR-CCM+ soft-
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ware to solve these equations.

STAR-CCM+ physics are defined by first creating a physics continuum and

selecting the relevant models. One physics continuum is capable of handling

multiphase flow. For this study, the physics models specified in Figure 2.1 were

used.
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Figure 2.1: STAR-CCM+ dialog window listing the fluid physics models used.

The Implicit Unsteady model uses the Implicit Unsteady solver, which con-

trols the calculation updates of the flow fields for each physical time. The first-

order temporal discretization option was selected which uses the same type of
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Euler implicit time integration scheme as OpenFOAM. This solver also controls

the time-step size, functioning much like setting the adjustTimeStep setting in

OpenFOAM to yes. The segregated flow model and solver function similarly

to the PIMPLE algorithm used in OpenFOAM, making use of a predictor-

corrector method to solve coupled equations of pressure and velocity. However,

unlike OpenFOAM, STAR-CCM+ only has two available pressure-velocity cou-

pling algorithms: SIMPLE and PISO. For a segregated flow model that uses

the implicit unsteady time integration scheme, the SIMPLE algorithm is auto-

matically invoked [36]. Although the SIMPLE algorithm is geared more toward

steady-state solutions, it is capable of providing accurate results for transient

solutions so long as the time step is sufficiently small [36, 17]. Indeed, for small

time-steps, PISO and SIMPLE have the same level of temporal accuracy [36].

The SST (Menter) K-Omega turbulence model functions essentially the same

as the kOmegaSST model used in OpenFOAM. Both of these turbulence clo-

sure models fall within the Reynolds-Averaged Navier-Stokes (RANS) class of

models. The STAR-CCM+ simulation also uses a multiphase model with two

phases, and the Volume of Fluid (VOF) method with a convenient VOF Waves

model that is useful for setting initial and boundary conditions [36]. The Overset

capabilities will be discussed in Chapter 4.

The OWSC device was once again simulated as a rigid body permitted to

rotate about its hinge (y-axis). Rigid body motion fluid-structure interaction

(FSI) is simulated using the Dynamic Fluid Body Interaction (DFBI) module

in STAR-CCM+. For the case of a rigid body permitted to rotate about one

axis, a 2D body motion was selected as most appropriate. The 2D body motion

option used is called One-DOF Rotating Motion, which is the 2D version of a

single degree of freedom rotating motion suitable for 3D simulations [36].

The DFBI module solves the following governing equation, Equation 2.6, to
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determine the rotation of the rigid body in the case of free motion (i.e. 6-DOF)

[10].

M
dω

dt
+ ω ×Mω = n (2.6)

where M is the symmetric tensor of the moments of inertia, ω is the angular

velocity, and n is the resultant moment acting on the body [10]. Equation 2.6

uses the local coordinate system of the body where the origin is taken to be

the body’s center of mass. When simplified to the One-DOF Motion solver,

Equation 2.6 becomes Equation 2.7 [10].

M
∂

∂t
ω = n (2.7)

where M is now a scalar defined with respect to the axis of rotation.
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Chapter 3

NUMERICAL MODEL

This chapter describes the computational domain used in the OpenFOAM and

STAR-CCM+ simulations and the experiment the CFD models are attempting

to simulate. Wave properties and boundary conditions are explained in detail

along with their corresponding software settings. The process of generating a

background mesh for the wave tank in OpenFOAM is discussed.

3.1 CFD Model Domain

The CFD models created for this research are compared against the scale model

experiment conducted by Schmitt and Elsaesser (2015) using the wave tank at

the Queen’s University Belfast [5].

The wave tank used in the Schmitt and Elsaesser experiment was 4.58 meters

wide and 20 meters long with varying floor elevations. The tank geometry is

shown in Figure 3.1.
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Figure 3.1: Wave Tank Geometry and Water Level (in mm). Figure courtesy
of [5].

The OWSC device (or flap) had the dimensions 0.1 m (thickness, x-direction)

by 0.65 m (width, y-direction) by 0.341 m (height, z-direction). Additionally,

the properties in Table 3.1 were provided [5, 37].

Table 3.1: OWSC device properties. Height measurements in reference to
lowest floor. [5, 37]

Further details on the physical setup of the experiment can be found in [5].

For both the OpenFOAM and STAR-CCM+ models, the same wave tank

and OWSC geometry as listed above has been used with the following excep-

tions: the OWSC inertia value, the height of the OWSC center of gravity (CoG),

and the initial free surface height of the OpenFOAM simulation. During the

initial simulations conducted in OpenFOAM, it was discovered that using the

CoG value and mass inertia value as listed in Table 3.1 resulted in numerical

instability and solution divergence. Thus, the OWSC inertia value and the

CoG height were changed to match the values from another paper written by

Benites-Munoz et al. 2020 [38] which also compared results to Schmitt and El-

saesser [5]. Benites-Munoz used a OWSC device with a higher CoG and larger
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inertia value. The CoG height used in the OpenFOAM and STAR-CCM+ sim-

ulations was 0.587 m and the mass moment of inertia used was 0.1750 kg·m2.

This change stabilized the solution. The initial free surface height used in the

OpenFOAM simulation was also 0.01 meter higher than that used in [5]. While

not an exact comparison, then, to the Schmitt and Elsaesser experiment as pre-

sented in the literature, the results will be compared for order of magnitude and

qualitative purposes.

3.2 Waves and Boundary Conditions

The Schmitt and Elsaesser [5] experiment and CFD model used a wave period of

2.0625 seconds and an amplitude of 0.038 meters near the OWSC. These values

create an approximately 1:40 scale model of a wave with a 13 second period and

1.5 meter height.

OpenFOAM and STAR-CCM+ define the wave height or wave amplitude

at the wavemaker location. While this value is not presented by Schmitt and

Elsaesser, the authors clarified upon request that a wave height of 0.05 me-

ters was generated near the experimental wavemaker. The corresponding wave

length for a wave with a period of 2.0625 seconds and a height of 0.05 meters was

calculated to be 4.78 meters using the linear dispersion equation. One version

of this equation is shown by Equation 3.1.

λ = T

√
gλ

2π
tanh

2πh

λ
(3.1)

Additionally, the Ursell number of the waves was given near the wavemaker

as 3.4 [5] where the Ursell number is defined by Equation 3.2.

U =
λ2H

h3
(3.2)
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In Equations 3.1 and 3.2, λ is the wavelength, H is the wave height or

two times the wave amplitude, and h is the water depth. Thus, Equation 3.2

provides another way to calculate the wavelength used in [1]. The wavelength

results are approximately the same whether the Ursell number or the linear

dispersion equation is used, aside from rounding errors.

For OpenFOAM v2012, the user must specify the waveModel, waveHeight,

wavePeriod, and wavelength where waveHeight is the wave height at the wave-

maker (0.05 meters in this case). OpenFOAM v2012 has a variety of wave

generation (waveModel) types available for different wave theories. The regular

wave theories available include Cnoidal, Stokes I, Stokes II, Stokes V, and a

Stream Function [39]. This study uses the Stokes I model, which is equivalent

to Airy Wave Theory or linear wave theory. The first order Stokes (Stokes I)

theory is a small-amplitude wave theory, which describes waves with heights

small in comparison to their wavelengths. The Stokes I waveModel computes

the free surface elevation using Equation 3.3 [39].

η(x, t) = 0.5H cos(kxx+ kyy − ωt+ ϕ) (3.3)

where k is the angular wavenumber, k = 2π
λ , with kx = k ∗ cos θ and ky =

k ∗ sin θ; ω is the angular frequency, ω = 2π
T ; and ϕ is the phase shift. The

waveAngle, θ, is set by the user; in the case of this study, θ and ϕ have been set

to 0.0 and so Equation 3.3 simplifies to Equation 3.4 [39].

η(x, t) = 0.5H cos(kx− ωt) (3.4)

One example of the Airy Wave theory derivation can be found in [40]. All

wave properties are specified in the constant folder in the waveProperties dic-

tionary.
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For STAR-CCM+ 2021.3, the wave model type used is the “VOF Waves”

model. This type of model can be used to simulate steady surface gravity

waves and is convenient for setting certain initial conditions [36]. Like with

OpenFOAM, the STAR-CCM+ VOF Waves support a selection of wave models

based on different theories. These include Flat Wave, First Order Wave, Fifth

Order Wave, Superposition Wave, Cnoidal Wave, and Irregular Wave [36]. The

First Order Wave model uses a first order approximation to the Stokes wave

theory and corresponds to the Stokes I waveModel used in OpenFOAM. Thus,

it was the model selected for use in this study. As reported in the STAR-CCM+

User Guide, the free surface elevation for a First Order Wave model is computed

using Equation 3.5 [36].

η = a cos(K · x− ωt) (3.5)

where a is the wave amplitude and the K and ω variables are the same as

in the OpenFOAM Equation 3.3.

The problem domain has seven user-defined boundaries: the two sides of

the wave tank (rightWall and leftWall), the floor of the tank (bottomWall), the

atmosphere boundary (atmosphere), the inlet (inlet), the outlet (outlet), and

the rigid body OWSC (flap). The labels in parenthesis were those used in the

OpenFOAM dictionaries and also in STAR-CCM+. The boundary conditions

in OpenFOAM are defined by files in an initial and boundary conditions folder,

0.org. The 0.org folder contains boundary condition files for volume fraction

(alpha), turbulent kinetic energy (k), turbulent viscosity (nut), turbulence spe-

cific dissipation rate (omega), velocity vector components (U ), total pressure

without the hydrostatic component (p rgh), boundary displacements (pointDis-

placement), and – for overset grid simulations – zoneID. Table 3.2 details the

boundary conditions used for each boundary.
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Table 3.2: OpenFOAM Boundary Conditions

The zeroGradient boundary condition works by imposing a zero-gradient

condition from the patch internal field to the patch faces [41]. In other words,

the values in the cells next to the boundary will be the same as the values on the

boundary. The fixedValue boundary condition sets a user-specified fixed value

constraint on the boundary [41]. In the case of the pointDisplacement boundary

conditions, all boundaries except for flap were set to a fixedValue boundary of

zero, where there was no boundary displacement. The calculated boundary con-

dition does not actually evaluate anything, instead it refers to a value set by a

field assignment. The inletOutlet boundary condition will assign a zeroGradient

condition for outflow cases and a specified fixedValue condition for inflow cases

[41]. The fixedFluxPressure boundary condition chooses the pressure gradient

such that the flux on the boundary matches that specified by the velocity bound-

ary condition [41]. The noSlip boundary condition sets the velocity to zero at

the wall boundaries [41]. The pressureInletOutletVelocity boundary condition is

used on boundaries where pressure is specified. A zeroGradient condition is used

for outflow. For inflow, velocity is set equal to the boundary-normal component

of the adjacent internal cell value [41]. The totalPressure boundary condition

provides a user-specified, constant total pressure condition to a boundary [41].

To set up the wave case specified above, velocity and phase fraction field

boundary conditions at the inlet must be set to waveVelocity and waveAlpha,

respectively. This indicates the location of the wave maker, where waves should

begin propagating. It also tells the simulation to initialize and run the waves

specified by the waveProperties dictionary [39]. The variableHeightFlowRate
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boundary condition is used for alpha on the outlet since the waves will change the

water level and therefore change the distribution of alpha over the outlet bound-

ary. The movingWallVelocity velocity boundary condition is applied to cases

with moving walls [41]. The remaining boundary conditions are all different

types of wall functions: kqRWallFunction, nutkWallFunction, and omegaWall-

Function. The nutkWallFunction boundary condition provides a wall constraint

on turbulent viscosity based on k. The omegaWallFunction boundary condition

provides a wall constraint on ω and turbulent kinetic energy production contri-

bution. These two boundary conditions are essentially just fixedValue boundary

conditions specific to the nut and omega boundary files for walls. The kqRWall-

Function boundary condition is a simple way of wrapping k, square-root of

turbulent kinetic energy (q), and Reynolds stress tensor fields (R) all under a

zeroGradient boundary condition as needed [42].

The STAR-CCM+ simulation contains all the same boundaries with the

same labels used in OpenFOAM. The stationary tank walls (rightWall, leftWall,

bottomWall) and the OWSC faces (flap) are assigned as boundary type Wall.

The atmosphere boundary (atmosphere) is defined as boundary type Pressure

Outlet, the inlet (inlet) is type Velocity Inlet, and the outlet (outlet) is type

Pressure Outlet. Unlike with OpenFOAM, STAR-CCM+ does not require the

user to set individual boundary conditions for every field value if “auto-select

recommended models” is activated. The boundary condition settings available

are dependent on the models selected (see Figure 2.1).

A Wall boundary is used for impermeable surfaces that confine fluid or solid

regions. The no-slip condition is applied to all Wall boundaries in viscous flow

by default and this setting was not changed. A Velocity Inlet boundary is used

for inflow conditions when the velocity and fluid properties over the boundary

are known, as was the case for the inlet boundary of the model [36]. In the case
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of this study, the fluid distribution over the inlet boundary was known (volume

fraction) as well as the velocity distribution in the form of First Order waves of

known physical properties. The VOF Waves model provides field functions that

may be used to specify boundary condition flow field values – in this case velocity

– at the inlet and outlet as well as initial condition flow field values throughout

the rest of the computational domain. These conditions are prescribed to the

Velocity Inlet boundary and used to calculate inlet volume flux, momentum

flux, and energy flux [36]. A Pressure Outlet boundary is used for outflow

conditions and imposes the working pressure on the boundary. The working

pressure in STAR-CCM+ is the sum of the static and hydrostatic pressures.

The Pressure Outlet in STAR-CCM+ is similar to the inletOutlet boundary

condition in OpenFOAM in that other values, such as velocity, may have both

outflow and inflow conditions, i.e. backflow is allowed. The velocity values are

taken as the values from the adjacent solution domain for outflow conditions

(zeroGradient). If using the Extrapolated backflow option, the velocity values

for inflow conditions are set to the internal velocity values (fixedValue) [36].

There are other ways to deal with backflow in STAR-CCM+, but this study

uses the Extrapolated option.

Boundary conditions related to the turbulence model (k and ω), were auto-

matically set in STAR-CCM+ based on the boundary type used by allowing the

software to automatically select recommended models. The auto-selected tur-

bulence specification for the inlet, outlet, and atmosphere boundaries was the

Intensity + Viscosity Ratio method, which calculates the parameters k and ω

from a specified turbulence intensity and length scale. For the walls, the blended

wall function was used, which is selected for use with no-slip walls when the all-

y+ wall treatment model is selected. All wall boundaries were set as smooth,

for use with regular wall treatment. Default values were used for all turbulence
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boundary condition parameters such as E, the log law offset, which was 9.0, and

Kappa, the von Karman constant, which was 0.42 [36]. These values were used

for the simulation in lieu of any available data to inform turbulence parameters.

3.3 Mesh Generation

The overset grid method uses two meshes: a background mesh and an overset

(body-fitted) mesh. The latter will be discussed in more detail in Chapter 4.

All meshes used in this study were generated using OpenFOAM’s blockMesh

utility. blockMesh is one of the simplest ways to create a mesh in OpenFOAM;

it generates a mesh from a user-defined dictionary file, blockMeshDict. The

blockMesh utility reads this dictionary file, generates a mesh, and writes the

outputted mesh data to generated files named points, faces, cells, and boundary

[43]. Mesh generation is done as a pre-processing step prior to running any CFD

simulations.

To define a mesh in the blockMeshDict, the user must define vertices, blocks,

and boundaries. Vertices are specified as coordinates and are used to define the

blocks. Each block in the blockMeshDict is defined with eight vertices arranged

as in Figure 3.2.
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Figure 3.2: A single hexahedral block with vertex labeling convention. Figure
courtesy of [43].

The following is an example of a block definition as given by the OpenFOAM

User Guide [43].

blocks

(

hex (0 1 2 3 4 5 6 7) // vertex numbers

(10 10 10) // numbers of cells in each direction

simpleGrading (1 2 3) // cell expansion ratios

);

The block vertex numbers in the example have been ordered as (0 1 2 3 4

5 6 7). Based on Figure 3.2 the first two vertices listed define the x1 direction,

the second and third vertices listed define the x2 direction, and the fifth and

sixth vertices listed define the x3 direction. Thus, in this example and Figure

3.2, the local x1 direction is defined from vertex 0 to vertex 1, the local x2

direction is defined from vertex 2 to vertex 3, and the local x3 direction is
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defined from vertex 4 to vertex 5. The local coordinate system must be defined

as a right-handed coordinate system. The order of the vertices is important

and incorrectly ordering the block vertices will result in inverted blocks. The

number of cells in each local block direction are also set in the block definition

as well as any cell grading desired [43].

The wave tank (or background) mesh created for this study uses 12 blocks.

The large number of blocks was due to cell grading, where it was desired that the

mesh be finer near the air-water interface and near the OWSC. If multiple blocks

are used, the user must ensure that the faces between blocks match in terms

of cell number/dimensions. In OpenFOAM, this is known as “face matching.”

The blocks used are shown in Figure 3.3.

Figure 3.3: Mesh blocks defined in blockMeshDict.

The blockMesh utility allows for grading the cell dimensions via expansion

ratios in each of the three block dimensions. The grading option used to create

the mesh was simpleGrading. This grading method requires the user to specify

uniform expansion ratios for each local direction of a block.

The final component required by the blockMeshDict is a list of boundary

definitions. Boundaries must also be specified using the user-defined vertices

and the vertex ordering convention of Figure 3.2 to define the boundary faces.

As an example, the bottomWall boundary requires that 6 faces be defined, as can

be seen in Figure 3.3. The faces which define each boundary must be assigned
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a patch type. For this study, the boundary patch types used were patch – a

generic patch type that contains no geometric or topological mesh information

– and wall – a specific type of patch which coincides with a wall – where the

wall type was applied to all impermeable walls and the patch type was used for

the inlet, outlet, and atmospheric boundary [43].

The generated background mesh used the same wave tank dimensions as

described in Section 3.1 and contains approximately 18.1 million cells. This

mesh is shown in Figure 3.4. Additionally, a 3D view of the wave tank is shown

in Figure 3.5.
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Figure 3.5: 3D wave tank model with overset mesh, generated in the ParaView
[44] software.

Instead of generating new meshes in STAR-CCM+ for a comparison simula-

tion, the OpenFOAM meshes were converted to Fluent mesh (.msh) files using

the OpenFOAM utility, foamMeshToFluent. The Fluent meshes could then be

imported into STAR-CCM+ as volume meshes. Thus, the OpenFOAM and

STAR-CCM+ simulations use the same background and overset meshes in their

analysis.
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Chapter 4

OVERSET MESH

APPROACH

The CFD analysis performed in this study was conducted using an overset mesh

approach. This chapter details the overset mesh method and its implementation

in OpenFOAM v2012 and STAR-CCM+ 2021.3. There is also a brief discussion

on mesh methods that have previously been used to deal with the same OWSC

device. All methods are attempts to effectively simulate the very large rotations

an OWSC device experiences, where typical mesh-morphing methods are no

longer appropriate.

4.1 Previous Methodology

Since OWSCs experience such large values of rotation, typical mesh-morphing

methods are generally not sufficient to model them. In the typical mesh-

morphing method, the cells in the mesh are allowed to deform as the body

moves. For small rotations or translations, this mesh deformation is small and
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manageable. However, for large rotations and translations, the cells will be

deformed to an unacceptable level that will result in poor mesh quality and,

therefore, poor results and/or solution divergence.

Imagine modeling a rigid cylinder immersed in a tank filled with water.

There are polyhedral cells surrounding the cylinder. If the cylinder is allowed

to move horizontally, the cells to one side of the cylinder would be forced to

squash together while the cells to the other side of the cylinder would stretch to

fill the void. This significantly changes the cells’ volume and shape. This type

of behavior was demonstrated by Jasak 2009 [45] and is shown by Figure 4.1.

Figure 4.1: Initial mesh (top) and deformed mesh (bottom) for a moving
cylinder. Figures courtesy of [45].

As the cylinder in Figure 4.1 travels across the domain, the cells that had

originally been to its right will eventually be forced to essentially have zero

or near-zero volume and result in solution divergence; though, more likely, the

mesh quality would have deteriorated far enough for solution divergence prior
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to cells approaching too closely to zero volume. The same type of problem

occurs for an OWSC device experiencing large rotations. As the device rotates

to one side, the mesh cells on that side are forced to contract and form severely

deformed shapes. Mesh quality metrics – skewness and non-orthogonality –

increase to unacceptable values, and the simulation will fail. Cell skewness and

non-orthogonality are two metrics for assessing mesh quality. Skewness between

cells is defined as the distance from the intersection of adjacent cell faces and a

line connecting cell centers to the midpoint of the adjacent cell faces; in a high-

quality mesh this value should be small or zero. Non-orthogonality between

cells is defined as the difference between 90 degrees and the angle between a

vector normal to the adjacent cell faces and a line connecting the cell centers;

ideally, this value should also be zero or small [1].

Two other CFD mesh approaches that deal with this issue were mentioned

in Chapter 1 for use in modeling a OWSC device in a wave tank. These were

the re-meshing approach and the AMI approach. In particular, this section

examines the CFD simulations conducted by Winter & Motley 2020 [1] using a

re-meshing approach and Schmitt and Elsaesser 2015 [5] using an AMI approach.

A re-meshing approach was implemented by Winter & Motley [1] using

OpenFOAM v7 and modeled the same experimental set-up detailed in [5]. In

this model, a simulation was run using the interFoam fluid solver and sixD-

oFRigidBodyMotion body motion solver where mesh-morphing occurred as the

OWSC rotated. An initial model was set up with the wave tank mesh, the

upright OWSC body, and the initial water level; the simulation was run using

interFoam. At every 0.01 second time step, the reconstructed mesh quality was

checked using the checkMesh utility. If the mesh met the quality standards

set in the meshQualityDict, the simulation would continue running interFoam.

When mesh quality deteriorated and the standards set in the meshQualityDict
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were not met, the simulation would stop, and a new mesh would be generated

with the OWSC now starting in the same position it stopped in. The OWSC

position for the newly generated mesh had to be calculated from the output

from the previous mesh simulation and then incorporated into the new mesh

using a Python script, which is to say it is not automatically done by Open-

FOAM. Once re-meshing for the new position was completed, the simulation

was started again [1].

This method requires many stops, starts, mesh checks, and re-meshing oper-

ations, which all increase the overall run time of the simulation. The re-meshing

approach also requires that all field variables be interpolated between the pre-

vious mesh and each new mesh, introducing additional numerical error to the

solution. A more complex meshing utility – snappyHexMesh – is required to

generate a suitable mesh near the OWSC, which will take longer than a simple

blockMesh alone. snappyHexMesh is a utility designed to ensure mesh quality.

It functions by first creating a basic mesh, typically using blockMesh, and then

incorporating tessellated geometries into this basic mesh near the body [46]. In

this way, every new start point in the re-meshing scheme would begin again

with a high-quality mesh.

The arbitrary mesh interface (AMI) approach was implemented by Schmitt

and Elsaesser (2015) using an unspecified version of OpenFOAM [5]. This AMI

method uses a sliding mesh interface where a cylindrical mesh centered at the

OWSC hinge is allowed to rotate about this center while the wave tank mesh

remains stationary. No mesh-morphing occurs in this method and so re-meshing

is not necessary. The wave tank mesh and the rotating cylindrical mesh do not

overlap each other; instead, they exchange information via interpolation at this

sliding interface. Due to the geometry of the OWSC and wave tank, a cylindrical

mesh with a center of rotation located at the OWSC hinge will extend past the
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wave tank floor boundary. Thus, to use this method, a non-physical fluid region

must be introduced beneath the OWSC device large enough to contain the

cylindrical AMI mesh [5]. The effects of the non-physical fluid region on the

solution are negated using a dissipation parameter that was incorporated into

the interFoam solver [1].

Like in the re-meshing method, the AMI method introduces additional nu-

merical error during the interpolation of field variables at the interface between

the meshes. It also requires the user to modify a default OpenFOAM solver.

Schmitt and Elsaesser demonstrated that the dissipation was required to be

in the 50 to 100% range to adequately reduce fluid flow velocities in the non-

physical fluid region. However, the dissipation level necessary to minimize so-

lution errors has not been extensively studied and may vary depending on the

case [1].

The AMI method is similar to the overset method used in this study in that

it also utilizes two meshes that do not experience any mesh-morphing. This

means that mesh quality does not deteriorate from the original mesh state. Both

methods use interpolation between separate mesh regions and incur resulting

numerical error. However, an advantage of the overset method is that the overset

mesh may be an arbitrary shape; it need not be a cylinder. Thus, no non-

physical fluid region or dissipation parameter need to be implemented. The

results from the re-meshing and AMI methods are compared to that of the

overset method used in this study in Chapter 5. The overset method is detailed

below.

4.2 Overset Grid Methodology

The overset mesh method uses two or more non-deforming grids: a background

mesh and at least one overset (or body-fitted) mesh. In the case of rigid body
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motion, no mesh deformation occurs in any of the grids and the original meshes

are maintained. This prevents mesh quality concerns due to mesh-morphing

and is especially convenient for modeling large translations and/or rotations.

These grids arbitrarily overlay each other, moving relative to one another and

interpolating information between grids.

The OpenFOAM User Guide [47] gives a good example of how the grids are

set up. The overset mesh method requires a background mesh. For this study,

the background mesh consists of the wave tank detailed in Chapter 3. However,

for demonstrative purposes, a generic background mesh shown in Figure 4.2 is

given.

Figure 4.2: A generic background mesh. Figure courtesy of [47].

The OpenFOAM example uses the case of two rotors rotating near one an-

other. In this case, two overset meshes must be used. It becomes apparent why

overset meshes are also referred to as body-fitted meshes, since they are fitted

around the bodies they move together with. The overset meshes are shown in

Figure 4.3.
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Figure 4.3: Two overset meshes laid over a background mesh. Figure courtesy
of [47].

The empty white spaces enclosed by the overset meshes in Figure 4.3 are

where the solid bodies (rotors) are located. The cells taken up by the body are

called hole cells. Hole cells are blocked out during the simulation and, thus,

inactive [47].

The other cell types that must be defined in an overset mesh method are

donor and acceptor cells. The donor cells provide flow field values while ac-

ceptor cells get their values from interpolation. Acceptor cells are also known

as “fringe” cells since they are located at the boundaries or “fringes” of over-

set meshes. The corresponding donor cells are located adjacent to the acceptor

cells, which consist of adjacent overset cells and adjacent background mesh cells,

respectively. Interpolation is performed between the donor and acceptor cells

[47].

The overset mesh used in this study is shown in Figure 4.4. This figure does

not show the entire background mesh; it shows a zoomed in portion near the

OWSC.
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Figure 4.4: OWSC overset mesh generated in the ParaView [44] software.

In Figure 4.4, the grey area is the background mesh and the red area is the

overset mesh. The grey area enclosed by the red overset mesh is where the

OWSC device is located and contains the hole cells. Interpolation occurs be-

tween the background and overset meshes at the boundary of the overset mesh.

This interpolation must occur at every time step and adds to computational

cost. It can also lead to conservation and convergence issues [48].

To prevent such issues and limit computational error, consideration should

be given to both the overset mesh used and the background mesh near the

body, in particular. Cell sizes of the background and overset grids should be

similar to prevent large interpolation errors. Additionally, at least two acceptor

cell layers are needed to adequately represent gradients [49]. Another way to

decrease interpolation errors is to use better, typically more complex, interpo-

lation methods [49]. However, these improved interpolation methods can slow

down the simulation significantly.
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4.2.1 OpenFOAM v2012

Interpolation Method

The OpenFOAM solver, overInterDyMFoam, handles overset cell assignments

and interpolation. The interpolation method is set in the fvSchemes dictionary.

For this study, the inverse distance (inverseDistance) interpolation method was

used. First, OpenFOAM assigns cells as Calculated (donor cells), Interpolated

(acceptor cells), or Hole (hole cells) and a cell stencil is constructed. The inverse-

distance-weight interpolation stencil finds and marks all boundary/patch faces,

marks any cells overlaying these faces, and uses a flood filling algorithm to

determine the unreachable (hole) cells [50]. Flood filling algorithms are com-

monly used in computer graphics to color pixelated enclosed areas. In this case,

the algorithm is used to find hole cells enclosed by a boundary. To begin, all

cells within the mesh domain are marked as calculated cells. Boundary patches

(walls, like the OWSC, and overset patches) are marked and assigned as hole

cells. The flood filling algorithm in OpenFOAM is a method of determining

which cells lie inside patch boundaries by assigning regions and investigating

where blockages occur when “walking” cell-by-cell through the domain. In the

case of the overset mesh, the hole cells lie inside and around the OWSC body

patch; meanwhile, the background mesh hole cells include all cells located on

and inside the overset patch. Interpolation cells are marked as those cells in the

overset mesh which border the overset boundary [51]. The hole-cutting process

is one of the things that can substantially slow down overset simulations.

The inverse distance method using weighted values of the donor cells to

calculate the values on the acceptor cells, as shown by Equation 4.1 [51].

xinterpolated =
∑

Wixi,donor (4.1)
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where Wi stands for the weight for each donor cell, i, and the x ’s represent

some field value being interpolated. The weights are determined using the in-

verse of the distance between the cell center of the donor cell to the cell center

of the acceptor cell, Equation 4.2 [51].

wk =
1

dk
(4.2)

These are summed together over all donor cells surrounding the acceptor cell

of interest. The weight for each individual donor cell can then be determined

via Equation 4.3 [51, 48].

Wi =
wi∑
wk

(4.3)

The inverse distance interpolation scheme is simple and straightforward to

implement. However, it has lower accuracy than some other interpolation meth-

ods, the degree of which is dependent on how donor cells are distributed and the

width of the stencil [49]. It is also significantly faster than other interpolation

methods, including the least-squares method. Increasing the resolution of the

background and overset meshes has the advantage of also increasing the accu-

racy of this interpolation method. For fine enough meshes with well-matched cell

sizes at and around overlaying grids, the inverse distance interpolation method

provides sufficient solution accuracy compared to more sophisticated methods

[49].

Overset Simulation Set-Up

To run an overset mesh simulation in OpenFOAM v2012, a specific file structure

must be used. This file structure is shown in Figure 4.4. The background and

overset meshes require their own folders for block-meshing purposes.

47



Figure 4.5: OpenFOAM file structure for overset grid simulation.

In Figure 4.5, each box is a folder and each bullet point is a file. Since the

majority of these files and folders have been discussed previously as context

required, each file and its functions will not be discussed in detail here. Instead,

an overview of the overset simulation set up will be outlined briefly.

Prior to running an overset simulation in OpenFOAM, the overset and back-
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ground meshes must be created. In this study, both meshes were created using

the blockMesh utility discussed in Chapter 3. The location of the OWSC body

within the meshes must also be specified and a patch created. The set-up process

is illustrated by Figure 4.6.

Figure 4.6: OpenFOAM overset simulation set-up process.

In this case, two zone IDs were used: one for the overset cells and the other

for the background cells. These IDs are used to keep track of the two regions

used in the simulation and which cells belong to which region.

4.2.2 STAR-CCM+ 2021.3

The STAR-CCM+ simulation used the Distance Weighted overset mesh inter-

polation option. This interpolation method computes interpolated acceptor cell

values using weights based on the distances to the four nearest neighbors [36].

It is not the same as the inverse distance interpolation method used in Open-

FOAM. The other available interpolation options in STAR-CCM+ are Linear,

Linear Quasi2D, and Least Square. The inverse distance method is not used
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in STAR-CCM+ unless the interpolation is difficult and the simulation reverts

to this less accurate interpolation method at times when the conditions for the

selected interpolation scheme cannot be met [36].

The overset and background meshes are defined as two separate regions in

the Regions branch of the simulation tree. These regions were created when the

OpenFOAM overset and background meshes were imported into STAR-CCM+

as volume meshes. The overset mesh also contains the OWSC device and all

associated boundaries. The Regions branch of the simulation tree used for this

study is shown in Figure 4.7.

Figure 4.7: Regions branch of STAR-CCM+ simulation tree.
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An Overset Mesh Interface was created between the two regions by selecting

both regions in the Regions branch, right clicking, selecting Create Interface, and

then selecting Overset Mesh in the expanded menu. Additionally, the overset

mesh boundary was defined as an Overset Boundary in the Overset/Flap region

shown in Figure 4.7.

STAR-CCM+ uses a slightly different cell naming convention than Open-

FOAM. It calls both the donor cells and other computed background cells Active

Cells, hole cells are called Inactive Cells, and acceptor cells are Acceptor Cells.

The hole-cutting method employed is called the Layered Approach. First, a

single layer of cells adjacent to the overset boundaries are marked as acceptor

cells in the overset region. All other cells remain marked as active cells. The

corresponding adjacent cells are marked as potential donor cells. Then, in the

background region, a single layer of cells near those potential donor cells are

marked as acceptor cells. This layer is located about 4 cell layers away from

the overset interface between the regions. These four intermediate cell layers

are labeled as donor cells in the background mesh. All background cells located

inside the closed overset interface are marked as inactive and do not take part

in the solution process [36].
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Chapter 5

RESULTS

To examine the accuracy of the overset simulations, the OWSC motion and

loading is evaluated. This chapter compares OWSC motion behavior reported

by OpenFOAM to a physical experiment conducted in a wave flume. It goes

on to compare OpenFOAM simulation results to an equivalent STAR-CCM+

simulation.

5.1 OpenFOAM v2012 Results

OpenFOAM data was post-processed from data output by the solver log file

and using a function object called forces [52] in the controlDict. The solver log

file contained information on the angular velocity of the OWSC, the orientation

of the OWSC, and the center of mass location for every time step. The forces

function object generates force and moment data for a specified surface. In this

case, the OWSC surface patch was specified, and the function created two files

where it stored forces and moments on the OWSC: force.dat and moment.dat.

Each .dat file saves the force components in the x, y, and z directions split into

categories of total, normal pressure, and tangential viscous forces.
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The origin of the coordinate system used for all simulations detailed herein is

located at the center of the OWSC hinge. The x-axis points in the same direction

as the driving waves, extending the length of the wave tank from inlet to outlet,

and shall be referred to as the longitudinal direction. This axis is located at the

centerline of the wave tank with a coordinate value of 0 at the hinge. A negative

longitudinal coordinate indicates a location on the inlet-side of the OWSC and

a positive longitudinal coordinate indicates a location on the outlet-side of the

OWSC. The y-direction runs parallel to the OWSC hinge and transverse to the

wave tank; this direction shall be referred to as the transverse direction. The

z-axis points in the opposite direction of gravity with a coordinate value of 0 at

the hinge; the z-direction shall be referred to as the vertical direction.

The rotation of the simulated OWSC device over the course of approximately

36 seconds is shown in Figure 5.1. Positive values of rotation indicate the

OWSC is displacing in the negative longitudinal direction and negative values of

rotation indicate the OWSC is displacing in the positive longitudinal direction.

Figure 5.1: OWSC rotation results from OpenFOAM.

From Figure 5.1, the rotation stabilizes around the 20 second mark. A close-
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up view of a full oscillation of the OWSC is shown in Figure 5.2.

Figure 5.2: One wavelength of OWSC rotation results from OpenFOAM.

Over the course of the approximately 36 second simulation, the maximum

rotation reached was approximately +49 degrees and the minimum rotation

reached was approximately -44 degrees. The OWSC position at different times

during a full rotation were visualized using the ParaView [44] software and are

shown in Figure 5.3. In particular, the rotations at 21.65 and 21.9 seconds are

shown, the values for which can easily be seen in Figure 5.2.
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Figure 5.3: OpenFOAM OWSC rotation for the following times (read left to
right and top to bottom): 10.15, 10.4, 17.75, 18.0, 21.65, 21.9, 35.75, 35.95

(seconds).

Figure 5.3 shows the OWSC device in a partially-transparent rendering of

the volume fraction scalar field, where red indicates water and blue indicates

air. All OWSC images were taken at a cut down the centerline of the wave tank.

Rotations are measured with respect to the vertical axis.
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Figure 5.4: Angular velocity of the OWSC from OpenFOAM.

To better understand the behavior the OWSC, the angular velocity is com-

pared to the OWSC rotation in Figure 5.5.

Figure 5.5: OWSC angular velocity and rotation from OpenFOAM.

Figure 5.5 illustrates how the angular velocity decreases in magnitude and

flattens out near the maximum and minimum values of rotation. The extreme
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values of angular velocity occur when the OWSC returns to the vertical position.

Angular acceleration is not computed directly by OpenFOAM or reported

in the log file. Instead, the angular acceleration was computed using Equation

5.1.

αi+1 =
ωi+1 − ω

ti+1 − ti
(5.1)

where ω is angular velocity and t is time. The resulting angular acceleration

values are shown in Figures 5.6 and 5.7.

Figure 5.6: Angular acceleration of OWSC from OpenFOAM.
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Figure 5.7: Close-up of OWSC angular acceleration from OpenFOAM.

The longitudinal, transverse, and vertical components of force on the OWSC

are shown in Figure 5.8 as well as the total magnitude of the force (total).

Figure 5.8: Force components on the OWSC from OpenFOAM.

The forces in the vertical direction are primarily buoyancy and gravity forces.

The large value of initial vertical force is due to the buoyant force on the OWSC.
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For larger values of rotation, there is also a portion of the vertical force due to

the weight of the water pressing downwards on the OWSC. The forces in the

transverse direction are primarily viscous and friction forces and are negligible.

The forces in the longitudinal direction are the forces that act in the same

direction as the driving waves and are the primary forces of interest. The

longitudinal forces are shown exclusively in Figure 5.9 and 5.10.

Figure 5.9: Longitudinal (x-direction) force on the OWSC from OpenFOAM.
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Figure 5.10: Close-up of longitudinal (x-direction) force on the OWSC from
OpenFOAM.

To better understand the loading behavior, the longitudinal component of

force on the OWSC is compared to the rotation of the OWSC in Figure 5.11.

Figure 5.11: Longitudinal force (x-direction) on the OWSC and rotation from
OpenFOAM.

The largest values of force in the direction of wave motion occur when the
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OWSC is at the maximum and minimum values of rotation. As the OWSC

returns to the vertical position, the longitudinal force decreases in magnitude

until hitting zero, then begins increasing in the opposite direction. However, this

increase experiences a dip very near the vertical position where the magnitude

of the force approaches zero before increasing rapidly once more. These dips

do not start occurring until further along in the simulation when the waves are

hitting at regular intervals, reflections are occurring, and the OWSC behavior

has stabilized. When the first wave reaches the OWSC, the longitudinal force is

a smooth curve without any such dips. Thus, the dips observed in Figure 5.11

are likely primarily due to the effects of wave reflection.

The moments acting on the OWSC about the longitudinal, transverse, and

vertical axes are shown in Figure 5.12.

Figure 5.12: Moment components on the OWSC from OpenFOAM.

The moments about the longitudinal and vertical axes are the moments

acting perpendicular to the axis of OWSC rotation. These components are

negligible. The moment about the transverse axis is the moment that acts on

the axis of rotation and is the primary moment of interest. The transverse
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moment is shown exclusively in Figure 5.13.

Figure 5.13: Close-up of moment about the axis of rotation on the OWSC for
OpenFOAM.

To help better understand the moment loading behavior, the moment about

the axis of rotation on the OWSC is compared to the rotation of the OWSC in

Figure 5.14.

62



Figure 5.14: Moment (y-direction) on the OWSC and rotation from
OpenFOAM.

5.2 OpenFOAM Overset Comparison to Results

by Schmitt & Elsaesser 2015

The numerical OpenFOAM results were compared to the results recorded by

Schmitt and Elsaesser 2015 [5] for model investigative purposes. However, as

was noted earlier, the OpenFOAM simulation uses a higher center of mass and

moment of inertia than that used in [5]. Additionally, the initial free surface

height in the OpenFOAM model used in this study is 0.01 meter higher than

that of the Schmitt and Elsaesser experiment. Due to these model discrepancies,

the following comparisons are made more for behavior and qualitative purposes

rather than precise numerical agreement.

The free surface elevations between the Schmitt and Elsaesser wave flume

experiment and the OpenFOAM simulation conducted are compared in Fig-

ure 5.15. The free surface elevation reported by Schmitt and Elsaesser was
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measured next to the hinge (on the y-axis) 1.0 meter from the wave tank cen-

terline (x-axis). Meanwhile, the OpenFOAM simulation’s free surface elevation

recorder was located on the centerline, -4.0 meters away from the OWSC in the

longitudinal direction.

Figure 5.15: Free surface elevation changes from initial height near the OWSC.

To better compare the wave amplitude and period, the free surface elevation

changes have also been plotted with the OpenFOAM data phase shifted to align

with the Schmitt and Elsaesser data in Figure 5.16.
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Figure 5.16: Free surface elevation changes from initial height near the OWSC
with phase-shifted OpenFOAM data.

Due to the differences in the location of the free surface elevation recorders

and the initial free surface elevations, it is unsurprising the free surface data

sets are not exact matches. While the wave periods match up reasonably well,

the free surface elevation begins to change much more quickly for the wave tank

experiment than for that seen in the OpenFOAM simulation. Additionally, the

wave amplitude is significantly higher for the OpenFOAM simulation, particu-

larly the maximum positive elevations. However, the amplitude discrepancies

could be due in part to the fact that the free surface recorded by OpenFOAM

is 4.0 meters away from the OWSC (and closer to the wavemaker) whereas the

wave tank data was recorded at the OWSC.

Schmitt and Elsaesser reported OWSC rotation values from their AMI sim-

ulation over the course of one wave period. These rotation values have been

compared to those found using the OpenFOAM overset approach in Figure

5.17.
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Figure 5.17: Rotation comparison of OpenFOAM overset vs. Schmitt &
Elsaesser AMI.

While the periods of the OWSC oscillations match up well, the Schmitt and

Elsaesser rotation data has smaller amplitudes than the overset OpenFOAM

simulation. The maximum and minimum rotation angle for the Schmitt &

Elsaesser data was between approximately +33.3 degrees and -31.2 degrees. This

compares to the maximum and minimum rotation angle values of approximately

+49 degrees and -44 degrees reached by the OpenFOAM overset simulation.

This difference is likely due in part to the differences in the center of mass and

initial free surface elevations between the Schmitt and Elsaesser OWSC model

and the OWSC model used in this study. Additionally, it should be noted that

Schmitt and Elsaesser did not report the precise time that the rotation data in

Figure 5.14 was collected; it was only stated that it was taken over one wave

period. Thus, the phases between the overset OpenFOAM data and the Schmitt

and Elsaesser data do not necessarily match.

The center of mass discrepancy was a significant point of concern for this

study. Using the center of mass value reported by Schmitt and Elsaesser [5] in
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an OpenFOAM simulation resulted in solution divergence issues. This was the

case for multiple models including OpenFOAM v2012 overset simulations and

an OpenFOAM v7 mesh-morphing with re-meshing simulation (as conducted

by Winter and Motley 2020). A variety of changes to the simulation settings

were looked into to avoid these divergence issues including, but not limited

to, adjusting the number of inner and outer PIMPLE correctors; reducing the

maximum allowable time step; changing the overset mesh dimensions, shape,

and cell sizes; using the unconditionally stable Newmark-beta solver for rigid

body motion; and adding in torque springs and dampers at the hinge. While

some of these changes delayed the instability issue, the instability would still

occur. To investigate this issue further, OpenFOAM overset simulations were

conducted using another flat-bed wave tank and OWSC detailed in [38]. The

waves and dimensions of the OWSC in [38] were very similar to that used in

[5] and used a higher center of mass value. OpenFOAM overset simulations ran

successfully for the case detailed in [38] without experiencing solution divergence

issues. In lieu of the availability of better matched experimental results, the

OWSC with the higher center of mass and moment of inertia detailed in [38]

was simulated in the wave tank detailed in [5] and the OpenFOAM CFD results

were compared to the results of [5] for qualitative and behavioral purposes. To

help validate the OpenFOAM overset results, another overset CFD model was

created in STAR-CCM+ for additional comparison.

Schmitt and Elsaesser conducted a wave flume scale model test of an OWSC

device with an accelerometer attached to the edge of the OWSC farthest from

the hinge. The tangential accelerations were reported in [5]. The tangential

accelerations for the OpenFOAM overset simulation was compared to the values

recorded by the accelerometer in Figure 5.18.
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Figure 5.18: Tangential acceleration comparison of OpenFOAM overset vs.
Schmitt & Elsaesser [5] accelerometer data.

The Schmitt and Elsaesser data is only available for approximately the first

15 seconds of the test. The OWSC in their experiment experiences acceleration

quicker than the OpenFOAM model, which likely has to do with the differences

between the OWSC’s center of mass and moment of inertia. For a magnitude

comparison, the OpenFOAM data was time shifted to match up with the ex-

perimental data in Figure 5.19.
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Figure 5.19: Amplitude and behavior comparison of time-shifted OpenFOAM
tangential acceleration data to Schmitt & Elsaesser [5] experiment.

To better understand when the changes in acceleration are occurring, the

tangential acceleration and OWSC rotation have been plotted together in Figure

5.20.

Figure 5.20: Comparison of tangential acceleration and rotation of the OWSC
in OpenFOAM.
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Based on Figure 5.20, the acceleration of the OWSC decreases as it ap-

proaches the maximum values of rotation in either direction. As the OWSC

reverses direction, the acceleration rises again, then decreases rapidly as the

OWSC approaches the vertical position. From Figures 5.18 and 5.19, it is clear

that these dips in acceleration near the rotation crests do not occur in the

experimental data. The troughs of the Schmitt and Elsaesser experiment do

experience a small dip in acceleration near the maximum negative acceleration

values, a phenomenon that was more pronounced in their numerical AMI data

as well [5]. It should be noted that the numerical tangential acceleration data

reported by Schmitt and Elsaesser was computed from their numerical rotation

data [5].

These dips seem to be tied to the amount of damping that has been intro-

duced to the system in order to maintain solution stability. The rigid body

motion has been damped with an accelerationDamping factor of 0.8. As dis-

cussed in Chapter 2, this factor reduces the computed acceleration on a body

proportionally to the body’s acceleration magnitude, and its implementation

can be seen in Equation 2.5. At higher values of acceleration, the damping

factor will decrease the computed acceleration values more significantly. Sim-

ilar acceleration dips near the maximum positive values of acceleration were

reported by Benites-Munoz et al. 2020 [38] for an OWSC CFD model with a

flat-bed wave flume (see Figure 5.21).
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Figure 5.21: Tangential acceleration results for Benites-Munoz CFD [38] and
the OpenFOAM simulation.

Note that in Figure 5.21, the OpenFOAM data has been time-shifted to

better match the phase of the Benites-Munoz data.

5.3 STAR-CCM+ 2021.3 Results

The STAR-CCM+ data was collected from plots generated from corresponding

monitors and reports, which were created prior to beginning the simulation.

Results were compared to the OpenFOAM simulation data. STAR-CCM+ data

was collected for up to 25 seconds of physical time.

Figure 5.22 compares the free surface elevations between STAR-CCM+ and

OpenFOAM at a position 4.0 meters in front of the OWSC. The initial free

surface elevation of the OpenFOAM simulation was 0.01 meters higher than the

STAR-CCM+ simulation.
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Figure 5.22: Free surface elevation changes from initial height near the OWSC
for STAR-CCM+ and OpenFOAM.

From Figure 5.22, the free surface elevations match up fairly well between the

two software packages in the first half of the STAR-CCM+ simulation. However,

the second half data deviate significantly from each other both in magnitude

and phase.

Figure 5.23 compares the OWSC rotation angles between the STAR-CCM+

and OpenFOAM simulations. Unlike the OpenFOAM data, STAR-CCM+ re-

ports rotation in the positive longitudinal direction as positive and rotation in

the negative longitudinal direction as negative. However, for a consistent com-

parison, the signs of the STAR-CCM+ data have been flipped in Figure 5.23.

Physically, the rotation results match up as in Figure 5.23, it is simply a matter

of post-processing convention.
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Figure 5.23: OWSC rotation comparison of OpenFOAM vs. STAR-CCM+.

The rotation angles for both simulations match up fairly well towards the

beginning of the simulation, with deviation increasing as time goes on. As far

as magnitude goes, the two simulations are in fair agreement; however, phases

vary. The maximum and minimum values of OWSC rotation reported by STAR-

CCM+ were +51 degrees and -55 degrees, respectively. This compares to the

reported maximum and minimum values of rotation by OpenFOAM of +49

degrees and -44 degrees. The differences between OWSC rotation results later

in the simulation are almost certainly primarily due to the differences in free

surface elevations shown in Figure 5.22. While the free surface elevation in the

STAR-CCM+ simulation maintained wave amplitudes around or above 0.02

meters, the OpenFOAM simulation saw amplitude decreases.

The simulation data comparisons for angular velocity and angular accelera-

tion are shown in Figure 5.24 and 5.25, respectively.
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Figure 5.24: OWSC angular velocity comparison of OpenFOAM vs.
STAR-CCM+.

Figure 5.25: OWSC angular acceleration comparison of OpenFOAM vs.
STAR-CCM+.

The STAR-CCM+ angular velocity and acceleration data display similar

behavior to the OpenFOAM data, experiencing the same acceleration dipping

near maximum values of rotation due to damping effects. One of the most
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significant differences between the OpenFOAM results and the STAR-CCM+

results is the sharp spikes in negative acceleration that occur after the OWSC

returns to the vertical position and begins rotating in the direction of the driving

waves.

Close-up comparisons of rotation, angular velocity, and angular acceleration

are shown for a full oscillation of the OWSC in Figures 5.26, 5.27, and 5.28.

Figure 5.26: Close-up of OWSC rotation comparison of OpenFOAM vs.
STAR-CCM+.
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Figure 5.27: Close-up of OWSC angular velocity comparison of OpenFOAM
vs. STAR-CCM+.

Figure 5.28: Close-up of OWSC angular acceleration comparison of
OpenFOAM vs. STAR-CCM+.

The proceeding figures illustrate that the same type of motion behavior is

observed in both the OpenFOAM and STAR-CCM+ CFDmodels. However, the

STAR-CCM+ rotation results are less sinusoidal than the OpenFOAM results
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and, in general, the STAR-CCM+ results experience more extreme versions of

the OpenFOAM behavior. Overall, the STAR-CCM+ model experiences larger

rotations and higher velocities and accelerations than the OpenFOAM model.

The differences are likely due in part to the difference in the initial free surface

elevations and the differences in relaxation and damping factors.

Unlike OpenFOAM, STAR-CCM+ does not apply acceleration relaxation

and damping factors to the rigid body motion. Instead, it applies under-

relaxation factors – which function much like OpenFOAM’s accelerationRelax-

ation factor – to velocity and pressure in the segregated flow solver to help

maintain solution stability. STAR-CCM+ takes added mass effects into account

in its momentum equation [10].

The forces and moments acting on the OWSC are compared for both software

packages in Figures 5.29 and 5.30.

Figure 5.29: Longitudinal force on the OWSC comparison between
STAR-CCM+ and OpenFOAM.

As with most of the data comparisons between STAR-CCM+ and Open-

FOAM in this Section, the longitudinal force data matches up fairly well near
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the first half of the STAR-CCM+ simulation, after which results begin to devi-

ate from each other. Later in the simulation, the dips in force noted in Section

5.1 are much more extreme for the STAR-CCM+ simulation than those ob-

served in the OpenFOAM simulation. Since these dips are likely due to wave

reflections, it follows that the magnitude of the dips would deviate between the

simulations. As seen in Figure 5.22, the free surface elevation results begin to

differ significantly between the STAR-CCM+ and OpenFOAM simulations for

later times in the simulation.

Figure 5.30: Moment on the OWSC comparison between STAR-CCM+ and
OpenFOAM.

In general, the STAR-CCM+ simulation reports smaller values of moment

on the OWSC than OpenFOAM. However, like with acceleration, the STAR-

CCM+ moment values experience larger spikes in negative moment. Unlike

most of the previous comparisons, the moment data does not match up well

over the first half of the STAR-CCM+ simulation.

To better compare the moment behavior, a close-up of the moment results

for STAR-CCM+ and OpenFOAM are shown in Figure 5.31. In addition, the
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STAR-CCM+ data has been time-shifted so that the rotation results for the

STAR-CCM+ and OpenFOAM simulations match crests.

Figure 5.31: Close-up comparison of moment behavior between STAR-CCM+
and OpenFOAM.

While the same type of behavior is observed, STAR-CCM+ reports more

extreme shifts in loading as the OWSC rotates.
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Chapter 6

CONCLUSIONS AND

FUTURE WORK

6.1 Conclusions

This study investigates the overset mesh approach in CFD modeling of an

OWSC device. Due to the high degree of rotation experienced by these de-

vices, typical mesh-morphing methods – the default method in most CFD soft-

ware packages – are untenable. While there are a variety of methods available

for dealing with large body motions, the overset method can be used without

requiring any code modifications or re-meshing schemes.

Two overset CFD simulations were developed using OpenFOAM and STAR-

CCM+. The results from the OpenFOAM simulation were compared to a wave

tank experiment conducted by Schmitt & Elsaesser 2015 [5] and the STAR-

CCM+ simulation equivalent. However, due to persistent numerical stability

issues encountered in OpenFOAM when using the low center of mass reported

by Schmitt & Elsaesser, the simplified OpenFOAM OWSC device was modeled
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after the OWSC reported by Benites-Munoz et al. 2020 [38], which had a higher

center of mass and mass moment of inertia. This was a puzzling phenomenon

since it was expected that a higher center of mass would decrease the stability

of a buoyant body, much like in ship stability.

The maximum and minimum OWSC rotation values for the overset Open-

FOAM and STAR-CCM+ simulations were approximately 1.4-1.5 and 1.5-1.8

times greater than the magnitude of the rotational values obtained by Schmitt

& Elsaesser’s AMI OpenFOAM simulation, with the STAR-CCM+ rotations

being the largest overall. The difference in the maximum rotation magnitudes

are likely due in part to the fact that the overset models both used OWSC center

of mass values that were approximately two times higher than the Schmitt &

Elsaesser model. However, rotational periods between the overset OpenFOAM

model and the Schmitt & Elsaesser model were closely matched. The maximum

and minimum OWSC rotation angles were reported for each model in Table 6.1.

Table 6.1: Maximum and minimum OWSC rotation angles.

The tangential acceleration values reported by the OWSC accelerometer in

the Schmitt & Elsaesser experiment did not experience the same decreases in

acceleration near the maximum and minimum values of OWSC rotation. These

dips in acceleration occur in both the overset OpenFOAM and STAR-CCM+

simulations and are likely a result of damping that has been introduced to the

system for increased solution stability.
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Acceleration relaxation factors were applied to the OpenFOAM rigid body

motion to take into account added mass effects not otherwise accounted for. A

brief investigation into the effects of what acceleration relaxation factor was nec-

essary for solution stability was conducted. The OpenFOAM overset simulation

experienced solution divergence at approximately 10.25 seconds of physical time

with an acceleration relaxation factor of 0.6, while the same simulation was run

with an acceleration relaxation factor of 0.4 without encountering instability

issues for 36 seconds of physical time.

In addition, based on the wave height and water depth at the wavemaker,

linear wave theory is not the most applicable model. Using second-order Stokes

wave theory would be more accurate and should be used in the future. [53]

This study has demonstrated that modeling an OWSC device remains a

challenging CFD problem with a wide range of factors that must be considered.

Key takeaways include the following:

• The overset mesh method is capable of simulating an OWSC rotating

about a bottom hinge without significant code modifications or mesh qual-

ity issues due to large deformations.

• Care must be taken when creating the overset and background meshes to

ensure cells sizes do not vary too significantly near the mesh interfaces.

This helps ensure interpolation errors between meshes are minimized.

• While the inverse distance overset interpolation method is less accurate

than more sophisticated methods, it is significantly faster, and accuracy

is comparable if the previous bullet point is considered.

• The center of mass location on the OWSC device played an unexpected

role in solution stability, where smaller distances between the center of

mass and the rotation axis resulted in solution divergence issues.
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• OpenFOAM accounts for added mass effects using an acceleration relax-

ation factor on the rigid body motion. This value must be low enough to

prevent numerical instabilities.

• Damping introduced to the OpenFOAM and STAR-CCM+model systems

resulted in acceleration magnitude dips near the largest values of OWSC

rotation that were not present in the experimental accelerometer data.

• While the OpenFOAM and STAR-CCM+ overset simulation data gener-

ally matched well in terms of behavior and magnitude near the beginning

of the simulation, results began to differ more substantially later in the

simulation when more complex phenomena such as wave reflections and

increased turbulence effects are present.

• Additionally, differences between OpenFOAM and STAR-CCM+ results

may be due to differences in how the free-surface is tracked (i.e. inter-

face capturing methods), differences between surface tension models, and

differences between wave absorption models.

6.2 Future Work

The results presented herein demonstrate that the overset mesh method is a

promising CFD method for modeling OWSC devices and other WECs which

experience high values of rotation. Possible extensions of this research would be

to conduct a parametric study on the effects of the acceleration relaxation factor

on an OpenFOAM overset simulation to determine by how much the solution

is influence by this factor. Additionally, a parametric study on the acceleration

damping factor would be of interest to examine the influence of this factor of

the dips in acceleration observed in Figures 5.6, 5.19, and 5.28.
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If possible, it would be beneficial to conduct another wave flume experiment

where more experimental data could be collected for CFD comparison purposes,

particularly for times greater than 14 seconds of running the wavemaker. Testing

simplified OWSC devices with differing center of mass locations would be of

interest as well.

The next major step in this research would be to introduce elastic deforma-

tions to the OWSC to determine the effects on body motion and the OWSC

loading (forces and moments). OpenFOAM is not currently capable of modeling

elastic deformations in multiphase flow, but STAR-CCM+ does support such

capabilities. Using an overset mesh method with body rotations and elastic

deformations would require using an overset mesh which was also capable of

mesh-morphing. While the background mesh would not need to deform, the

overset mesh would have to deform with the elastic body deformations. This

may be achieved using the DFBI module in STAR-CCM+ with DFBI Morphing

motion for the overset mesh and the Flexible DFBI Motion model [10]. So long

as the elastic deformations are not overly large, the overset mesh would not

encounter internal mesh quality issues.
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Appendix A 

OpenFOAM Scripts: Background Mesh 
 

 

A.1 0.org/alpha.water 
 
dimensions      [0 0 0 0 0 0 0]; 
 
internalField   uniform 0; 
 
boundaryField 
{ 
    #includeEtc "caseDicts/setConstraintTypes" 
 
    bottomWall 
    { 
        type            zeroGradient; 
    } 
    rightWall 
    { 
        type            zeroGradient; 
    } 
    leftWall 
    { 
        type            zeroGradient; 
    } 
 
    atmosphere 
    { 
        type            inletOutlet; 
        inletValue      $internalField; 
        value           $internalField; 
    } 
    inlet 
    { 
 type  waveAlpha; 
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 value  $internalField; 
    } 
    outlet 
    { 
        type            variableHeightFlowRate; 
 lowerBound 0; 
 upperBound 1; 
 value  $internalField; 
    } 
    flap 
    { 
 type   zeroGradient; 
    } 
 
    defaultFaces 
    { 
 type  empty; 
    } 
 
} 
 

A.2 0.org/k 
 
dimensions      [0 2 -2 0 0 0 0]; 
 
internalField   uniform 0.000001; 
 
boundaryField 
{ 
    #includeEtc "caseDicts/setConstraintTypes" 
 
    bottomWall 
    { 
        type            kqRWallFunction; 
        value           $internalField; 
    } 
    rightWall 
    { 
        type            kqRWallFunction; 



94 

 

        value           $internalField; 
    } 
    leftWall 
    { 
        type            kqRWallFunction; 
        value           $internalField; 
    } 
 
    atmosphere 
    { 
        type            inletOutlet; 
        inletValue      $internalField; 
        value           $internalField; 
    } 
    inlet 
    { 
 type  inletOutlet; //fixedValue; 
 inletValue $internalField; 
 value  $internalField;  // uniform 0.00375; 
    } 
 
    outlet 
    { 
 type  inletOutlet; 
 inletValue $internalField; 
 value  $internalField; 
    } 
    flap 
    { 
 type  kqRWallFunction; 
 value  $internalField; 
    } 
  
} 
 

A.3 0.orig/nut 
 
dimensions      [0 2 -1 0 0 0 0]; 
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internalField   uniform 0; //5e-07; 
 
boundaryField 
{ 
    //- Set patchGroups for constraint patches 
    #includeEtc "caseDicts/setConstraintTypes" 
 
    bottomWall 
    { 
        type            nutkWallFunction; 
        Cmu             0.09; 
        kappa           0.41; 
        E               9.8; 
        value           $internalField; 
    } 
    rightWall 
    { 
        type            nutkWallFunction; 
        Cmu             0.09; 
        kappa           0.41; 
        E               9.8; 
        value           $internalField; 
    } 
    leftWall 
    { 
        type            nutkWallFunction; 
        Cmu             0.09; 
        kappa           0.41; 
        E               9.8; 
        value           $internalField; 
    } 
 
    atmosphere 
    { 
        type            zeroGradient; 
    } 
    inlet 
    {  
 type  calculated; 
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 value  $internalField; 
    } 
 
    outlet 
    { 
 type  calculated; 
 value  $internalField; 
    } 
    flap 
    { 
 type  nutkWallFunction; 
 Ks  uniform 100e-6; 
 Cs  uniform 0.5; 
 value  $internalField; 
    } 
 
} 
 

A.4 0.orig/omega 
 
dimensions      [0 0 -1 0 0 0 0]; 
 
internalField   uniform 0.001; 
 
boundaryField 
{ 
    //- Set patchGroups for constraint patches 
    #includeEtc "caseDicts/setConstraintTypes" 
 
    inlet 
    { 
        type            inletOutlet; 
 inletValue $internalField; 
        value           $internalField; 
    } 
 
    outlet 
    { 
       type            inletOutlet; 
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       inletValue      $internalField; 
       value           $internalField; 
    } 
 
    atmosphere 
    { 
        type            inletOutlet; 
        inletValue      $internalField; 
        value           $internalField; 
    } 
 
    flap 
    { 
        type            omegaWallFunction; 
        value           $internalField; 
    } 
 
    rightWall 
    { 
 type  omegaWallFunction; 
 value  $internalField; 
    } 
 
    leftWall 
    { 
        type            omegaWallFunction; 
        value           $internalField; 
    } 
 
    bottomWall 
    { 
        type            omegaWallFunction; 
        value           $internalField; 
    } 
 
} 
 

A.5 0.orig/p_rgh 
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dimensions      [1 -1 -2 0 0 0 0]; 
 
internalField   uniform 0; 
 
boundaryField 
{ 
    //- Set patchGroups for constraint patches 
    #includeEtc "caseDicts/setConstraintTypes" 
 
    oversetPatch 
    { 
 type overset; 
    } 
 
    bottomWall 
    { 
        type            fixedFluxPressure; 
        value           $internalField; 
    } 
    rightWall 
    { 
        type            fixedFluxPressure; 
        value           $internalField; 
    } 
    leftWall 
    { 
        type            fixedFluxPressure; 
        value           $internalField; 
    } 
 
    atmosphere 
    { 
        type            totalPressure; 
 U  U; 
 phi  phi; 
 rho  rho; 
 psi  none; 
 gamma  1; 
        p0         uniform 0; 
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 value  uniform 0; 
    } 
    inlet 
    { 
 type  fixedFluxPressure; 
 value  $internalField; 
    } 
 
    outlet 
    { 
 type  zeroGradient; 
    } 
    flap 
    { 
 //type   zeroGradient; 
 
 type  fixedFluxPressure; 
 value  $internalField; 
    } 
 
    overset 
    { 
 patchType overset; 
 type  fixedFluxPressure; 
    } 
 
} 
 

A.6 0.orig/pointDisplacement 
 
dimensions      [0 1 0 0 0 0 0]; 
 
internalField   uniform (0 0 0); 
 
boundaryField 
{ 
    //- Set patchGroups for constraint patches 
    #includeEtc "caseDicts/setConstraintTypes" 
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    oversetPatch 
    { 
 patchType overset; 
 type  zeroGradient; 
    } 
 
    sides 
    { 
 patchType overset; 
 type  zeroGradient; 
    } 
 
    bottomWall 
    { 
        type            fixedValue; 
        value           uniform (0 0 0); 
    } 
    rightWall 
    { 
        type            fixedValue; 
        value           uniform (0 0 0); 
    } 
    leftWall 
    { 
        type            fixedValue; 
        value           uniform (0 0 0); 
    } 
 
    atmosphere 
    { 
        type            fixedValue; 
        value           uniform (0 0 0); 
    } 
    inlet 
    { 
 type  fixedValue; 
 value  uniform (0 0 0); 
    } 
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    outlet 
    { 
 type  fixedValue; 
 value  uniform (0 0 0); 
    } 
    flap 
    { 
 type  calculated; 
    } 
 
} 
 

A.7 0.orig/U 
 
#include        "$FOAM_CASE/constant/waveProperties"; 
 
dimensions      [0 1 -1 0 0 0 0]; 
 
internalField   uniform (0 0 0); 
 
boundaryField 
{ 
    //- Set patchGroups for constraint patches 
    #includeEtc "caseDicts/setConstraintTypes" 
 
    inlet 
    { 
        type            waveVelocity; 
 value  $internalField; 
    } 
    outlet 
    { 
 type  inletOutlet; 
 inletValue $internalField; 
 value  $internalField; 
    } 
 
    atmosphere 
    { 
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        type            pressureInletOutletVelocity; 
        tangentialVelocity $internalField; 
        value           uniform (0 0 0); 
    } 
 
    bottomWall 
    { 
        type            noSlip; 
    } 
    rightWall 
    { 
        type            noSlip; 
    } 
    leftWall 
    { 
        type            noSlip; 
    } 
    flap 
    { 
 type  movingWallVelocity; 
 value  uniform (0 0 0); 
    } 
 
 
} 
 

A.8 0.orig/zoneID 
 
dimensions      [0 0 0 0 0 0 0]; 
 
internalField   uniform 0; 
 
boundaryField 
{ 
    #includeEtc "caseDicts/setConstraintTypes" 
 
    rightWall 
    { 
        type            zeroGradient; 
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    } 
 
    leftWall 
    { 
        type            zeroGradient; 
    } 
 
    bottomWall 
    { 
        type            zeroGradient; 
    } 
 
    atmosphere 
    { 
        type            zeroGradient; 
    } 
 
    flap 
    { 
 type  zeroGradient; 
    } 
 
    inlet 
    { 
 type  zeroGradient; 
    } 
 
    outlet 
    {  
 type  zeroGradient; 
    } 
 
} 
 

A.9 constant/dynamicMeshDict 
 
motionSolverLibs    (sixDoFRigidBodyMotion); 
 
dynamicFvMesh     dynamicOversetFvMesh; 
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solver            sixDoFRigidBodyMotion; 
 
sixDoFRigidBodyMotionCoeffs 
{ 
    patches         (flap); 
    innerDistance   2; 
    outerDistance   2.1; 
 
    centreOfMass    (0 0 0.12); 
 
    // Cuboid mass 
    mass            10.77;  
 
    // Cuboid moment of inertia about the centre of mass 
    momentOfInertia (1e10 0.1750 1e10); //From Benitese-Munoz Paper 
    //momentOfInertia (1e10 0.1161 1e10);  //From Schmitt & Elsaesser Paper 
 
    report          on; 
    accelerationRelaxation 0.4; 
    accelerationDamping 0.8; 
 
    solver 
    { 
        type Newmark; 
 gamma 0.5; 
 beta 0.25; 
    } 
 
    constraints 
    { 
         fixedPoint 
         { 
             sixDoFRigidBodyMotionConstraint point; 
             centreOfRotation (0 0 0); 
         } 
 
        fixedLine 
        { 
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            sixDoFRigidBodyMotionConstraint line; 
            centreOfRotation (0 0 0); 
            direction (0 1 0); 
        } 
 
        fixedAxis 
        { 
            sixDoFRigidBodyMotionConstraint axis; 
            axis (0 1 0); 
        } 
    } 
     
    restraints 
    { 
 torsionalspring 
 { 
  sixDoFRigidBodyMotionRestraint linearAxialAngularSpring; 
  axis (0 1 0); 
  referenceOrientation (1 0 0 0 1 0 0 0 1); 
  stiffness 5; 
  damping  0; 
 } 
    } 
 
} 
 

A.10 constant/g 
 
dimensions      [0 1 -2 0 0 0 0]; 
value           (0 0 -9.81); 
 

A.11 constant/hRef 
 
dimensions      [0 1 0 0 0 0 0]; 
value           0;    
 

A.12 constant/transportProperties 
 
phases (water air); 
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water 
{ 
    transportModel  Newtonian; 
    nu              1.09e-06; 
    rho             998.2; 
} 
 
air 
{ 
    transportModel  Newtonian; 
    nu              1.48e-05; 
    rho             1; 
} 
 
sigma           0.07; 
 

A.13 constant/turbulenceProperties 
 
simulationType  RAS; 
 
RAS 
{ 
    RASModel        kOmegaSST; 
 
    turbulence      on; 
 
    printCoeffs     on; 
} 
 

A.14 constant/waveProperties 
 
inlet 
{ 
    alpha  alpha.water; 
    waveModel  StokesI; 
    nPaddle  6; 
    waveHeight  0.05;  
    waveAngle  0; 
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    activeAbsorption yes; 
    rampTime  0; 
    wavePeriod  2.0625;  
    waveLength  4.782550298061209;  
} 
 

A.15 system/blockMeshDict 
 
// Pal Schmitt Channel 
 
convertToMeters 1; 
 
// Define some dimensions 
hinge_x 12.5525; 
hinge_z 0.476; 
L1 4.82; 
L2 1.3; 
L3 2.4; 
L4 3.7; 
L5 6.2; 
H1 0.691; //deepest depth 
H2 0.541; //middle depth 
H3 0.335; //shallow depth 
H4 0.30; //H4 0.24; //height to atmosphere boundary 
W 4.58; //flume width 
 
// Coordinates with origin at center of oswc 
WL #calc "$H1-$hinge_z";  //to waterline 
x1 #calc "-$hinge_x"; 
x2 #calc "$x1+$L1"; 
x3 #calc "$x2+$L2"; 
x4 #calc "$x3+$L3"; 
x5 #calc "$x4+$L4"; 
x6 #calc "$x5+$L5"; 
y1 #calc "-$W/2.0";  //right wall 
y2 #calc "$W/2.0";   //left wall 
z1 #calc "-$hinge_z"; //to bottom of flume 
z2 #calc "$WL-$H2";  //to step 1 
z3 #calc "$WL-$H3";  //to step 2 
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z4 #calc "$WL";      //waterline 
z5 #calc "$WL+$H4";  //to top of owsc 
 
vertices 
( 
   //inlet 
   ($x1 $y1 $z1) //0 
   ($x1 $y1 $z4) //1 
   ($x1 $y1 $z5) //2 
   ($x1 $y2 $z1) //3 
   ($x1 $y2 $z4) //4 
   ($x1 $y2 $z5) //5 
   //Start step 1 
   ($x2 $y1 $z1) //6 
   ($x2 $y1 $z4) //7 
   ($x2 $y1 $z5) //8 
   ($x2 $y2 $z1) //9 
   ($x2 $y2 $z4) //10 
   ($x2 $y2 $z5) //11 
   //End Step 1 
   ($x3 $y1 $z2) //12 
   ($x3 $y1 $z4) //13 
   ($x3 $y1 $z5) //14 
   ($x3 $y2 $z2) //15 
   ($x3 $y2 $z4) //16 
   ($x3 $y2 $z5) //17 
   //Start Step 2 
   ($x4 $y1 $z2) //18 
   ($x4 $y1 $z4) //19 
   ($x4 $y1 $z5) //20 
   ($x4 $y2 $z2) //21 
   ($x4 $y2 $z4) //22 
   ($x4 $y2 $z5) //23 
   //End Step 2 
   ($x5 $y1 $z3) //24 
   ($x5 $y1 $z4) //25 
   ($x5 $y1 $z5) //26 
   ($x5 $y2 $z3) //27 
   ($x5 $y2 $z4) //28 
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   ($x5 $y2 $z5) //29 
   //To OSWC 
   (0   $y1 $z3) //30 
   (0   $y1 $z4) //31 
   (0   $y1 $z5) //32 
   (0   $y2 $z3) //33 
   (0   $y2 $z4) //34 
   (0   $y2 $z5) //35 
   //outlet 
   ($x6 $y1 $z3) //36 //30 
   ($x6 $y1 $z4) //37  //31 
   ($x6 $y1 $z5) //38  //32 
   ($x6 $y2 $z3) //39 //33 
   ($x6 $y2 $z4) //40  //34 
   ($x6 $y2 $z5) //41  //35 
); 
 
blocks 
( 
    hex (0 6 9 3 1 7 10 4)        (200 200 50) simpleGrading (1 1 0.5) 
    hex (1 7 10 4 2 8 11 5)       (200 200 50) simpleGrading (1 1 1) 
    hex (6 12 15 9 7 13 16 10)    (60 200 50) simpleGrading (1 1 0.5) 
    hex (7 13 16 10 8 14 17 11)   (60 200 50) simpleGrading (1 1 1) 
    hex (12 18 21 15 13 19 22 16) (120 200 50) simpleGrading (1 1 0.5)  
    hex (13 19 22 16 14 20 23 17) (120 200 50) simpleGrading (1 1 1) 
    hex (18 24 27 21 19 25 28 22) (195 200 50) simpleGrading (0.5 1 0.5) 
    hex (19 25 28 22 20 26 29 23) (195 200 50) simpleGrading (0.5 1 1) 
    hex (24 30 33 27 25 31 34 28) (30 200 50) simpleGrading (1 1 0.5) // last flat sect to 
flap (wat) 
    hex (25 31 34 28 26 32 35 29) (30 200 50) simpleGrading (1 1 1) //last flat sect to flap 
(atm) 
    hex (30 36 39 33 31 37 40 34) (300 200 50) simpleGrading (3 1 0.5) //flap to outlet 
(wat) 
    hex (31 37 40 34 32 38 41 35) (300 200 50) simpleGrading (3 1 1) //flap to outlet (atm) 
); 
 
edges 
( 
); 
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boundary 
( 
    oversetPatch //dummy patch to trigger overset interpolation before any other bcs 
    { 
 type overset; 
 faces 
 (); 
     } 
 
    bottomWall 
    { 
        type wall; 
        faces 
        ( 
 //Bottom 
            (0 6 9 3) 
            (6 12 15 9) 
            (12 18 21 15) 
            (18 24 27 21) 
            (24 30 33 27) 
     (30 36 39 33) 
 ); 
    } 
    rightWall 
    { 
 type wall; 
 faces 
 ( 
 //right wall 
     (0 6 7 1) 
     (1 7 8 2) 
     (6 12 13 7) 
     (7 13 14 8) 
     (12 18 19 13) 
     (13 19 20 14) 
     (18 24 25 19) 
     (19 25 26 20) 
     (24 30 31 25) 
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     (25 31 32 26) 
     (30 36 37 31) 
     (31 37 38 32) 
 ); 
     } 
     leftWall 
     { 
 type wall; 
 faces 
 ( 
 //left wall 
     (3 4 10 9) 
     (4 5 11 10) 
     (9 10 16 15) 
     (10 11 17 16) 
     (15 16 22 21) 
     (16 17 23 22) 
     (21 22 28 27) 
     (22 23 29 28) 
     (27 28 34 33) 
     (28 29 35 34) 
     (33 34 40 39) 
     (34 35 41 40) 
        ); 
    } 
    atmosphere 
    { 
        type patch; 
        faces 
        ( 
            (2 8 11 5) 
     (8 14 17 11) 
     (14 20 23 17) 
     (20 26 29 23) 
     (26 32 35 29) 
     (32 38 41 35) 
        ); 
    } 
    inlet 
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    { 
     type patch; 
 faces 
 ( 
     (0 1 4 3) 
     (1 2 5 4) 
 ); 
    } 
    outlet 
    { 
     type patch; 
 faces 
 ( 
     (36 39 40 37) 
     (37 40 41 38) 
     //(30 33 34 31) 
     //(31 34 35 32) 
 ); 
    } 
); 
 
mergePatchPairs 
( 
); 
 

A.16 system/controlDict 
 
libs  (overset fvMotionSolvers); 
 
application     overInterDyMFoam; 
 
startFrom       latestTime; 
 
startTime       0; 
 
stopAt          endTime; 
 
endTime         60; 
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deltaT          0.00001; 
 
writeControl    adjustable; 
 
writeInterval   0.05; 
 
purgeWrite      6; 
 
writeFormat     ascii; 
 
writePrecision  6; 
 
writeCompression off; 
 
timeFormat      general; 
 
timePrecision   6; 
 
runTimeModifiable yes; 
 
adjustTimeStep  yes; 
 
DebugSwitches 
{ 
  level 2; 
  lduMatrix 2; 
} 
 
maxCo           10;  
maxAlphaCo      5;  
maxDeltaT       0.001; 
 
libs ( 
 waveModels 
 overset 
 sixDoFRigidBodyMotion 
 fvMotionSolvers); 
 
functions 
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{ 
 
      interfaceHeight1 
      { 
   type  interfaceHeight; 
   libs  (fieldFunctionObjects); 
 
   locations ((-12.1 0 0.01) (-6 0 0.01) (-4 0 0.01) (4 0 0.01)); 
    
   alpha  alpha.water; 
   liquid true; 
 
   writePrecision 8; 
   writeToFile  true; 
   useUserTime  true; 
 
   writeControl        timeStep;//adjustable; 
   writeInterval   1; 
   executeControl      timeStep; //adjustable; 
   executeInterval  1; 
 
      } 
 
 
    probes 
    { 
        type            probes; 
        libs            (sampling); 
 
        // Name of the directory for probe data 
        name            probes; 
 
        // Write at same frequency as fields 
        writeControl    timeStep; 
        writeInterval   1; 
 
        // Fields to be probed 
        fields          (p U); 
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        // Optional: interpolation scheme to use (default is cell) 
        interpolationScheme cell; 
 
        probeLocations 
        ( 
            (-12  0 0.1) 
     (4  0 0.1) 
     (-1   0 0.1) 
        ); 
    } 
 
    alphaVol 
    { 
        libs            (utilityFunctionObjects); 
        type            coded; 
        name            alphaVolume; 
        writeControl    timeStep; 
        writeInterval   10; 
 
        codeWrite 
        #{ 
 
            const volScalarField& alpha = 
                mesh().lookupObject<volScalarField>("alpha.water"); 
 
            Info<< "Alpha volume = " << alpha.weightedAverage(mesh().Vsc()) 
                << endl; 
        #}; 
    } 
 
    forces 
    { 
 type  forces; 
 libs  (forces); 
 writeControl timeStep; 
 timeInterval 1; 
 log  yes; 
 patches  ("flap"); 
 rho  rhoInf; 
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 rhoInf  1; 
 CofR  (0 0 0); 
 pitchAxis (0 1 0); 
    } 
 
    surfaces 
    { 
 type  surfaces; 
 libs  (sampling); 
 writeControl writeTime; 
 surfaceFormat vtk; 
 fields  (p p_rgh U alpha.water); 
 
 surfaces 
 { 
     flap 
     { 
  type  patch; 
  patches  ("flap"); 
  interpolate true; 
  surfaceFormat vtk; 
     } 
 } 
     } 
 
} 
 

A.17 system/decompParDict_run 
 
numberOfSubdomains   40; 
 
method          scotch; 
 
simpleCoeffs 
{ 
    n               (4 3 1); 
    delta           0.001; 
} 
 



117 

 

hierarchicalCoeffs 
{ 
    n               (2 2 1); 
    delta           0.001; 
    order           xyz; 
} 
 
manualCoeffs 
{ 
    dataFile        ""; 
} 
 
distributed     no; 
 
roots           ( ); 
 
 

A.18 system/fvSchemes 
 
ddtSchemes 
{ 
    default         Euler; 
} 
 
gradSchemes 
{ 
    default         Gauss linear; 
    limitedGrad     cellLimited Gauss linear 1; 
} 
 
divSchemes 
{ 
    div(rhoPhi,U)  Gauss linearUpwind grad(U); 
    div(phi,alpha)  Gauss vanLeer; 
    div(phirb,alpha) Gauss linear; 
    div(phi,k)      Gauss linearUpwind limitedGrad; 
    div(phi,omega) Gauss linearUpwind limitedGrad; 
    div(((rho*nuEff)*dev2(T(grad(U))))) Gauss linear; 
} 
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laplacianSchemes 
{ 
    default         Gauss linear corrected; 
} 
 
interpolationSchemes 
{ 
    default         linear; 
} 
 
snGradSchemes 
{ 
    default         corrected; 
} 
 
oversetInterpolation 
{ 
    method     inverseDistance; //leastSquares; //cellVolumeWeight; 
} 
 
oversetInterpolationSuppressed 
{ 
    grad(p_rgh) 
    surfaceIntegrate(phiHbyA); 
} 
 
wallDist 
{ 
    method meshWave; 
} 
 

A.19 system/fvSolution 
 
solvers 
{ 
    "cellDisplacement.*" 
    { 
 solver  PCG; 
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 preconditioner DIC; 
 
 tolerance 1e-06; 
 relTol  0; 
 maxIter  100; 
    } 
 
    "alpha.water.*" 
    { 
        nAlphaCorr      3; 
        nAlphaSubCycles 2; 
        cAlpha          1; 
 icAlpha  0; 
 
        MULESCorr       yes; 
        nLimiterIter    15; 
        alphaApplyPrevCorr  yes; 
 
        solver          smoothSolver; 
        smoother        symGaussSeidel; 
        tolerance       1e-8; 
        relTol          0; 
 minIter  1; 
    } 
 
    "pcorr.*" 
    { 
        solver          PCG; 
 preconditioner DIC; 
 
        tolerance       1e-08; 
        relTol          0; 
    } 
 
    p_rgh 
    { 
        solver          PBiCGStab; 
 preconditioner DILU; 
        tolerance       5e-8; 
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        relTol          0.01; 
    } 
 
    p_rghFinal 
    { 
 $p_rgh 
 
        relTol          0; 
    } 
 
    "(U|k|omega)" 
    { 
        solver          smoothSolver; 
        smoother        symGaussSeidel; 
        tolerance       1e-5; 
        relTol          0.01; 
        nSweeps         1; 
 minIter  1; 
    } 
 
    "(U|k|omega)Final" 
    { 
        solver          smoothSolver; 
        smoother        symGaussSeidel; 
        tolerance       1e-8; 
        relTol          0; 
        nSweeps         1; 
 minIter  1; 
    } 
} 
 
PIMPLE 
{ 
    momentumPredictor   no; 
    nOuterCorrectors    2; 
    nCorrectors         3; 
    nNonOrthogonalCorrectors 1; 
    ddtCorr  yes; 
    correctPhi          no;  
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    moveMeshOuterCorrectors no; 
    turbOnFinalIterOnly no; 
    oversetAdjustPhi no; 
} 
 
relaxationFactors 
{ 
    equations 
    { 
        ".*" 1; 
    } 
} 
 
cache 
{ 
   grad(U); 
} 
 

A.20 system/setFieldsDict 
 
defaultFieldValues 
( 
    volScalarFieldValue alpha.water 0 
    volScalarFieldValue zoneID 123 
); 
 
regions 
( 
    boxToCell 
    { 
 box (-15 -5 -10) (10 5 0.225); 
        fieldValues  
 (  
     volScalarFieldValue alpha.water 1  
 ); 
    } 
 
    cellToCell 
    { 
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 set c0; 
 fieldValues 
 ( 
     volScalarFieldValue zoneID 0 
 ); 
    } 
    cellToCell 
    { 
 set c1; 
 fieldValues 
 ( 
     volScalarFieldValue zoneID 1 
 ); 
    } 
 
); 
 

A.21 system/setWavesDict 
 
alpha   alpha.water; 
 

A.22 system/topoSetDict 
 
actions 
( 
    { 
 name c0; 
 type cellSet; 
 action new; 
 source regionToCell; 
 insidePoints ((-4 0.1 0.3)); 
    } 
    { 
 name c1; 
 type cellSet; 
 action new; 
 source cellToCell; 
 set c0; 
    } 
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    { 
        name    c1; 
        type    cellSet; 
        action  invert; 
    } 
); 
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Appendix B 

OpenFOAM Scripts: Overset Mesh 
 

 

B.1 system/blockMeshDict 
 
scale 1; 
 
patch (sides); 
 
radius      0.255;   
radiusNeg  -0.255;  
box         0.085;  
boxNeg     -0.085;  
zMax        0.6;  
zMin        -0.6;  
 
nR          30; 
nZ          30; 
 
 
zBox  0.305;  
zBoxNeg  -0.02;  
radz  0.36; 
radzNeg  -0.1; 
yMax  0.6; 
yMin  -0.6; 
 
nY  60; 
 
cylrad  0.1625; 
ncylrad  -0.1625; 
 
geometry 
{ 
     cylinder 
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     { 
        type cylinder; 
 point1   (0 -1 0.0625); 
 point2   (0 1 0.0625); 
        radius     $cylrad;  
 
     } 
}; 
 
 
 
vertices 
( 
 
    (-0.15  $yMin  0.44) 
    (0.15   $yMin  0.44) 
    (-0.15  $yMin  0.0) 
    (0.15   $yMin  0.0) 
 
    (-0.15  $yMax  0.44) 
    (0.15   $yMax  0.44) 
    (-0.15  $yMax  0.0) 
    (0.15   $yMax  0.0) 
  
    project (-0.15  $yMin -0.1) (cylinder) 
    project (0.15   $yMin -0.1) (cylinder) 
 
    project (-0.15  $yMax -0.1) (cylinder) 
    project (0.15   $yMax -0.1) (cylinder) 
 
 
 
 
); 
 
blocks 
( 
 
    hex (0 1 3 2 4 5 7 6) (50 62 120) simpleGrading ( 1 1 1 ) 
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    hex (2 3 9 8 6 7 11 10) (50 12 120) simpleGrading (1 ( (40 60 1) (60 40 1.5) ) 1) 
 
); 
 
edges 
( 
   
    project  8  9 (cylinder) 
    project  10  11 (cylinder) 
    project  2  8   (cylinder) 
    project  3  9   (cylinder) 
    project  6  10  (cylinder) 
    project  7  11  (cylinder) 
); 
 
boundary 
( 
    sides //oversetFlap 
    { 
 type overset; 
 faces 
 ( 
   // End caps of cyl 
   (4 0 1 5) 
   (4 6 2 0) 
   (3 7 5 1) 
   (0 2 3 1) 
 
   (2 8 9 3) 
   (4 5 7 6) 
   (6 7 11 10) 
   (8 10 11 9) 
 
   (2 6 10 8) 
   (9 11 7 3) 
 
 
 ); 
    } 
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    flap 
    { 
 type wall; 
 faces (); 
    } 
 
); 
 
mergePatchPairs 
( 
); 
 

B.2 system/controlDict 
 
application     subsetMesh; 
 
startFrom       startTime; 
 
startTime       0; 
 
stopAt          endTime; 
 
endTime         30; 
 
deltaT          0.00001; 
 
writeControl    adjustable; 
 
writeInterval   0.1; 
 
purgeWrite      0; 
 
writeFormat     ascii; 
 
writePrecision  6; 
 
writeCompression off; 
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timeFormat      general; 
 
timePrecision   6; 
 
runTimeModifiable yes; 
 
adjustTimeStep  yes; 
 
DebugSwitches 
{ 
  level 2; 
} 
 
maxCo           10; 
maxAlphaCo      5; 
maxDeltaT       0.001; 
 

B.3 system/fvSchemes 
 
ddtSchemes 
{ 
    default         Euler; 
} 
 
gradSchemes 
{ 
    default         Gauss linear; 
    limitedGrad     cellLimited Gauss linear 1; 
} 
 
divSchemes 
{ 
    div(rhoPhi,U)  Gauss linearUpwind grad(U); 
    div(phi,alpha)  Gauss vanLeer; 
    div(phirb,alpha) Gauss linear; 
    div(phi,k)      Gauss linearUpwind limitedGrad; 
    div(phi,omega) Gauss linearUpwind limitedGrad; 
    div(((rho*nuEff)*dev2(T(grad(U))))) Gauss linear; 
} 
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laplacianSchemes 
{ 
    default         Gauss linear corrected; 
} 
 
interpolationSchemes 
{ 
    default         linear; 
} 
 
snGradSchemes 
{ 
    default         corrected; 
} 
 
 
wallDist 
{ 
    method meshWave; 
} 
 
fluxRequired 
{ 
    default no; 
    p_rgh; 
    pcorr; 
    alpha.water; 
} 
 

B.4 system/fvSolution 
 
solvers 
{ 
    "alpha.water.*" 
    { 
        nAlphaCorr      1; 
        nAlphaSubCycles 1; 
        cAlpha          1; 
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 icAlpha  0; 
 
        MULESCorr       yes; 
        nLimiterIter    15; 
        alphaApplyPrevCorr  yes; 
 
        solver          smoothSolver; 
        smoother        symGaussSeidel; 
        tolerance       1e-8; 
        relTol          0; 
 minIter  1; 
    } 
 
    "pcorr.*" 
    { 
        solver          PCG; 
 
 preconditioner 
 { 
     preconditioner GAMG; 
     tolerance       1e-5; 
            relTol          0; 
            smoother        DICGaussSeidel; 
            nPreSweeps      0; 
            nPostSweeps     2; 
            nFinestSweeps   2; 
            cacheAgglomeration false; 
            nCellsInCoarsestLevel 10; 
            agglomerator    faceAreaPair; 
            mergeLevels     1; 
 } 
 
        tolerance       1e-05; 
        relTol          0; 
 maxIter  100; 
    } 
 
    p_rgh 
    { 
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        solver          GAMG; 
        tolerance       5e-8; 
        relTol          0.01; 
        smoother        DIC; 
 nPreSweeps      0; 
        nPostSweeps     2; 
        nFinestSweeps   2; 
        cacheAgglomeration true; 
        nCellsInCoarsestLevel 10; 
        agglomerator    faceAreaPair; 
        mergeLevels     1; 
 
    } 
 
    p_rghFinal 
    { 
 solver          PCG; 
        preconditioner 
        { 
            preconditioner  GAMG; 
            tolerance       1e-8; 
            relTol          0; 
            nVcycles        2; 
            smoother        DICGaussSeidel; 
            nPreSweeps      2; 
            nPostSweeps     2; 
            nFinestSweeps   2; 
            cacheAgglomeration true; 
            nCellsInCoarsestLevel 10; 
            agglomerator    faceAreaPair; 
            mergeLevels     1; 
 } 
  
 tolerance       1e-8; 
        relTol          0; 
        maxIter         20; 
 
    } 
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    "(U|k|omega)" 
    { 
        solver          smoothSolver; 
        smoother        symGaussSeidel; 
        tolerance       1e-5; 
        relTol          0.01; 
        nSweeps         1; 
 minIter  1; 
    } 
 
    "(U|k|omega)Final" 
    { 
        solver          smoothSolver; 
        smoother        symGaussSeidel; 
        tolerance       1e-8; 
        relTol          0; 
        nSweeps         1; 
 minIter  1; 
    } 
} 
 
PIMPLE 
{ 
    momentumPredictor   no; 
    nOuterCorrectors    3; 
    nCorrectors         2; 
    nNonOrthogonalCorrectors 0; 
    correctPhi          yes; 
    moveMeshOuterCorrectors yes; 
    turbOnFinalIterOnly no; 
} 
 
relaxationFactors 
{ 
    fields 
    {  
    } 
    equations 
    { 
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        ".*" 1; 
    } 
} 
 

B.5 system/topoSetDict 
 
actions 
( 
    { 
 name c0; 
 type cellSet; 
 action new; 
 source boxToCell; 
 box (-0.05 -0.325 0) (0.05 0.325 0.34); 
    } 
 
    { 
        name    c0; 
        type    cellSet; 
        action  invert; 
    } 
 
); 
 
 


