Conceptual design of a salinity gradient energy demonstration unit at the Magdalena River mouth

Roldan-Carvajal. M^{1,2,3}, Álvarez-Silva. O⁴, Maturana-Córdoba. A⁵, Cala-Barceló. A.V⁵, Solano-Trujillo. S⁴, Pérez-Grisales. M.S¹, Arias-González. M¹, Sánchez-Sáenz. C.I^{1,2}, Andrés F Osorio^{2,6}.

- 1. Department of Processes and Energy, Universidad Nacional de Colombia, Medellín, Colombia.
- 2. Corporation Center of Excellence in Marine Science CEMarin, Bogotá, Colombia.
- 3. School of Mechanical Engineering, Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA.
- 4. Department of Physics and Geosciences, Universidad del Norte, Barranquilla, Colombia.
- 5. Department of Civil and Environmental Engineering, Universidad del Norte, Barranquilla, Colombia.
- 6. Department of Geosciences and Environment, Universidad Nacional de Colombia, Medellín, Colombia.

SGE Fundamentals

- Salinity gradients are chemical potential gradients.
- **Proposed in the '50s** as a renew energy source at **river mouths**.
- The mixing of 1m³ of river water 1m³ of seawater releases ~1.65
- SGE is often (mis)named "Osmo Energy".

Worldwide potential at River mouths

• Pictures from a working paper: Alvarez-Silva, O.A, Roldan-Carvajal. M, Arevalo-Mesa, F (2024)

SGE Milestones – some examples

	Installed Capacity (kW)	Energy Density (MJ.m ⁻³)	Water flow (m ³ , h ⁻¹)
Seawater – Fresh Water	50	1	220
Brine – Brackish Water	1	18	0.21
Seawater – Fresh Water	500,000 (Projected)		-

Aquatechtrade https://www.aquatechtrade.com + ... + Traducir esta página

Sweetch secures €25m to scale osmotic energy

hace 6 dias — Sweetch Energy secures investment to accelerate development of an osmotic energy system, generated by the difference in salinity.

0

Initiatives pour l'Avenir des Grands Fleuves https://www.initiativesrivers.org > ... - Traducir esta página

The first osmotic power plant in the Rhône Delta

CNR and Sweetch Energy will launch the first osmotic power production pilot site in the Rhône Delta in 2023, a game changer in the renewable energy sector !

Our work in Colombia

The Magdalena River Mouth

Theoretical Potential

Technical Potential

Our work in Colombia

Our work in Colombia

The demonstration unit

1,800 m

Some properties and key numbers

PROPERTY	MAGNITUDE	UNITS
SEAWATER TEMPERATURE (Avg)	30.5	°C
RIVER WATER TEMPERATURE (Avg)	28.0	°C
SEAWATER SALINITY (Avg)	36.3	g.kg ⁻¹
RIVER WATER SALINITY (Avg)	0.06	g.kg ⁻¹
RIVER FLOW (Avg)	7,130	m ³ .s ⁻¹
RIVER FLOW (High Discharge)	~ 11,000	m ³ .s ⁻¹
RIVER FLOW (Low Discharge)	~ 4,000	m ³ .s ⁻¹
SEAW/ATER INITAKE (Distance to plant)	250	m
SEAWATER INTARE (Distance to plant)	200	111
RIVER WATER INTAKE (Distance to plant)	50	m

The demonstration unit

6 m

The demonstration unit

Revenuella, totorella inchi se, supe

PROPERTY	MAGNITUDE	UNITS
R 101 active area	~ 2.5	m²
R 102 active área	~ 9	m²
R 103 active area	~ 18	m²
R 101 pressure drop	6,848	kPa
Seawater line pressure head (h _f)	6.30	m ³ .s ⁻¹
Riverwater line pressure head (h _f)	0.82	m ³ .s ⁻¹
2) Seawater pump power	2.0	HP
2) Riverwater pump power	1.5	HP

Upcoming work/Concluding remarks

When will it be ready? We depend on the progress of the construction of the tourist complex.

Expected outcomes:

"Test centers are magnets for other green alternatives."

A laboratory operating at relevant conditions to research marine energy, water treatment, desalination, hydrogen production from rivers and seawater, grid integration, or aquaculture synergies.

The know-how and local capacity-building for eventual developments at a larger (industrial) scale.

ACKNOWLEDGEMENTS

Mateo Roldan-Carvajal mroldanc@purdue.edu

Oscar Álvarez-Silva oalvarezs@uninorte.edu.co

Aymer Maturana maturanaa@uninorte.edu.co

Andrés F. Osorio afosorioar@unal.edu.co

UNIDAD BÁSICA - Celda

