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Abstract: Coastal communities face unique challenges in maintaining continuous service
from critical infrastructure. This research advances capabilities for evaluating the impact
of using wave energy to desalinate water on the resilience of coastal communities. The
study focuses on the feasibility of using wave energy conversion to provide drinking
water to communities in need and applying resilience metrics to quantify its impact on the
community. To assess the feasibility of wave-powered desalination, this research couples the
open-source software Wave Energy Converter SIMulator (WEC-Sim) and Water Network
Tool for Resilience (WNTR). This research explores variations in both the wave resource
(location, seasonality, and duration) and the ability to maintain drinking water service
during a disruption scenario by applying the simulation framework to three case studies,
which are based on communities in Puerto Rico. The simulation framework provides a
contextualized assessment of the ability of wave-powered desalination to improve the
resilience of coastal communities, which can serve as a methodology for future studies
seeking the integration of wave-powered desalination with water distribution systems.

Keywords: wave energy; water distribution systems; desalination; remote coastal
communities; WEC-Sim; WNTR

1. Introduction
In 2019, the Department of Energy (DOE) Water Power Technologies Office launched

the Powering the Blue Economy (PBE) initiative, outlining applications for marine energy
to serve human needs, mitigate climate change, and stimulate economic growth [1]. Wave
energy emerged as a promising method in achieving PBE goals, as well as meeting the
pledge of carbon neutrality by 2050 [2]. Compared to other renewable sources, wave
energy converters (WECs) are operable 90% of the time, whereas wind and solar systems
produce power 20 to 30% of the time [3]. However, wave energy is an emerging field
with high capital costs and levelized cost of energy, thus making wave energy projects
economically challenging. In alignment with PBE goals, using wave energy to desalinate
water has been explored as a potential application with economic viability. The costs of
wave energy conversion can vary significantly based on location, type, and components in
terms of the installation, operations, and maintenance costs [4], but the ability to produce
water directly without conversion to electricity can be economically advantageous. Wave-
powered desalination can potentially reduce the cost of water as the levelized cost of water
of desalinated water is comparable to market prices [5].
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Infrastructure for water distribution and electricity production are critical for daily
life, but coastal communities, and especially remote island communities, often face scarcity
of both. Furthermore, energy and water are fundamentally interconnected. Power is
required to run pumps that distribute water throughout communities, and likewise, water
is often required to produce electricity [6]. In addition, as technology and economies
advance, electricity demands increase concurrently. This puts added strain on already
limited water supplies to meet the demand [7]. Reverse Osmosis (RO) desalination is
more energy efficient than traditional thermal desalination systems and is, therefore, used
more commonly [8]. However, RO desalination requires pressure to feed saltwater through
the RO membranes, often requiring a large amount of energy. In prior research, Yu and
Jenne [8] demonstrated that wave energy has the ability to generate sufficient pressure to
run an RO system and generate freshwater permeate, without the need for electrical power.
This is especially interesting from a resilience point of view because it largely decouples
water distribution and electricity production.

According to the National Oceanic and Atmospheric Administration, about 40 percent
of the global population resides in coastal counties [9], and wave energy provides a renew-
able resource that is collocated with population centers. This is beneficial for islands with
limited space and proximity to high-density wave fields. Due to its collocation, efficiency
losses from transmitting energy and water across long distances can also be minimized.
One of the main goals for the PBE initiative is to improve access and increase the resilience
of energy resources and clean water for remote coastal communities [1]. Island communi-
ties face limited electrical grid connection and water scarcity and often rely on imported
fossil fuels to meet their needs, thus causing the cost of water and electricity to be higher.
Additionally, their susceptibility to natural disasters and geographic isolation increases the
need for robust and resilient infrastructure. Furthermore, climate change poses a large risk
to these communities as sea level rise, droughts, and flooding impact the already limited
water supplies [10,11].

The objective of this paper is to establish a framework for evaluating the impact of
wave-powered desalination on the ability to provide drinking water to coastal communities.
The following sections describe the simulation framework and the results of applying it to
three case studies, which are based on communities in Puerto Rico.

2. Simulation Framework
The feasibility of using wave energy to desalinate water and provide water to commu-

nities was assessed by coupling the Wave Energy Converter SIMulator (WEC-Sim) [12,13]
and the Water Network Tool for Resilience (WNTR) [14]. This simulation framework was
used to explore scenarios that varied the size of the wave farm, its location, and season-
ality. The simulations assume existing power generation is readily available, but water
supplies are limited, and a wave-powered desalination plant is used to deliver water to
the community.

The feasibility study evaluated a desalination plant powered by wave farms of one
to five WECs. WEC-Sim was used to simulate the dynamics and performance of the
wave energy converter(s) and included a model of the RO desalination plant, building
upon prior work by Yu and Jenne [8]. WNTR was used to simulate the hydraulics of the
water distribution system, which can include disaster scenarios that affect supply, demand,
and component failure. WNTR has analyzed the resilience of drinking water utilities
across the U.S., including earthquake resilience in California [14], hurricane resilience in
the U.S. Virgin Islands [15], source water vulnerability in New York [16], and water service
disruptions at several military installations. The results of the analysis help prioritize
investments that reduce water service disruptions. In this analysis, metrics were also
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defined to evaluate the impact of wave-powered desalination on the resilience of coastal
communities. These resilience metrics are used to assess how wave-powered desalination
affects response to disaster scenarios, like disruption of service due to natural disasters (e.g.,
hurricanes). Survival of WECs to extreme events is a challenge that has garnered a lot of
attention from WEC developers with various analysis methods and survival strategies [17].
The WECs proposed here could be designed to survive necessary conditions or designed
to be deployed following the event. This simulation framework was then applied to
communities in Puerto Rico as a case study due to the importance of restoring services to
Puerto Rico after a natural disaster, but the modeling approach can be applied to other
locations in the future. The following sections describe the methods used in developing the
coupled WEC-Sim and WNTR framework.

2.1. Wave-Powered Desalination Plant

WEC-Sim was used in this study to model the wave-powered desalination plant. In
WEC-Sim, WECs are simulated by specifying the device geometry, joints and constraints,
power take-off system components, and mooring system, and they can also include control
algorithms. WEC-Sim models are often used to simulate device performance and can be
used to improve upon existing designs.

A single WEC wave-powered desalination plant, consisting of an oscillating surge
wave energy converter (OSWEC) coupled with an RO desalination plant, was originally
developed and validated by Yu and Jenne in 2018 [8]. Yu and Jenne’s OSWEC RO model
was developed for the six Wave Energy Prize operational sea states, which are much more
energetic than the available resources in Puerto Rico [18]. Prior to applying the OSWEC
model to the Puerto Rico wave resource, the authors confirmed that they were able to
reproduce the results previously validated by Yu and Jenne [8]. The model was then rerun
using a wave resource based on the Puerto Rico wave environment. The results were that
the single OSWEC RO model produced significantly less water for the Puerto Rico wave
resource. To produce a comparable amount of water in Puerto Rico, the number of OSWEC
devices was increased, and wave farms of one to five WECs were evaluated. The bound-
ary element method (BEM) solver WAMIT [19] was used to calculate the hydrodynamic
coefficients for each of the wave farm configurations, a necessary pre-processing step for
WEC-Sim. WEC-Sim models were then developed for wave farms consisting of one to five
OSWECs, each of which included the RO desalination plant model. Figure 1 shows the
WEC-Sim model of the wave-powered desalination plant for a wave farm of five WECs.

First, each wave farm configuration was run for a 1 h simulation using a Pier-
son–Moskowitz spectrum with a significant wave height (Hs) of 0.75 m and peak period
(Tp) of 5 s [18], waves representative of the Puerto Rico wave resource. These 1 h simula-
tions were used to ensure the WEC-Sim models were stable and to provide a preliminary
estimate of the amount of desalinated water, i.e., permeate, produced for each wave farm
configuration. For reference, the 1 h simulation of the single WEC took about twenty
minutes to run (faster than real-time), whereas the 1 h simulation of five WECs took about
sixty minutes to run (about real time) on a standard PC. The results from these preliminary
1 h simulations are shown in Table 1.

These 1 h simulations were an important first step to establish the stability of the
baseline wave-powered desalination plant model in WEC-Sim. Since they could be run
relatively quickly, they were also used to establish the simulation framework and develop
resilience metrics. Each of the wave farm configurations was then run for a 24 h simulation
using wave data measured by the National Data Buoy Center (NDBC) [20]. The WEC-Sim
models for each of the wave farm configurations were run using 24 h of wave data to
simulate a full day. The 24 h simulation of the single WEC took about eight hours to
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run, whereas the 24 h simulation of five WECs took about 24 h to run. The permeate from
WEC-Sim for each hour was then used as the input for the WNTR water distribution system
model, as described below. Due to the computation cost of running these 24 h simulations,
Sandia’s high-performance computing (HPC) resources were used for the WEC-Sim runs
to reduce the runtime.

Figure 1. WEC-Sim model of a wave-powered desalination plant for the five OSWEC farms:
(Top Left) Wave resource; (Top Middle) WEC-Sim visualization; (Top Right) Produced water;
(Bottom) WEC-Sim model of five WEC farms with an RO desalination plant.

Table 1. Summary of WEC-Sim results for 1 h simulations using a Pierson–Moskowitz spectrum with
Hs = 0.75 m and Tp = 5 s.

WEC Farm 1 WEC 2 WEC 3 WEC 4 WEC 5 WEC

Average permeate (m3/s) 0.0013 0.0066 0.0087 0.0112 0.0133

2.2. Water Distribution System

Drinking water utilities commonly use simulation and analysis tools to better un-
derstand system hydraulics and water quality under a range of normal and abnormal
conditions. A typical numerical model of a water distribution system includes the pipe
layout and characteristics, pump and valve operations, storage tanks, consumer demand,
and clean water supplied from water treatment facilities. The model allows the utility
to test out new modes of operations, which may provide improved performance under
various circumstances. In this study, WNTR was used to model the water distribution
system operated with the integration of desalinated water from a WEC farm.

The water distribution system model used in the simulation framework is based on
a simplified version of the Guayama, Puerto Rico water distribution system, shown in
Figure 2. This simplified model includes 16 junctions and represents the water system
demands and basic structural layout. This information was obtained from open-source
infrastructure data [21] and through collaboration with the Puerto Rico Aqueduct and Sewer
Authority (PRASA). It is assumed that the water distribution system serves 40,000 people
and that the water consumption rate is 100 gallons per person per day. This results in
4 million gallons per day (approximately 15,000 m3/day or 0.17 m3/s). Under normal
operating conditions, the main water treatment facility in Guayama can produce and
distribute water needs across the city.

This analysis considers a disruption scenario where the water treatment facility is com-
promised, and the utility could pull water from a secondary desalination water treatment
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plant that is located along the coast, i.e., the wave-powered desalination plant. The disrup-
tion limits flow from the existing water treatment plant to 50% of normal operation. The dis-
ruption is simulated over a 14 day duration. All WNTR simulations use pressure-dependent
simulation, with a required pressure of 21.1 m (30 psi) to meet the expected demand.

Figure 2. (Left) Guayama water distribution system and power grid data (Right) Simplified water
distribution system model with a main water treatment facility and secondary desalination facility,
storage, and pump.

The desalination plant is modeled in WNTR, using several components, including the
following: (1) A desalination water source, which uses the permeate production rate from
WEC-Sim; (2) A tank, which can store desalinated water that is not needed at the time of
production; (3) A pump to move desalinated water from sea level to customers. Currently,
because the water distribution model is run on an hourly time-step, the average hourly
permeate from WEC-Sim is used to model desalination water production. The hourly
permeate results from WEC-Sim are stored in a text file, which are used in the WNTR
simulations. The storage tank can hold up to 1 million gallons of water (approximately
3800 m3). This is equivalent to 25% of the daily water needs in Guayama. The pump at
the desalination plant has the capacity to pump 10% of the total community water needs
(0.017 m3/s in Guayama) to an elevation of 125 ft (38.1 m). This elevation is sufficient
to reach consumers that reside at elevations well below the traditional water treatment
facility (which resides at 360 ft above sea level). Power requirements for this pump are
approximately 6.5 kW. The power requirements for pumping across the rest of the water
distribution system are around 77 kW. These values assume a pump efficiency of 70%.
Under conditions where flow from the main water treatment plant is compromised, water
from the storage tank at the desalination plant can be pumped to supplement community
water needs. The WNTR simulations for this analysis run on a standard PC in a few
minutes. Analysis that includes a more detailed numerical model, shorter hydraulic time
steps, and additional scenarios can increase runtime significantly. For those cases, WNTR
can be run on HPC resources to reduce runtime.

2.3. Resilience Metrics

The coupled WEC-Sim and WNTR model of the wave-powered desalination plant and
water distribution system described above were used to run coupled analyses with varying
wave conditions and wave farm configurations. Results from the coupled analysis were
translated into resilience metrics that quantify the impact of wave-powered desalination on
the resilience of coastal communities. Each of these metrics provides insight into the benefit
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of wave-powered desalination on the community’s resilience. These resilience metrics were
based on results from WEC-Sim and WNTR. The resilience metrics from WEC-Sim were
based on prior work from Yu and Jenne, while those from WNTR are standard outputs
from WNTR [8,22]. A description of how each metric relates to community resilience is
defined in Table 2.

Table 2. Wave-powered desalination resilience metrics.

Resilience Metric Description

Average permeate (m3/s) Average volume of water produced by the
desalination plant

Water demand (%) Percent of community water needs produced by the
desalination plant

Average pressure (m) Average pressure in the water distribution system during
the disruption

Average WSA (%)
Average water service availability (WSA), which is defined
as the percentage of community’s expected water needs
that are met during the disruption

Pump power (kW) Power required to pump water produced by the
desalination plant during the disruption

These resilience metrics can be used to better understand the impact of wave-powered
desalination on resilience to disruption of water service due to natural disasters (e.g., hurri-
canes). While these metrics are reported as singular values or system averages, the percent
of permeate received and water service availability (WSA) can also be reported per water
network junction. Average permeate and water demand are determined based on WEC-
Sim outputs. Average permeate is the volume of water made available to the community
exclusively from wave-powered desalination, and the water demand is the percentage of
water made available to the community based on the community’s population and water
consumption rate. For water demand, the water consumption rate is assumed to be 100 gal-
lons/person/day. WNTR provides the resilience metrics for average water distribution
system pressure, WSA, and pump power. In the case of average water distribution system
pressure, adequate water pressure is required to meet community water needs, including
drinking water, industrial water use, and firefighting. The average WSA is defined as the
ratio of delivered demand to the expected demand. Pump power, as detailed in the water
distribution system section above, is the power necessary to transport water through the
distribution system and to the community. These metrics are computed using the disruption
scenario where water supplies are limited from the existing water treatment plant.

3. Puerto Rico
Puerto Rico was chosen as the site of interest for this feasibility study. Puerto Rico is

home to about 3.3 million residents, with its largest population density concentrated in the
northern part of the island in San Juan, Bayamon, and Carolina [23]. The main sources of
water in Puerto Rico are surface water and groundwater [24]. Moreover, 70% of the total
groundwater contribution is withdrawn from the North Coast Limestone aquifer system
and the South Coastal Alluvial Plain aquifer system, both of which have shown evidence
of overdraft [25]. This occurs when water is being withdrawn from aquifers at a faster rate
than it is being replenished. In addition, these aquifers are connected to the ocean, and as
water levels inside the reservoirs fall or if the sea level rises, there is an increased risk of
saltwater infiltrating the wells [26].
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Aquifers are recharged by rainfall or surface water sources, both of which are suscepti-
ble to climate change. Droughts are a huge threat to aquifer restoration, as frequent dry
seasons cause the water level to lower each year. The severity and duration of droughts
are intensified by climate change [27]. As a consequence of years of below-average rainfall,
one of the most extreme droughts in Puerto Rico occurred in 2015. Millions of people faced
water insecurity and suffered from the strictest water rationing in the history of Puerto
Rico [28]. The impacts of the drought were exacerbated by water levels in the South Coastal
Alluvial Plain aquifer system progressively declining over the past 20 years. Following the
extreme drought, the volume of groundwater had dropped to the lowest recorded level
at 31 feet below the surface. This was detrimental to the community and environment of
Salinas, which relied exclusively on the aquifer for water [29].

Puerto Rico is also susceptible to hurricanes, which have intensified due to climate
change [30]. Two years after the 2015 drought, Hurricane Maria made landfall in Puerto
Rico as a Category 4 storm and decimated the island. Five years later, Hurricane Fiona
further damaged the systems that had never fully recovered from Maria [31]. The damage
to the electric grid caused major disruptions in water service and blackouts across the
island, leaving some residents without electricity for close to a year [28].

Puerto Rico consumes more energy than it produces and relies on imported petroleum
products to meet its energy demand [32]. Because of a lack of energy diversification, poor
maintenance on the system, absence of necessary modernization, and natural disasters,
Puerto Rico passed the Puerto Rico Energy Public Policy Act (PREPPA) in 2019 to codify
the specifications for a reliable, resilient, and affordable energy system [31]. In addition,
Puerto Rico codified goals to completely phase out coal-fired energy production by 2028
with interim milestones, such as an energy system composed of 40% renewable sources by
2025 and 60% by 2040, with a call for 30% increase in energy efficiency that same year [31].
PREPPA also sets the precedent that LUMA Energy, the electric power company of Puerto
Rico, must obtain 100% of energy production from renewable sources by 2050 [31].

To lessen the burden on these resources, the diversification of water sources strength-
ens the resilience of these communities to the effects of climate change and natural disasters.
Seawater desalination has been designated as the main water supply in neighboring islands
such as St. Croix and St. Thomas [33]. Using wave energy to power a desalination plant not
only meets the goals for PBE and PREPPA but also has the ability to produce the pressure
required to push water through RO membranes, removing the need for additional power
production to generate permeate and its resulting strain on the electric grid [8].

3.1. Case Studies

The simulation framework is applied to three case study locations across Puerto Rico:
Guayama, San Juan, and Arecibo. The wave resource for each location is defined using
National Data Buoy Center (NDBC) wave data from the nearest buoy: the Ponce Buoy
(42085) for Guayama, San Juan Buoy (41053) for San Juan, and Arecibo Buoy (41121) for
Arecibo [20]. The Guayama and San Juan case studies use NDBC data from 2020. However,
data were not available for Arecibo (41121) in 2020, so 2022 data were used instead. While
each community has a unique water distribution system, this analysis uses the same
simplified Guayama water distribution network model for each case study. However,
each case study scales drinking water demands using 2020 census population data [34].
The storage tank that can hold up to 1 million gallons of water from the desalination plant
was not changed for each site. The three case study locations are listed in Table 3, and they
use NDBC wave data and the most recent census information for population sizes.
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Table 3. Case study locations, wave resource, population, and water consumption.

Case 1—Guayama Case 2—San Juan Case 3—Arecibo

NDBC Buoy Ponce (42085) San Juan (41053) Arecibo (41121)
Year 2020 2020 2022

Mean significant
wave height, Hs

(m)
0.91 1.36 1.25

Mean peak wave
period, Tp (s) 6.07 9.17 8.59

Population 40,000 342,000 90,000

Mean water
consumption rate,

m3/s
0.17 1.50 0.39

3.2. Wave Resource

The wave resources for Guayama, San Juan, and Arecibo were assessed using historical
data from 2020 and 2022, using the NDBC buoys listed in Table 3 [20]. Guayama is located
on the south shore of Puerto Rico, whereas San Juan and Arecibo are located on the north
shore. The south shore typically has a smaller wave resource than the north shore [18]. As a
result, it is expected that the same wave farm will produce more permeate in San Juan and
Arecibo than in Guayama. The variability of the wave resource for each location is shown
in Figure 3. For example, in January 2022, the mean wave heights were 0.87 m, 1.30 m,
and 1.27 m for Guayama, San Juan, and Puerto Rico, respectively. The corresponding wave
periods are 5.76 s, 10.78 s, and 10.72 s, respectively. In January 2022, the north shore had
larger wave heights and longer wave periods than the south shore, a trend that is also
present in the January 2020 data. This is noteworthy because the Guayama and San Juan
case studies were completed first using NDBC data from January 2020, and the Arecibo
case study was added later. Unfortunately, Arecibo NDBC 41121 did not have data for
January 2020, so the Arecibo case study was evaluated using data from 2022. While there is
variability in the resource from 2020 to 2022, Figure 3 shows that the mean wave resource is
similar. For example, Guayama’s January mean wave height was 0.88 m in 2020 and 0.87 m
in 2022, and its wave period was 6.24 s in 2020 and 5.76 s in 2022. San Juan’s resource
between 2020 and 2022 has more variability. San Juan’s January mean wave height was
1.68 m in 2020 and 1.30 m in 2022, and its wave period was 10.1 s in 2020 and 10.8 s in 2022.

Figure 3 also compares the mean wave height and period for the entire month to the
mean of the first day of that month. For example, Figure 3a shows the mean resource in
Guayama for the month of January in 2020 and 2022, compared to the mean resource for 1
January of each year. The mean wave height and period of the first day of each month are
included because each case study was evaluated for a 24 h period using NDBC data for the
first day of that month. For Guayama and San Juan, this 24 h period is from 1 January 2022.
For Arecibo, the 24 h period is from 1 January 2020.

Furthermore, the seasonality of the wave resource was explored for the Arecibo case
study. The 24 h periods for this seasonality assessment correspond to NDBC data from 1
January, 1 April, 1 July, and 1 October in 2020. Figure 3c,d show the mean wave period
and mean wave height for each month, compared to the first day of that same month.
The largest monthly mean wave height is 1.43 m in April 2022, and the smallest is 0.91 m in
October 2022. The mean monthly wave period also changes seasonally, with the longest
at 10.7 s in January 2022 and the shortest at 6.56 s in October 2022. Since wave energy is
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proportional to the square of wave height, it is expected for a wave farm located in Arecibo
to produce more permeate in April than in October, based on data from 2022.

(a) (b)

(c) (d)
Figure 3. Wave resource for Guayama, San Juan, and Arecibo: (a) Guayama wave height and period.
(b) San Juan wave height and period. (c) Arecibo wave height. (d) Arecibo wave period.

4. Results
This section discusses the case study results, which apply the simulation framework

to three different communities in Puerto Rico: Guayama, San Juan, and Arecibo. For each
location, normal operation of the water treatment plant provides the water distribution
system with an average pressure of 60 m and an average WSA of >99%. To evaluate the
benefit of an additional wave-powered desalination plant, the disruption scenario limits
the existing WTP to 50% of its normal flow rate. WEC-Sim results are based on 24 h
wave resource data from 1 January, and an additional seasonality analysis was run for
Arecibo. WNTR results are based on a 14 day simulation using water demand scaled to
each location’s population.

4.1. Guayama Case Study

The community selected for the first case study is Guayama, located on the south shore
of Puerto Rico. Guayama has a population of 40,000 and water use of 4 million gallons
per day (approximately 15,000 m3/day or 0.17 m3/s). Since the original water distribution
system model is based on Guayama, the model did not need to be re-scaled. The results
from the 24 h simulation based on a full day of NDBC Ponce (42085) buoy data from 1
January 2020 are shown in Table 4. Figure 4 shows the time series of the 24 h permeate
and 14 day WSA, based on simulation results. The results show that increasing the size
of the wave farm has a substantial impact on the amount of permeate produced and its
resulting WSA.

The WEC-Sim results in Table 4 show that a desalination plant powered by one WEC
can produce 4.6% of the Guayama’s daily water supply (i.e., water demand), two WECs can
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produce about 10%, and five WECs can produce 18.4%. While the single WEC produces a
decent volume of permeate, increasing the farm size substantially increases the volume of
permeate, where the permeate production by the five WEC farms is limited by the capacity
of the desalination plant. Due to the nonlinear nature of the system, the single WEC results
could not extrapolated to estimate the results of the larger arrays. Instead, each array
configuration was run independently. The permeate and corresponding water demands
more than double from the single WEC configuration to the two WEC farms. The permeate
outputs start with 0.0079 m3/s for one WEC and increase to 0.0173 m3/s for two WECs.
From there, the average permeate outputs steadily increase to 0.0312 m3/s for five WECs.

The WNTR results in Table 4 show that average pressure increases from 21.8 with
0 WECs to 27.1 m when all five WECs are used. Note that while the disruption scenario
decreases flow from the existing water treatment to 50%, the average WSA is 52% even when
no WECs are in use. This inconsistency is attributed to numerical error and fluctuations
in WSA over time. WSA increases from 52% to 68%, closely matching the 18% increase in
permeate water demand when all five WECs are in use. This means that all of the permeate
water is being used to meet water needs of the community. While the overall WSA can
be approximated from the WEC-Sim results, the spatial distribution of water service can
vary significantly. For example, the community needs to ensure continuous water service
at specific locations like hospitals. The pump power approaches 24 kW as the number of
WECs increases from one to five. This is related to the amount of time the pumps are on.
Higher rates of permeate fill the desalination tank faster, allowing the pump to pull water
into the water distribution system at a constant rate.

Table 4. Summary of results for Guayama case study.

Software Resilience Metric Number of WECs
None 1 2 3 4 5

WEC-Sim Average permeate (m3/s) 0 0.0079 0.0173 0.0232 0.0278 0.0312
Water demand (%) 0.0% 4.6% 10.2% 13.6% 16.4% 18.4%

WNTR Average pressure (m) 21.8 23.1 25.0 26.0 27.0 27.1
Average WSA (%) 52% 56% 62% 64% 68% 68%
Pump power (kW) 0.0 6.2 14.5 18.9 23.6 23.8

Figure 4. (Left) The 24 h time series of permeate from one to five WEC farms in Guayama. (Right) The
14 day time series of WSA, using the one to five WEC farms.

4.2. San Juan Case Study

Located on the north shore, which has a larger available wave resource, San Juan was
evaluated for the second case study. It also has a much greater population than Guayama,
and as a result, the water demand assumptions were scaled accordingly. The population of
San Juan is about 342,000 and the water consumption rate is kept at 100 gallons per person
per day [34]. As a result, the demand in San Juan is assumed to be 34.2 million gallons
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per day (about 130,000 m3/day or 1.50 m3/s), which is much higher than the demand in
Guayama. The results from the 24 h simulation based on a full day of NDBC San Juan
(41053) buoy data from 1 January 2020 are shown in Table 5. Figure 5 shows the time series
of the wave surface elevation and permeate for the five WEC farms over the 24 h period,
with each hour of analysis shown in a new color. These results show that the permeate
produced by the wave-powered desalination plant for the five WEC farms is limited by the
capacity of the desalination plant. To produce more permeate and not be capacity limited,
the desalination plant would need to be resized for the San Juan resource.

The San Juan desalination plant produces more permeate due to its larger wave
resource. The results follow a similar pattern as seen in the Guayama case study, where
the average permeate and percent water demand met almost double between one WEC
and two WEC arrays. For the five WEC farms, the average permeate is 0.0348 m3/s, which
corresponds to 2.3% of the community’s water demand.

The sizeable increase in population between Guayama and San Juan has a significant
impact on the percent of water demand that can be met with permeate. In Guayama,
one WEC produced 4.6% of the community’s water demand, compared to 0.9% by the
same configuration in San Juan. This trend progresses through each of the wave array
configurations, resulting in the five WEC arrays producing 18.4% of water demand in
Guayama, compared to 2.3% in San Juan. While the average permeate output in the San
Juan plant is greater, the percentage of water demand met is minimal due to the size of
the population.

These results carry over to simulations of the water distribution system. The WNTR
results show a minimal impact on water pressure and WSA. Low average water pressure
indicates that the compromised system is not capable of providing high pressure water for
firefighting. The pump power is similar to the Guayama case study, given the ability of the
desalination plant to quickly fill the holding tank.

Figure 5. The 24 h results for the five San Juan WEC farms in January: (Top) Wave surface elevation
from NDBC San Juan (41053) buoy data. (Bottom) Permeate from desalination plant.
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Table 5. Summary of results for San Juan case study.

Software Metric Number of WECs
None 1 2 3 4 5

WEC-Sim Average permeate (m3/s) 0 0.0134 0.0245 0.0288 0.0324 0.0348
Water demand (%) 0.0% 0.9% 1.6% 1.9% 2.2% 2.3%

WNTR Average pressure (m) 18.4 18.6 18.7 18.8 18.8 18.9
Average WSA (%) 51% 52% 53% 53% 53% 53%
Pump power (kW) 0.0 9.9 18.9 22.1 24.7 24.9

4.3. Arecibo Case Study

Arecibo was evaluated for the third case study due to its location on the north shore
with a larger wave resource and smaller population. Arecibo has a population of 90,000 peo-
ple, about twice the size of Guayama and substantially smaller than San Juan [34]. The water
demand was scaled assuming the same water consumption rate of 100 gallons per person
per day, resulting in a demand of 8.8 million gallons per day (about 33,000 m3/day or
0.39 m3/s). The results from the 24 h simulation based on a full day of NDBC Arecibo
(41121) buoy data from 1 January 2022 are shown in Table 6.

The WEC-Sim results show that the wave-powered desalination plant in Arecibo
meets 3.8% of the demand for a single WEC farm, 7.0% with two WECs, 8.4% with three
WECs, 9.2% with four WECs, and 9.7% of the water demand with a five WEC farm. The
permeate and WSA for Arecibo are the highest of the case studies. The average permeate
for a single WEC farm was 0.0146 m3/s, 0.0268 m3/s for two WECs, and 0.0375 m3/s for a
five WEC farm.

The WNTR results show that the corresponding WSA increased from 54% to 58% for
the single and two WEC farms and increased to 60% for the five WEC farms. As with the San
Juan case, average water pressure remains low, indicating that the system is compromised
and not capable of providing high pressure water for firefighting. Pump power is similar
to the other case study sites.

In addition to the 24 h simulation from 1 January 2022, seasonality is also assessed by
running the Arecibo cases for 1 April, 1 July, and 1 October 2022. These months correlate
to the meteorological seasons as defined by the American Meteorological Society [35].
The seasonality assessment results are shown in Figure 6. The Arecibo seasonality cases
were run for a single WEC and five WECs to establish the lower and upper bounds of the
analysis. As shown in Figure 3c,d, April is the month with the largest average wave height,
and October has the smallest. These months correspond to the largest and smallest average
permeate, respectively, for both the single and five WEC farms. Based on this analysis,
the maximum permeate of 0.0233 m3/s from the single WEC farm in April 2022 does not
exceed the minimum permeate of 0.0271 m3/s from the five WEC farms in October 2022.
The effect of the seasonal wave resource on the permeate production and water demand is
clear, with the largest permeate and highest percent water demand for both cases occurring
in April 2022, the month with the largest wave resource.

Table 6. Summary of results for Arecibo case study.

Software Metric Number of WECs
None 1 2 3 4 5

WEC-Sim Average permeate (m3/s) 0 0.0146 0.0268 0.0323 0.0355 0.0375
Water demand (%) 0.0% 3.8% 7.0% 8.4% 9.2% 9.7%

WNTR Average pressure (m) 20.4 21.2 21.9 22.2 22.2 22.3
Average WSA (%) 51% 54% 58% 59% 59% 60%
Pump power (kW) 0.0 11.0 20.9 24.5 24.7 25.0
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Figure 6. Average permeate and percent water demand delivered by the single WEC and five WEC
desalination plants across seasons.

5. Discussion
Integration of a secondary water source into a water distribution system model re-

quires the fine-tuning of modeling constraints. Water distribution systems are designed to
distribute treated water from a location where sufficient water supply, pumping, and pipe
diameter is available to meet the needs of the surrounding community. The addition of a
new water source within that system might not be optimal for the original design of the
water distribution system. One challenge of adding water from a desalination plant located
on the coast is that the water supply must be pressurized to transport the water to higher
elevations in the community. In cases where wave energy is producing a small amount of
permeate, the pump can only operate when water storage has reached a critical threshold
needed for pumping to ensure the pump has adequate flow. To model a secondary sup-
ply of treated water that requires pumping, careful consideration is needed to define the
pumping controls.

The case studies suggest that wave-powered desalination is a viable option for produc-
ing freshwater in coastal communities. Figure 7a shows the average permeate outputs for
all three locations from their respective 24 h simulations. Arecibo has the highest average
permeate, and Ponce has the lowest. This is expected because the wave resource off of the
south shore is less than that on the north shore, as described in the wave resource section.
San Juan has a slightly lower permeate than Arecibo but supplies the lowest percentage
of the population’s water demand, as seen in Figure 7b. Conversely, Guayama generates
the lowest permeate but contributes to the largest percent of the water demand. Trade-offs
between these factors should be considered when selecting the location of a wave-powered
desalination plant.

While the permeate outputs for Arecibo are the largest, the population is larger and
therefore, the percent demand demand met is lower than in Guayama. Deploying a wave-
powered desalination plant on the scale of one to five WECs in San Juan is not the most
effective, as the wave resource does not allow for adequate water production for a popula-
tion of its size. However, the communities of Guayama and Arecibo are less populated and
more remote than the capital city of San Juan. Furthermore, the permeate output could be
increased in San Juan by designing a larger wave-powered desalination plant.

Figure 7c–e compare the water pressure, WSA, and pump power across all three
case studies. The disruption scenario causes average system pressure to decline from a
normal operating condition of 60 m to approximately 20 m when the reservoir flow is cut
in half. Communities with larger populations, and therefore higher water needs, have a
harder time regaining water pressure even with the addition of permeate water. Using
higher capacity pumps, or changing the location where the permeate ties into the water
distribution system, could improve system pressure. WSA, the fraction of water that people
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receive compared to the expected water demand, is reduced to approximately 50% when
no permeate is available during the disruption. WSA improvements are related to the
increase in permeate from the RO units. Guayama sees the greatest increase, from just over
50% with no desalination to 68% with five ROs. This increase of 18% is directly related to
the increase in permeate water demand. Pump power at the desalination plant approaches
25 kW for all three sites as the number of PR units increases from one to five. This is
related to the amount of time the pumps are on. Higher permeate fills the desalination
tank at a faster rate, allowing the pump to pull water into the water distribution system
at a constant rate. From a resilience perspective, the results indicate that desalination can
increase WSA even when the water pressure has not returned to normal. This could serve
water needs but reduce the ability to use the system for firefighting purposes. As more
RO units are used, a continuous power supply is needed to transfer the water into the
distribution system.

(a) (b)

(c) (d)

(e)
Figure 7. Case study results for Guayama, San Juan, and Arecibo: (a) Permeate. (b) Water demand.
(c) Average water pressure. (d) Average water service availability. (e) Pump power.
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6. Conclusions
This research integrates expertise across multiple engineering disciplines, including

marine energy and drinking water systems. To our knowledge, water distribution system
models have not previously been integrated with models of desalination from wave re-
sources. The intersection of these fields requires careful consideration for ensuring both
systems are properly represented.

A simulation framework was created by integrating WEC-Sim and WNTR. Resilience
metrics were defined to quantify the performance of the coupled software. These metrics
were compared using three case studies to determine the impact of wave-powered desalina-
tion in producing freshwater and strengthening the resilience of coastal communities. This
study applies the simulation framework to three locations in Puerto Rico and discusses
trade-offs to be considered when siting a wave-powered desalination plant. Wave-powered
desalination is well aligned with both the PBE initiative and, in the case of Puerto Rico,
the Puerto Rico Public Policy Act. This strengthens the resilience of island communities by
increasing the capacity and self-sufficiency of the utility systems.

Future research will include performing a sensitivity analysis on the case studies
to better understand the relationship between resilience metrics and model inputs. Fur-
ther analysis will also be performed using site-specific water distribution system models,
the integration of finer-grained time series in the analysis, and the ability to analyze the
co-generation of power and water by the system. Furthermore, the simulation framework
can be expanded to group metrics, like water service availability by geographic regions and
demographics, to extract additional information on community resilience and vulnerability.
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