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HIGHLIGHTS

« Wave energy converters contribute 5 %-10 % of the wind turbine’s power output.

«» The semi-submersible platform with three heaving WECs is the most studied hybrid configuration.
« A single WEC in a hybrid wind-wave system is typically designed as a 100 kW unit.

« WECs generally amplify the platform’s heave motion while reducing its pitch motion.

« Hybridisation of FOWTs with WECs increases the project cost.

ARTICLE INFO

Keywords:

Hybrid wind-wave
Wind energy

Floating offshore wind
Wave energy converter

ABSTRACT

Recent advances in the development of floating offshore wind turbines have also generated great interest in
hybrid wind-wave energy systems due to the resource and technological complementarity of both systems. Over
the past decade, a large amount of research has been conducted to uncover the benefits of combining floating
wind turbines with wave energy converters and to propose and evaluate new hybrid system designs. The aim
of this study is to identify trends, patterns and insights of the hybrid wind-wave energy systems by collating,
reviewing and analysing the data available in the literature. The statistical analysis is presented for the design
aspects of the hybrid wind-wave system, power production of wave energy converters, methodologies used to
investigate the hybrid system dynamics, and the reported findings. The analysis indicates that research on hybrid
systems lags behind floating platform development by approximately five years, with a predominant focus on
5 MW wind turbines installed on semi-submersible platforms and coupled with heaving wave energy converters.
However, hybridisation efforts must keep pace with advances in modern wind energy technologies. The share of
wave energy in the total power production of a hybrid platform is less than 10 %, and the median rated power
of a single WEC is close to 100 kW. Wave energy converters do not tend to change the wind turbine power
production, while an increase in platform motions was observed, also negatively affecting loading on mooring
lines. Therefore, new designs need to investigate motion suppression in order to explore additional benefits of the
hybridisation, such as mooring and tower bending load reduction. Furthermore, integrating wave energy with a
floating wind turbine increases the levelised cost of energy of the combined project, underlying the challenges in
providing a techno-economically viable solution, which also should be considered in the design process.

1. Introduction

The idea of harvesting ocean wave energy has existed for at least two
centuries, with the first mechanism proposed and patented in 1799 [1].
The development of wave energy converters (WECs) gained momentum

energy sources. Since then, progress has fluctuated, experiencing periods
of rapid innovation and stagnation, largely influenced by the availability
of funding from both private investors and government initiatives [2].
Fig. 1a presents a historical timeline of selected wave energy demonstra-
tion projects, illustrating that the rated capacity of WECs developed to

following the oil crisis of the 1970s, driven by the search for alternative
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Nomenclature

Acronyms

BEM Blade element momentum theory
CFD Computational fluid dynamics
DOF Degree of freedom

FOWT  Floating offshore wind turbine

LCoE Levelised cost of energy

OWC Oscillating water column

OWSC  Oscillating wave surge converter
PTO Power take-off

TRL Technology readiness level

TLP Tension leg platform

WEC Wave energy converter

date has ranged from 20 kW to 1.25 MW. However, despite this broad
range, the median power output has remained relatively stable over the
past 25 years, consistently around 300 kW per unit.

Over the same period, the offshore wind industry has grown at a
much faster pace, with offshore wind turbine capacity increasing from
2 MW in 2000 to 18 MW in 2024. The need for wind turbine instal-
lations in waters deeper than 60 m, where the wind energy resource is
stronger and more consistent, has stimulated the development of floating
wind solutions. Fig. 1b compares the growth in capacity of fixed-bottom
and floating offshore wind turbines (FOWTs), distinguishing between
reference designs and commercial or demonstration projects. Reference
wind turbines, such as those released by the National Renewable Energy
Laboratory and the Technical University of Denmark (DTU) [3-5], have
typically been made available several years before the deployment of
commercial prototypes. The rapid development of floating wind projects
began with the construction of the first prototype in 2007. Since then, a
time lag of approximately five years has persisted between the deploy-
ment of bottom-fixed wind turbines and their adaptation for installation
on floating substructures.

Discussions on combining wave and wind energy began in the 1990s
with projects like OSPREY (Ocean Swell Powered Renewable Energy),
which featured a bottom-mounted oscillating water column integrated
into the base of a fixed wind turbine [6,7]. Further expansion of re-
search and development of hybrid wind—-wave energy systems followed
the rapid development of offshore wind turbines in the early 2010s
[8-10]. The objective was to take advantage of the complementarity
of wind and wave resources, with offshore wind offering high-capacity
generation, while the wave energy provides a more consistent energy
content. The potential to harness both wind and wave resources was
seen as an opportunity to accelerate the development of both technolo-
gies by leveraging their numerous synergies [11,12]. Extensive research
has been conducted on the design and analysis of hybrid wind-wave
energy systems, though only a limited number of prototypes have
undergone sea trials. Table 1 presents industry-driven hybrid system ini-
tiatives, including demonstration projects, prototypes, and conceptual

WEC demonstrator projects
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designs. The most successful sea-tested hybrid platform to date is the
P37 prototype developed by Floating Power Plant (FPP). Similar to FPP,
companies such as Marine Power Systems (DualSub concept), Bombora
Wave Power (InSPIRE project), and Pelagic Power (W2Power concept)
were originally focused on wave energy development but later proposed
hybridising their technologies with FOWTs.

Despite the limited number of hybrid demonstration projects, a sub-
stantial body of academic research explores new conceptual designs
for hybrid platforms, evaluating their potential performance benefits
and challenges. One of the earliest review papers on combined wave
and offshore wind energy [19] was published in 2015, identifying syn-
ergies between the technologies and classifying wave-wind systems
based on asset sharing and integration levels. Subsequent technology
review papers (e.g., [20-25]) have typically examined advancements
in offshore wind and wave energy devices, classified proposed com-
bined wind-wave systems, and analysed their technical aspects. While
these reviews provide valuable insights, no study has systematically
summarised trends or analysed findings published by the research com-
munity. A statistical analysis of data collected from published papers
could reveal key trends, patterns, and insights - an aspect currently
missing in the literature.

This study aims to provide a big-picture overview of existing trends in
combined wind-wave energy systems, focusing primarily on the hybridi-
sation of floating offshore wind turbines with wave energy devices where
they share a common platform. The statistical analysis is performed for
the technology type, power performance, methodologies used, and re-
ported findings. It should be acknowledged that all reviewed papers have
a different focus, a different number of details included, and a different
presentation of results. Therefore, in this work, it was necessary to make
assumptions and approximations to reduce discrepancies in the collected
information. However, uncertainties are still present due to differences
in modelling fidelity.

The remainder of the paper is organised as follows. The methodol-
ogy used to collect, review and analyse data is discussed in Section 2.
The statistical analysis is presented for FOWTs and WECs separately
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Fig. 1. Timeline of selected (a) wave energy and (b) offshore wind turbine commercial and demonstration projects between 2000 and 2025. Refer to Tables 2 and 3

for references and more details.
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Table 1
Industry-driven demonstration projects of hybrid wind-wave platforms.
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Poseidon P37 [13] P80 [14] DualSub [15]

InSPIRE [16] W2Power [17] NoviOcean [18]

&.
-

Wind turbine power capacity [MW]

3x0.011 4-10 2
Floating platform type
Semi-sub Semi-sub Semi-sub

WEC power capacity [MW]

10 % 0.003 2-3.6 0.5
WEC type

Heaving Heaving Heaving
Status

Sea test in 2012-2013 1:30 scale tested in 2022 N/A

=5

o

8-12 2x3.6 3x0.05
Semi-sub Semi-sub Barge
4/6 18x 0.1 0.65
Pressure differential Heaving Heaving

Scaled testing in 2022 1:3 scale tested in 2008 1:6 scale tested in 2024

in Sections 3 and 4, respectively. The review of research methods is
summarised in Section 5, and the analysis of findings reported in the
literature is shown in Section 6.

2. Methodology

The statistical analysis performed in the present work is based on
data taken from references [26-107]. The information on design param-
eters, performance measures, and presented results varies significantly
among the references. In preparing this paper, it was essential to de-
velop a unified approach for collecting and analysing this information
to ensure comparability among different hybrid wind—-wave prototypes.

2.1. Discussion of sources

At the time of writing, a total of 110 references [26-135] were found
that investigated the performance of floating hybrid wind-wave energy
systems. A database was established using the information from these
references. In cases where a particular hybrid system was used in mul-
tiple references with identical dimensions, inertia properties, number
and locations of WECs, this prototype was included as one entry in the
database for further analysis. For example, several studies have focused
on the semi-submersible wind energy and flap-type wave energy con-
verter called SFC concept [69,113-115], with the most representative
study being [69]. This reference was selected and the information con-
tained therein was used for the review and statistical analysis in the
current work to avoid potential bias based on the activities of a partic-
ular research group. In cases where one reference investigated multiple
hybrid configurations by varying the characteristic length and number
of WECs, all these possible hybrid designs were included as separate case
studies in the database, but only for the analysis related to the WECs.
To summarise, out of 110 references reviewed, 82 references remained
after screening, and 178 case studies were identified.

2.2. Classification of technologies

FOWTs are generally classified according to the approach used to
provide static stability of the structure in rotational degrees of freedom
[136]: ballast floating platforms (e.g., spar), tension leg platforms (TLP),
and buoyancy floating platforms (e.g., barge or semi-submersible). In
this study, barges and semi-submersible (or column-stabilised) plat-
forms are included as separate categories, mainly because they offer
different possibilities for coupling with wave energy converters (refer
to Fig. 2). For example, barges are more suitable for coupling with

Tension-leg

Barge  Semi-submersible Spar platform

Fig. 2. Floating platform types for offshore wind turbines.

Oscillating
wave surge converter

Oscillating

Heaving devices
water column

| 4

Wavebob-type WaveStar-type

Fig. 3. Examples of WEC types proposed for coupling with FOWTs.

oscillating water columns (OWCs) due to the presence of moonpools in
barge configurations that can be converted into an OWC chamber.

WEGs in this work are classified according to the operating princi-
ple (following the approach proposed by Ref. [137]): heaving devices,
oscillating water columns, and oscillating wave surge converters (re-
fer to Fig. 3). It should be noted that none of the hybrid wind-wave
systems found in the literature used overtopping devices, so this WEC
category is excluded from the analysis. Fig. 3 shows schematics of two
types of heaving devices, namely the Wavebob-type and the WaveStar-
type, due to their popularity in hybrid wind-wave systems, as will be
shown in Section 4. Wavebob is a two-body oscillating WEC where the
torus-shaped floater slides along the spar to generate electricity [138].
WaveStar is a hemispherical floater connected to the rigid platform by an
arm, and its heaving motion drives the hydraulic cylinder at the hinge.
The Wavebob and WaveStar prototypes were extensively studied and
tested at sea, but both projects were closed down.
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Fig. 4. Examples of floating hybrid wind-wave energy system designs across
different FOWT topologies and WEC types.

Sources: Barge/Heaving device [86], Barge/OWC [84], Barge/OWSC [98],
Semi-sub/Heaving device [28], Semi-sub/OWC [46], Semi-sub/OWSC [69],
Spar/Heaving device [73], Spar/OWC [77], TLP/Heaving device [80],
TLP/OWC [83].

Examples of hybrid wind-wave designs across different FOWT and
WEC categories are shown in Fig. 4. All the designs reference the FOWT
platform for WEC attachment, either by leveraging existing columns and
structural elements or by incorporating additional support structures.
Thus, heaving devices are typically mounted on the outer structure of
the FOWT using a lever arm (e.g., the WaveStar WEC coupled with a
barge [86]) or designed to slide along an existing column of a semi-
submersible platform (e.g., [30]) or a spar (e.g., [73]). Oscillating water
columns require a hollow structure for water to oscillate inside and com-
press air in the chamber for further power generation. Therefore, among
the proposed designs, OWCs are created by modifying existing moon-
pools, enclosing them to trap air (e.g., barge [84]). Alternatively, the
outer columns of semi-submersible platforms are adapted into OWC-type
arrangements by opening the bottom of the column to allow water in-
flow (e.g., [47]). Another proposed OWC-FOWT coupling arrangement
involves attaching additional cylindrical OWC chambers directly to the
FOWT structure (e.g., spar [77]). Oscillating wave surge converters re-
quire a rigid structure with multiple attachment points for integration
with an FOWT. Therefore, the design typically involves either position-
ing OWSCs on the wave-facing side of the platform, as proposed for
a barge [98], or attaching flaps to a semi-submersible platform with
pontoons (e.g., [69]).

2.3. Unification of power performance

A hybrid wind-wave energy unit usually consists of two power-
generation systems: at least one or several wind turbines and wave
energy converters. The horizontal-axis wind turbine is a mature tech-
nology that is typically characterised by a generator power rating of,
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for example, 5 or 10 MW. WEC power ratings are rarely mentioned in
the references due to the immaturity of the technology, and it is more
common to use linear dimensions (e.g., radius) to describe the WECs
within the hybrid wind-wave system. Despite this, it was necessary to
select a WEC power performance measure that could be compared with
a wind turbine and between different wave energy technologies.

Wave energy developers tend to adopt different approaches to quote
the power rating of their prototypes. Sometimes, they refer to the max-
imum average power that the WEC can generate over a period of time,
while in other cases, the power rating of WECs is referred to as the peak
output power at a time instant. This is mainly due to the WECs’ much
more variable power output compared to the wind turbines. A typical
peak-to-average power ratio for a WEC exceeds 10, whereas for a wind
turbine, this value is close to 1. For example, if a wind turbine has a rated
capacity of 5 MW, it will produce an average of 5 MW at wind speeds
above rated value. In the context of the WEC, to generate an average of
1 MW, the installed capacity of the generator should be 5-10 MW.

Each wind turbine is characterised by a rated wind speed at which
the wind turbine generator produces maximum output power. The value
of rated wind speed (typically 10-11 m/s) is relatively consistent among
wind turbine developers [139]. Similarly, wave energy developers tend
to limit the power generation of the WEC at certain wave heights,
but the wave height threshold varies among developers. For example,
WaveStar’s average power generation is limited to 600 kW at wave
heights above 3 m [140], Pelamis has a limit of average 750 kW power
at wave heights above 5.5 m [141], and Wavebob’s power output is lim-
ited to 1 MW at wave heights above 6 m [142]. For this work, to unify
the WEC power analysis, it was decided to estimate the WEC power
rating within the hybrid wind-wave system based on the average (not
peak) power generated by the WEC, and to use a wave height of 6 m
as a threshold value. Thus, the WEC power rating is estimated from the
WEC power matrix, as shown in Fig. 5. It also should be noted that the
mechanical (not electrical) power of the WEC is used in the analysis.

Unfortunately, none of the references presented data for the power
rating of installed WECs, and the information about WEC power output
varies greatly between references. Some references report WEC power
or even relative capture width in regular waves, some references report
WEC power output in limited design load cases (irregular waves), and
only a few of the references present power matrices. To populate the
WEC power matrix from the limited information provided, the method-
ology proposed in [137] is utilised in this work. In references, where
only the regular wave power output is provided, firstly, the power ab-
sorption in irregular waves is estimated by integrating over frequency
the product of the JONSWAP spectrum with the power absorption in
regular waves. The entire power matrix can be populated following this
approach across sea states with a peak wave period between 3 and 20 s
and a significant wave height up to 6 m. The maximum power value
from the power matrix is then used as an estimated power rating. In ref-
erences, where the power production is provided for a limited number
of sea states, the power matrix is populated by scaling power absorption
with the square of significant wave height. Since most sources report
the total power generation of all WECs, the individual power output

Total rated power
of 3 WECs

JONSWAP

Power matrix

500

I
=3
3

-
S
Power [kW]

200

)

100

=Y

4 6 8 10 12 14 0 0.5
Wave period [s]

1

Wave frequency [rad/s]

Significant wave height [m)]

o

6

8 10 12
Peak wave period [s]

1.5 2

Fig. 5. Demonstration of the methodology used to unify the WEC power performance in this paper. The example data used from reference [26] (Fig. 17 for a 3WS

case).
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by the wind turbine power rating

84.3%

Fig. 6. Number of published papers on floating hybrid wind-wave units between 2010 and 2024, categorised by wind turbine power rating: by year (left) and total
across all studies (right). References: Py, <5 MW [87,92,93,101,102], 5 < Py, < 10 MW [26-57,59-82,84-86,89,90,94,95,97-101,104,105], 10 < Py, < 15 MW

[58,83,88,91,96,101], Py, = 15 MW [106,107].

for each WEC is estimated as the total power divided by the number
of WECs in the system. The procedure used for the unification of WEC
power performance results is shown in Fig. 5. It is important to note that
the power may scale differently depending on the level of nonlinearity
and how the WECs interact with the platform. Thus, the results from
the scale factor have an additional source of uncertainty, which is diffi-
cult to assess due to differences in the numerical modeling used in each
reference.

Even with consistent methodologies for estimating energy delivery
across various wave energy converters, the inherent analytical uncer-
tainty remains around +30 % as was found in [142]. Consequently, while
acknowledging the significant uncertainty in statistical results for WEC
power production, we believe this work offers value for preliminary
high-level studies and early-stage model error detection.

3. Analysis of floating offshore wind turbines used in hybrid
systems

A historical timeline of the development of hybrid wind-wave en-
ergy systems, categorised by the rated capacity of the wind turbine,
is presented in Fig. 6. The data show that most published research
continues to focus on wind turbines with a rated capacity of 5 MW, al-
though there has been a gradual increase in studies investigating 10-MW
and 15-MW wind turbines for hybridisation with WECs in recent years
[58,83,88,91,96,101,106,107]. The first hybrid concept incorporating a
15-MW turbine was only published in 2024, while the reference platform
for a 15-MW turbine [143] has been available since 2020, highlighting
a lag in the theoretical development of hybrid systems.

This predominant focus on 5-MW turbines can be attributed to the
availability of existing data and operational experience. These early
platforms are often overdesigned, featuring heavier structures and en-
hanced stability, which reduces the necessity for integrating wave
energy converters for motion suppression. However, as the offshore wind
industry shifts toward larger turbines with rated capacities of 10 MW and
beyond, new hybrid designs must be specifically tailored to address the
challenges posed by these next-generation platforms. Higher-capacity
turbines demand lighter and more optimised floating structures, which
are inherently less stable and more sensitive to dynamic loading. In this
context, the integration of WECs could have a more significant impact on
platform dynamics, potentially enhancing overall system performance
and stability. Therefore, hybridisation efforts must not only keep pace
with advances in turbine technology but also actively exploit the syn-
ergistic benefits that WECs can offer in the design of future floating
platforms.

Number of wind turbines
on a hybrid platform

100%

50%

0% _—
1 2 3 4

Fig. 7. Proportion of studies using different numbers of wind turbines in hybrid
wind-wave energy systems. References: 1 [26-91,94-99,102-107], 2 [93,100,
101], 3 [101], 4 [92].

Fig. 8. Example of a hybrid wind-wave design based on multiple wind turbines
[100]: the platform without buoys (left) and the same platform coupled with 10
heaving devices (right).

As shown in Fig. 7, only 6 % of all studies [92,93,100,101] have
examined configurations involving multiple wind turbines on a single
floating platform. This area warrants further investigation, particularly
given that twin-rotor floating platforms have already been both studied
[144] and deployed offshore [145]. An illustrative example is presented
in Fig. 8, depicting a semi-submersible platform with two wind turbines
and ten heaving WECs, based on the design proposed in [100].

Wind turbines can be designed with either vertical or horizontal axes,
the latter being a more mature technology that has been deployed and
tested offshore on floating platforms. Among the 110 papers reviewed,
only two [74,93] proposed a hybrid wind-wave system design incorpo-
rating VAWTs (Fig. 9). [74] integrated a single VAWT on a spar platform
with a Wavebob-type wave energy converter (WEC), while [93] installed
two VAWTs on a barge-type floating offshore wind turbine (FOWT),
incorporating four oscillating water columns (OWCs) for enhanced sta-
bility. Interestingly, among industry-driven hybrid projects (Table 1),
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VAWT

Mooring
system

Water line

Fig. 9. Examples of hybrid wind-wave designs based on the vertical-axis wind
turbines: [74] (left) and [93] (right).

NoviOcean [18] also used VAWTs in its design. The limited adoption of
VAWTs in hybrid designs is likely due to their technical and commercial
lag behind HAWTS, despite their widely recognised advantages [146].

Among the proposed platform topologies (Fig. 2), the semi-
submersible FOWT appears to be the most attractive for hybridisation
with wave energy devices, accounting for 74 % of all case studies (refer
to Fig. 10a) [26-70,87-92,94-96,99-101,103,104,106,107]. The popu-
larity of semi-submersible platforms can be explained by their higher
Technology Readiness Level (TRL) compared to other topologies. In
particular, over the past 15 years, at least 15 FOWT demonstration
prototype projects and 4 floating wind farm projects have been imple-
mented worldwide (see Table 3), and semi-submersible platforms have
been used in half of these projects. Additionally, open-source tools such
as OpenFAST and FOWT models developed by NREL have also con-
tributed to the widespread use of semi-submersible topology. Among
semi-submersible platforms, the OC4-DeepCWind [147] has the largest
share of 38 %, while the novel designs, WindFloat [148], and CSC
[113,149] platforms account for 26 %, 19 %, and 17 %, respectively,
as shown in Fig. 10a.

Floating platforms used in hybrid wind-wave systems

4.9% 8.5%

[ Barge
O Semi-submersible
O Spar

74.4% O TLP

Semi-submersible platforms

OC4-DeepCWind [ 1] 38%
Novel [ 1]26%
WindFloat [ ] 19%

csc 1%

0% 20% 40%

(a) Proportion of floating offshore wind platforms used in hybrid

wind-wave energy systems.
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A less commonly used floating platform design for hybridisation is
the spar (12.2 %) [71-79,97], although it is a widely used topology
in demonstration and commercial FOWT projects. However, it provides
fewer opportunities for mechanical coupling to the WEC due to installa-
tion constraints, and its stabilisation mechanism is less suitable for WEC
integration (WECs increase the water surface area). The barge and ten-
sion leg platform (TLP) each account for 8.5 % [84-86,93,98,102,105]
and 4.9 % [80-83] of the proposed hybrid systems, respectively. While
this percentage is reasonable for TLPs due to their complexity, hybrid
platforms using a barge may be explored in future work due to their
simpler implementation.

As shown in Fig. 10a, most studied hybrid wind-wave solutions are
based on standard FOWT designs (i.e., OC4-DeepCWind, WindFloat,
CSC) by simply integrating them with WECs, illustrated in Fig. 10b. Due
to the simplicity of the analysis, the properties of these standard FOWT
platforms, such as inertia or mooring system design, usually remain un-
changed even when the wave energy system is included. However, as
mentioned in [25], future developments should explore a hybrid plat-
form using an optimisation/framework where the conceptual design is
considered from a global geometric perspective.

4. Analysis of wave energy converters used in hybrid systems

The correlation between the FOWT topology and the WEC type used
to form the hybrid system is demonstrated in Fig. 11, where the circle
size represents the number of hybrid systems within each category. In
total, 10 different combinations out of 12 possible have been proposed.
The barge is more commonly coupled with an OWC, as some designed
barges already have moonpools (e.g., the Floatgen developed by BW
Ideol [150]) that can be naturally converted to an OWC. In contrast,
other FOWT topologies (spar, semi-submersible and TLP) are more fre-
quently hybridised with heaving devices. This can be explained by the
fact that the concept of heaving devices is the most favoured by wave
energy developers [151]. OWSCs are only considered for coupling with
barges and semi-submersible platforms, likely due to the attachment re-
quirements for the reference substructure and the significant motions
these WECs experience.

Fig. 12 demonstrates the proportion of WEC types used in hybrid
systems regardless of the wind platform used. As already expected from

2

A gd

Semi-submersible
(CSC) + OWSCs

TLP + li;;tmg

Semi-submersible
(OC4-DeepCWind)
+OWCs

= O

Semi-submersible
(WindFLoat) +
ubmerged PA

(b) Examples of hybrid platforms.

Fig. 10. Distribution of floating offshore wind platforms used in hybrid wind-wave energy systems. References: barge [84-86,93,98,102,105], semi-submersible
[26-70,87-92,94-96,99-101,103,104,106,1071, spar [71-79,971, TLP [80-83], OC4-DeepCWind [26-48], WindFloat [49-60], CSC [61-701, Novel [87-92,94-96,

99-101,103,104].
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Fig. 11. Correlation between the floating wind platforms and WEC categories
used for hybridisation. The circle size represents the number of hybrid systems
within each category.
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Fig. 12. Proportion of WEC types used in hybrid wind-wave energy sys-
tems. References: heaving device [26-44,48-56,60-66,71-76,79-82,86-92,
100,101,103,105,106], OWC [45-47,57,58,77,78,83-85,93-97,102,104,1071],
OWSC [59,67-70,98,99,101].

Fig. 11, WECs that extract power from the heaving motion are most
often integrated with floating platforms, accounting for 68.7 % [26-
44,48-56,60-66,71-76,79-82,86-92,100,101,103,105,106]. Less than
a quarter (21.7 %) [45-47,57,58,77,78,83-85,93-97,102,104,107] of
all hybrid designs use OWCs, and about one-tenth consider OWSCs
[59,67-70,98,99,101]. Similar to the use of standard floating plat-
forms, researchers tend to select well-studied types of heaving devices:
Wavebob-type and WaveStar-type (illustrated in Fig. 3). The Wavebob is
seen as a simple solution for coupling with platforms that have columns
(i.e., CSC or spar), while the WaveStar is attractive due to its design,
which includes both a floater and an arm that can be attached to any
structure.

The number of wave energy devices installed on a floating platform
highly depends on the platform topology as shown in Fig. 13, which
varies between 1 and 24 [92] for the references investigated. A com-
mon trend for a semi-submersible platform observed is that the number
of WECs is a multiple of the number of columns (usually three), which
balances the loads across the structure, while for a barge and TLP the
number of WECs is even. Moreover, it can be seen that three WECs
integrated with a semi-submersible FOWT is the most widely studied
combination, while spars are most often integrated with only one WEC.
Due to the small number of cases involving barges and TLPs, it is difficult
to identify any additional trends for these platforms.

One of the important considerations when designing a hybrid
wind-wave system is the additional power capacity and mass associated
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Fig. 14. Additional power capacity and mass associated with installing the wave
energy system on a floating platform, given in %. The star indicates the median
value of the dataset.

with installing the wave energy system on a floating platform. Thus, the
ratios of the mass and power of installed WECs to the mass and power of
the FOWT are shown in Fig. 14. The analysis is done across all WEC types
and FOWT topologies, and it demonstrates that wave energy system is
usually designed to provide less than 10 % of the wind turbine power,
which may be related to economic benefits and technology readiness.
Similarly, the mass of installed WECs is close to 5 %-10 % of the total
mass of the FOWT (platform, tower, rotor-nacelle assembly). However,
it should be noted that there are designs [68,79,89] where WECs have
comparable power production to wind turbines.

The analysis of the individual WEC characteristics is provided in
Fig. 15. To ensure a fair comparison of WEC performance, we remind
the reader that the rated power of each WEC in the hybrid system was
estimated using the methodology detailed in Section 2.3. Despite the
significant expected uncertainty associated with this power unification,
we believe the outcomes of this analysis remain valid for most reviewed
studies. The power rating of a single WEC varies between 5 kW [31] and
7 MW [89], while the median value is close to 127.5 kW across all WEC
types (127 kW for a heaving device, 175 kW for an OWC, and 53 kW
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Fig. 15. Dimensions and power rating of individual WECs installed on a FOWT.
The star shows the median value of the dataset.

for an OWSC), and the majority of WECs are designed as 50-100 kW
units. These trends do not align with the current progress in WEC de-
velopment, shown in Fig. 1a, where the average rated power of WEC
prototypes is approximately 300 kW.

The median value of the WEC characteristic length within the hybrid
system is 10 m, while the maximum WEC diameter reported is 60 m (not
shown in Fig. 15). Interestingly, there is a mismatch between the WEC
size (10 m) and average power rating (127 kW) according to the classical
wave power absorption theory [152,153]. According to Budal diagram
[154], it is possible to evaluate the power absorption potential of a WEC
depending on its volume and motion constraints. Thus, the heaving de-
vices with a diameter of 10 m, similar to WaveStar, can potentially
generate power above 1 MW in sea states with a significant wave height
of 6 m, if advanced control is used [153]. However, as will be shown in
Section 6.3, advanced WEC control is rarely used in hybrid wind-wave
studies, while passive control is applied more frequently, significantly
reducing WEC power production. Moreover, excessive power production
and motion of WECs may adversely affect FOWT performance [155].

5. Analysis of research methods

The hybrid wind-wave energy system has complex dynamics that in-
volve aerodynamic forces acting on the wind turbine rotor and tower,
hydrodynamic and mechanical coupling forces acting on the floating
platform and WECs, and loads from the mooring system. Before review-
ing the methodologies applied to study hybrid system dynamics, it is
important to understand the research focus and the performance char-
acteristics of interest presented in research papers. Thus, Fig. 16 shows
the characteristics of the hybrid wind-wave systems and the proportion
of references used to investigate them. The results demonstrate that the
wave power production and the motion response of an FOWT are the two
main performance metrics that interest most researchers. It is interesting
to note that mooring loads of the hybrid wind-wave system were re-
ported in 28.1 % [28,29,32,33,43-46,53-55,60,62,63,69,70,73-75,81,
90,105,106] of cases, while very few studies considered redesigning the
mooring system of the FOWT after the integration with WECs. Only
10 %-15 % [37,40-43,45-48,60,65,68,69,74,81,86,87,91,94,99,106] of
studies investigated the wind turbine loads and nacelle acceleration, and
very little attention is given to the cost of energy of hybrid systems. Since
the additional power provided by the WECs is between one or two orders
of magnitude lower than that of the wind turbine, it is recommended that
future analyses focus on motion suppression to reduce mooring, nacelle,
and turbine loads, along with cost analysis, which is supported by the
current literature [25,155].

The detailed analysis of the methodology used to investigate hybrid
wind-wave systems is shown in Fig. 17, where the results are presented
for different subsystems and associated loads. The results demonstrate
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Fig. 16. Performance indicators of hybrid wind-wave systems and the propor-
tion of studies devoted to their study. References: wave power [26-49,51-
82,86-106], platform motion [28-34,36-38,40-43,45-49,55,56,58,60~79,81,
84-88,90,91,93,94,96,104-106], mooring loads [28,29,32,33,43-46,53-55,60,
62,63,69,70,73-75,81,90,105,106], wind turbine loads [37,41-43,46-48,60,65,
68,69,74,81,86,106], nacelle acceleration [40,45,48,69,81,87,91,94,99], LCoE
[55,91,101].

that only 18 % [38,45,47,55,58,69,78,82,83,87,97,100,101] of the stud-
ied hybrid systems were tested experimentally in wave basins or tanks,
while numerical simulations are a more common approach for inves-
tigating hybrid systems, likely due to their advanced maturity and
accessibility.

5.1. Numerical modelling methodology

Aerodynamic loads on the wind turbine are not considered in
35 % [26,27,32,35,39,50-52,54,56,57,59,61,67,70,71,75-77,80,81,88,
89,92,93] of the references that use numerical modelling, and a similar
percentage of experimental studies were conducted without including
forces acting on the wind turbine rotor. The outcomes of these studies
are more relevant for the platform degrees of freedom (DOFs) where
wind loads have a smaller effect, such as heave. However, care should
be taken when evaluating performance in DOFs such as pitch or surge,
due to the significant effect of the aerodynamic loads on them. In cases
where the aerodynamic effects are considered, they are modelled either
by using full Blade Element Momentum (BEM) Theory [156] in refer-
ences [29,33,34,36,37,40-44,46,48,49,53,62-65,68,69,72,74,83,84,86,
90,91,99,104-107] or using the steady state rotor thrust curve [31] in
references [28,30,31,66-70,73,79,85,94-96,98,102,103] to identify the
associated thrust forces acting on a rotor. The latter case is usually ap-
plied as an initial load assessment, while the full BEM is suitable for
taking into account the control dynamics of the wind turbine. In cases
where the platform motion is dominated by wave loads, simplification
or absence of the aerodynamic effects can be used as an initial estimate.

In 99 % of reviewed papers, the hydrodynamic forces acting
on a floating platform and WECs are modelled utilising linear po-
tential wave theory, which assumes inviscid, irrotational and in-
compressible flow. Additional viscous losses are included only in
57 % [28,30-32,37,40,42,46,48,52-54,57,59,60,62-65,67-70,73,74,
79,81,84-86,90,92,95,96,102,104-106] of all cases, which means that
the WEC motions, and therefore the platform motion, as well as WEC
power production, may be overestimated for the papers that have not
included viscous losses. Due to the complexity of the interaction between
the wave-wind devices, it is also interesting to note that only one study
found [60] used Computational Fluid Dynamics (CFD), despite it being
widely applied to investigate the WEC and FOWT dynamics separately.

The mooring forces acting on a hybrid wind-wave system are
mainly modeled by quasi-static [29-31,36,37,40,73,79,94-96,98,99,
107] or lumped-sum [28,33,34,41-44,46,48,49,53,60,62-66,68,69,72,
74,84,86,90,91,105,106] methods. The quasi-static method assumes
position-dependent restoring forces while neglecting inertia and hy-
drodynamic effects on the mooring lines, and the lumped-sum method
models a mooring line as a series of nodes connected by springs and



N.Y. Sergiienko, L. Xue, L.S.P. da Silva et al.

Applied Energy 401 (2025) 126669

Methods

Numerical modelling

Physical experiments

B 5%

I 5%

0% 50% 100%
Numerical modelling Physical experiments
Aerodynamics Aerodynamics
Not modelled [ ]35% Not included  []36%
Rotor thrust curve [ ]19% Rotor thrust  [[]14%
Blade Element Momentum l:’ 45% Wind generator l:’ 50%
Computational Fluid Dynamics | 1% 0% 50% 100%
0% 50% 100%
Hydrodynamics Scaling factor
Linear wave theory | | 99% o
Viscous effects [ ] 57% i
Computational Fluid Dynamics | 1% 9
0% 50% 100% 1 D |:| D
Moorings 0160 1:50 1:40 1:30 1:20 1:10 1:3
No information [l 9%
Quasi-static method [N 35%
Lumped-sum method _ 54%
0% 50% 100%
WEC PTO dynamics
Linear damper [ ]53%
Spring-damper system l:| 41%
Advanced control [ ] 6%
0% 50% 100%

Fig. 17. Statistical analysis of methodologies applied to investigate the hybrid wind-wave system dynamics. References: numerical modelling [26-37,39-44,46,48—
54,56,57,59-77,79-81,83-86,88-96,98,99,102-107], physical experiments [38,42,45,47,55,58,69,78,82,83,87,97,100,101]. The reader is referred to the main text

for the references associated with each category.

dampers. Both modelling approaches are widely used in offshore engi-
neering, and lumped-sum method was used slightly more frequently in
the hybrid wind-wave system analysis. The mooring analysis is critical
for such platforms and requires further investigation, as the loads can
be intensified or reduced due to the coupling with WECs. However, as
mentioned earlier, most designs have not adapted the mooring system
for a hybrid platform.

The wave energy power take-off machinery is the system that usu-
ally couples the WEC dynamics to the dynamics of a floating platform,
in addition to hydrodynamic coupling and kinematic constraints. Due
to different TRL levels of the wind turbines and WECs, the type of PTO
machinery (i.e., hydraulics, direct drive, etc.) is rarely mentioned in the
reviewed references, and the PTO dynamics are usually simplified to the
linear damper or spring-damper behaviour. The WEC power generation,
assuming a linear passive system is used in half of the hybrid wind-wave
studies [26-32,36,41,42,46-49,52-54,56,58,60,61,66-72,74,75,78,80,
82,86,88,89,91,94,971, while a spring-damper is considered in 40 % of
cases [28,33-35,39,40,43,51,57,59,62-65,73,79,84,85,87,90,92,93,95,
96,98,99,102,104-106], and advanced control is rarely [28,50] used in
this context. WECs with a passive PTO system act as tuned mass-dampers
and their full potential is not utilised, while active WEC control can bring
more benefits to the hybrid wind and wave energy system [157] if a
proper control co-design methodology is followed.

5.2. Experimental methodology

Only 18 % of the reviewed references [38,42,45,47,55,58,69,78,
82,83,87,97,100,101] tested their hybrid designs in wave basins using
scaled prototypes or in the open sea. Approximately a third of the ex-
perimental studies [38,58,87,97,100] focus on hydrodynamic aspects of
the system, not including the effects of the wind turbine. About 14 %
of experiments [45,47,82,101] use a small fan or rotor on the platform
that generates the required level of thrust force, presumably because
this approach does not require any wind generation facility. Half of the
experimental studies [42,45,47,55,69,78,82] generate wind speeds on
top of the wave basins to test the dynamics of the hybrid wind and
wave energy system under wind and wave environmental conditions.
The challenge of this testing is that the wind turbine and floating plat-
form should be scaled following different scaling laws (Froude number
for hydrodynamics, and Reynolds number for aerodynamics) [158]. This
explains why almost half of the experimental studies either do not in-
clude aerodynamic effects or use a relatively simple way to account for
thrust forces. The majority of physical experiments of hybrid wind-wave
energy systems are conducted at scales close to 1:50-1:40, which are
generally used for TRL levels of 1-3 of these devices.

The limited availability of physical experiments poses a signifi-
cant challenge for validating most modelling approaches used to assess
hybrid wind-wave energy systems with complex coupled dynamics. Key
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knowledge gaps exist in the experimental testing of these systems un-
der combined wind and wave loads, particularly regarding the accurate
representation of mooring and WEC PTO dynamics. Furthermore, exper-
imental studies on floating platforms [159,160] highlight the important
role of nonlinear second-order effects in predicting platform pitch mo-
tion, a critical factor for studies aiming to utilise WECs for FOWT
motion suppression. Finally, the response of hybrid wind-wave systems
to extreme environmental conditions, a critical aspect of their perfor-
mance, remains largely unexplored in both numerical and experimental
investigations [161].

5.3. Environmental conditions

The hybrid wind-wave energy systems are designed to operate under
both offshore wind and ocean wave conditions that are usually tempo-
rally uncorrelated. The economic attractiveness of the hybrid system is
highly dependent on the potential deployment site, which should have
sufficient wave and wind resources, as shown in [162].

The statistical analysis of environmental conditions used in all
the reviewed papers is shown in Fig. 18. It is interesting to
note that most references did not use any site-related information
to assess the hybrid system performance (66 % are marked as
‘No site’ [26,27,29-31,33-35,38,40,44,50,51,53,55-61,67,69-71,76—-
79,82-85,88,89,92-94,96,97,100,102-104]), while the remaining ref-
erences used either North Sea [28,37,43,45,46,48,63-66,68,73,74,90,
106,107] or China Sea [32,39,41,42,47,49,52,54,95] conditions. It is
important to highlight that, as shown in [163], optimisation algorithms
applied to hybrid structures lead to different configurations depending
on the chosen offshore site. Based on this, devices designed for the North
or China Sea conditions may have different designs when optimised.

As explained in Section 5.1, about 40 % of the studies
[26,27,32,35,39,50-52,54,56-59,61,67,70,71,75-77,80,81,87-89,
92,93,97,100] focused only on the wave-driven response of the
hybrid system, neglecting any loads caused by offshore wind envi-
ronment. Almost a third of the studies used steady wind conditions
[29-31,33,34,45,53,55,60,64,66,78,79,82-85,94-96,98,102,103,1071,
and the remaining 36 % [28,33,34,36,37,40-43,45-47,49,62-65,68,69,
72-74,86,90,91,99,104,106] used more realistic environmental condi-
tions with turbulent wind. Regarding the ocean wave modelling, regular
wave analysis was used in 41 % of the studies [26,27,29,30,32,33,50,51,
53,54,56,57,59-61,66,67,70,71,75,77,83-85,88,91,92,96,97,102,107],
while 62 % [28,31,34-49,52,55,58,62-65,68,69,72-74,76,78-82,86,
87,90,93-95,98-100,103-106] included irregular wave conditions.
Undoubtedly, regular wave analysis is the quickest tool to investigate
the response amplitude operators of the floating platform and WECs,
identify their resonance periods and see the trends if the wave energy
system is modified. However, similar to turbulent wind conditions,
irregular waves represent a more realistic wave environment, and the
number of studies that included both turbulent wind and irregular sea
states is less than a third.

The importance of the chosen environmental conditions used for
the hybrid system assessment cannot be overestimated. As was demon-
strated in [40] a semi-submersible platform with three floating heaving
WECs can effectively suppress the platform motion in pitch in short-
period waves without reducing their power production, while in longer
waves, the motion is amplified if WEC power output is not constrained.
The comparison of wave conditions associated with two sites used for
the hybrid wind-wave system assessment is shown in Fig. 19. The en-
vironmental conditions inspired by the North Sea wave climate have
longer peak wave periods (10-14 s) as compared to the China Sea cli-
mate (5-10 s), where some hybrid wind-wave systems might be more
effective.

Analysing the studies that used the design load cases from the North
Sea [28,46,47,63-66,68,73,74,90], the majority of tested conditions fall
within a wind turbine’s control region 3, followed by region 2, with only
several cases in region 4 (refer to Fig. 20). This indicates that the main
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Fig. 18. Statistical analysis of environmental conditions used to assess the per-
formance of hybrid wind-wave energy systems. The reader is referred to the
main text for the references associated with each category.
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Fig. 19. Sea states used in the analysis of hybrid wind-wave energy systems
depending on the deployment site location.

focus of hybrid wind-wave energy systems assessment is on operational
conditions of the wind turbine and wave energy converters, with less
emphasis on assessing survivability under extreme conditions.

6. Analysis of the reported findings

As shown in Fig. 16, the design and performance evaluation of a hy-
brid wind-wave system revolve around several key questions: How much
additional power can the WECs generate alongside the wind turbine?
To what extent do the WECs influence the dynamics and loading on the
floating platform? And, are there economic advantages to constructing
hybrid wind-wave systems? This section analyses the reported findings
from all reviewed papers, considering the variations in methodology,
focus, and conclusions across studies.

6.1. Mutual impact of WECs and OWTs on their power production

The information related to the power production of wind and wave
power generation units within the hybrid system has been provided in
Sections 3 and 4. Additionally, some studies have examined whether in-
tegrating WECs with a floating platform affects the wind turbine’s power
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Fig. 20. Design load cases from the North Sea climate used to asses the
performance of hybrid wind-wave energy systems.

output or if the WECs’ power generation is altered after being combined
with FOWTs. Across all studies, there is a consensus that the presence of
WECs has a negligible impact on wind turbine power output, with both
the mean value and standard deviation varying by no more than 1 %.
Few studies have examined the variations in WEC power production
when compared to a standalone WEC system operating under identical
environmental conditions, with findings differing based on the analysis
approach. For instance, [34] investigated a modified DeepCWind semi-
submersible platform integrated with a heaving device and a specific set
of PTO coefficients. Their study reported enhanced WEC power output
when attached to a floating platform, particularly when the incoming
wave period aligned closely with the platform’s natural heave period.
Meanwhile, in [40], the analysis focused on the WEC efficiency across
a range of PTO parameters, comparing a WEC mounted on a floating
platform to a standalone WEC on a fixed foundation. The study found
that, in general, efficiency decreased by approximately 10 % when the
WEC was placed on a floating platform.

6.2. Effect of WECs on FOWT motion

One of the benefits of combining floating wind platforms with WECs
is the potential reduction of platform motion. Therefore, most refer-
ences report the resultant motion of the hybrid wind-wave system as
compared to a standalone FOWT. However, the results vary signifi-
cantly, showing either response amplitude operators, spectral densities
at a given sea state, or motion statistics in terms of mean, standard
deviation, and maximum/minimum values. For this work, the analy-
sis of reported changes in the platform motion is performed only based
on those studies that considered aerodynamic effects from wind and
provided statistical data on the motion. Overall, results from only 10
[28,36,39,43,46,62,68,73,74,90] out of 82 references have been used
for the motion analysis featuring the performance of hybrid wind-wave
systems in 49 environmental conditions. Fig. 21 shows an analysis of the
reported changes in the standard deviation of the platform’s response in
surge, heave and pitch after integration with WECs. Note that different
combinations of WECs and platforms may lead to different responses
due to their ability to alter platform dynamics, while these results are
more general and based on available data.

On average, the integration of WECs with a floating platform does not
significantly affect the platform’s motion in surge, while [73] reported
the surge motion reduction of up to 50 % and [90] reported amplifica-
tion in the platform motion in surge of up to 42 %. The motion of the
floating platform in surge is mainly driven by the mooring system restor-
ing forces, and the majority of hybrid wind-wave system designs have
kept the mooring line design similar to the standalone FOWT. In addi-
tion, second-order wave loads have an impact on the platform motion,
which is still not commonly investigated in hybrid platforms.

There is considerable variation in the reported results for the plat-
form’s heave motion, though most studies indicate a significant increase
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Fig. 21. Analysis of the reported changes in the standard deviation of the plat-
form’s response in surge, heave and pitch after integration with WECs based on
49 load cases from 10 hybrid wind-wave designs.
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Fig. 22. Proportion of hybrid wind-wave energy studies categorised by the
objective function of the WEC PTO control.

in heave amplitude. This trend may be attributed to the prevalent use
of heaving devices in hybrid wind-wave designs, which rely on large
motion amplitudes to efficiently absorb wave energy, consequently am-
plifying the platform’s heave motion. However, it is important to note
that the wind turbine’s performance and loading are not significantly
impacted by the platform’s heave motion and accelerations.

Adding WECs to a floating platform generally results in a reduction
in pitch of up to 60 % with a median value close to —10 %, while some
hybrid wind-wave system designs report a 12 % increase in pitch ampli-
tude [28]. Out of the platform’s three degrees of freedom, namely surge,
heave and pitch, the latter is usually of the primary interest for the hy-
brid system designers. The inclination of the platform, tower and rotor
from the designed vertical position negatively affects the wind turbine
power output and induces undesired loads on the blades and tower.

6.3. Effect of WEC PTO control on FOWT dynamics

In hybrid systems, the WEC PTO plays an important role in both the
power performance of the WEC and its impact on platform dynamics.
As illustrated in Fig. 17, most studies assume that WECs are integrated
with the FOWT platform using either a linear damping system or a lin-
ear spring-damper system, where the PTO stiffness is limited to positive
values. The distribution of studies depending on the WEC PTO control
objective is shown in Fig. 22.

The majority of studies optimise WEC PTO parameters to maximise
WEC power production and then investigate how the integrated wind-
wave system performs with these settings. For example, the impact of
various control strategies on FOWT dynamics was investigated in [28],
while still assuming WEC power-maximising control. The study consid-
ered approaches such as linear damping, spring-damping with positive
stiffness, and reactive control equivalent to spring-damping with neg-
ative stiffness. The results indicated that reactive control could double
the power production of WECs while also increasing platform heave and
pitch oscillations by 15 %-30 %, depending on the specific load case.

In contrast, there are studies (e.g., [30,31,40,42,46,49,52,72,73,78,
79,95,97,98]) that investigated how the changes in the PTO parameters
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Fig. 23. Analysis of changes in the mooring line tension of the hybrid wind-wave systems compared to standalone FOWTs.

affect both WEC power output and platform motion. These studies re-
port that maximising WEC power is often accompanied by an increase
in platform motion, highlighting the need to find an optimal trade-off
between power generation and stability.

Several studies have developed controllers specifically for stabilis-
ing FOWTs, mainly focusing on the platform’s dynamics in pitch. For
instance, [36] proposed a model predictive control strategy to minimise
platform motion in roll and pitch, demonstrating that WECs can reduce
the standard deviation of a semi-submersible platform’s motion by a
factor of two compared to a standalone case. Similarly, [164] devel-
oped a linear quadratic regulator with tunable coefficients that can be
optimised either for WEC power maximisation or FOWT motion stabil-
isation, showing that a trade-off between these competing objectives is
achievable.

Developing effective WEC control for FOWTs is challenging due to
the complex system dynamics under combined aerodynamic and hy-
drodynamic loads. Current controller development studies for hybrid
systems often oversimplify the problem, limiting their applicability to
real-world scenarios. A promising solution is data-driven control, where
the system model is derived from experimental data [165]. This ap-
proach highlights the need for experimental studies of hybrid systems
discussed in Section 5.2.

6.4. Effect of WECs on the FOWT mooring loads

Among all the papers included in this study, only 19 [28,29,
32,33,43-46,53-55,60,62,63,69,70,73-75,81,90,105,106] investigated
changes in mooring line loads under various environmental conditions.
Of these, 9 quantified the changes in terms of the standard deviation
(STD) of mooring line tensions, while 4 reported only maximum load
changes. The remaining 6 papers provided figures for the power spec-
tral density (PSD) of mooring tension, which can be converted into STD
of the tension. Overall, the majority of references reported an increase in
the tension of each mooring line due to the presence of WECs, which can
be because the WEC was not set to damp the platform, leading to higher
offsets. In some concepts, the low-frequency motion in pitch, which is
sensitive to damping levels, can be reduced by using WECs. This can lead
to lower tensions in the mooring system. However, the WEC parameters
need to be optimised to avoid increasing the motion at the wave-induced
range, which is likely to increase the mooring loads [106].

The mooring line tension data were collected from the 9 references
that quantified changes in load standard deviation (STD), covering a to-
tal of 31 environmental conditions, and are presented in Fig. 23a. The
majority of studies reported a slight increase (up to 10 %) in tension STD
due to the attachment of WECs to the floating platform. However, most
of the proposed platforms did not design the mooring system. As shown
in Fig. 23b, there is a strong correlation between changes in platform
surge motion and mooring line tension, reinforcing the fact that the
mooring design should be included and optimised in the analysis for
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a more realistic effect of the WEC on the mooring loads. The observed
increase in mooring line tension aligns with the analysis in Section 6.2
regarding changes in platform motion.

6.5. Economic feasibility

Only a few studies in this review have explored the economic ben-
efits of coupling FOWTs with WECs, reporting reductions in LCOE of
1.5 % [55] and 10 % [91] for hybrid systems compared to standalone
FOWTs. However, a relatively recent study was conducted by Wave
Energy Scotland [166] investigating opportunities and potential benefits
for coupling wave and floating wind energy plants. The study exam-
ines 17 different scenarios or cost-sharing models for floating wind and
wave energy, ranging from entirely separate projects for each technol-
ogy to fully integrated hybrid platforms. Sharing opportunities in these
scenarios include spatial co-location at the same deployment site, as-
set sharing of substations, transmission, and electrical systems, as well
as synergies in project development, supply chain management, instal-
lation, operation and maintenance, and project ownership. The main
findings of this study are summarised in Fig. 24, where the LCOE re-
sults from different combination scenarios are presented as a box and
whisker plot. The base cases for individual wave energy and wind
turbine projects are also included for comparison. The key finding is
that the combined LCOE of wind and wave energy projects is always
higher than that of standalone wind turbine projects. However, when
considering wind and wave energy developers separately, all asset-
sharing scenarios lead to overall cost reductions compared to the base
case for each technology. Floating wind projects can achieve up to a
7 % reduction in LCOE through collaboration with the wave energy
sector, while wave energy developers can benefit from a significantly
greater cost reduction, reaching nearly 40 %. These findings align with
those of Ref. [167], who conducted a similar study in 2017 compar-
ing LCOE values for specific technologies, including a FOWT, a WEC,
co-located wind-wave systems, and hybrid platforms such as W2Power
and Poseidon P37. Among all configurations examined, the FOWT
had the lowest cost of energy, followed by the co-located wind-wave
system. Thus, it can be concluded that integrating WECs into a float-
ing offshore wind platform consistently increases the overall project’s
LCOE while simultaneously lowering the LCOE for each individual
technology.

The same study [166] evaluated the development prospects of hybrid
wind-wave units and concluded that they may be unattractive in the near
to medium term due to development risks. Key disadvantages identified
include the potential for negative interactions between WECs, increased
wave loads compromising FOWT stability, additional structural require-
ments for the FOWT platform, and increased complexity in platform
development. Meanwhile, wind and wave energy developers can achieve
economic benefits from combined wind-wave systems without the need
to construct a fully integrated hybrid system.
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Fig. 24. Estimated LCOE values for coupled wind-wave systems and sepa-
rately for floating wind and wave developers across different asset sharing
configurations. The data is extracted and analysed from Figs. 4-4, 4-5, 4-6 in
[166].

7. Discussion

This paper has already highlighted key gaps in hybrid wind-wave
energy system research: (i) a noticeable time delay in exploring hybrid
concepts compared to the established trends in offshore wind industry,
(ii) limited experimental investigations that would significantly improve
the accuracy of the numerical models used and enhance the development
of WEC control systems, (iii) the absence of hybrid-specific mooring de-
signs, (iv) inaccurate modeling of WEC PTOs and their electrical output,
and (v) a lack of active WEC control development. Addressing these re-
quires a multi-disciplinary design optimisation framework, similar to
those developed for FOWTs [168]. While the 1-4 % LCoE reduction
achieved through control co-design optimisation of the FOWT tower and
platform might seem insignificant compared to the LCoE range of hybrid
systems (Fig. 24), such frameworks are valuable for revealing the corre-
lation and significance of design and control parameters for both FOWTs
and WECs on hybrid system performance, thus informing future design
strategies.

8. Conclusion

This paper reviews the literature on design solutions for floating hy-
brid wind-wave energy systems and attempts to identify trends that
might interest the industry and research community. An extensive
database was established containing information about the FOWT and
WEC design parameters, methodologies used to study hybrid designs, en-
vironmental conditions used for performance assessment, and reported
findings.

Analysis revealed that the majority of hybrid wind-wave designs are
still based on a 5-MW wind turbine and this trend does not seem to
change even despite the development of much larger wind turbines.
However, based on recent advances in wind energy, larger turbines are
recommended for future hybrid wind-wave projects.

The most widely used combination of a FOWT with WECs is the
semi-submersible platform integrated with three heaving devices. The
contribution of WECs to the power generation of a hybrid wind-wave
system is 9 % on average. There is a lack of references presenting WEC
power matrices, where future works could benefit the research com-
munity by providing such parameters for a better comparison between
hybrid devices. The main focus of all the studies reviewed is on wave
energy generation and platform motion, while very little attention is
paid to techno-economic analysis and load suppression, which should
be investigated in the future.

The performance assessment of the hybrid wind-wave system is
mainly done using numerical modelling, where wind turbine dynamics
is neglected in almost 40 % of the studies. Moreover, only a third of the
studies consider the wind and wave climate of the potential deployment
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site, mainly focusing on operational (not survival) environmental condi-
tions. The analysis of the reported results indicates that the integration
of WECs with a floating platform generally amplifies motion in heave
and suppresses pitch dynamics.

CRediT authorship contribution statement

Nataliia Y. Sergiienko: Writing — review & editing, Writing
- original draft, Visualization, Validation, Software, Methodology,
Investigation, Formal analysis, Data curation, Conceptualization. Lei
Xue: Writing — review & editing, Writing — original draft, Investigation,
Formal analysis, Data curation. Leandro S.P. da Silva: Writing — re-
view & editing, Validation, Methodology, Formal analysis. Boyin Ding:
Writing - review & editing, Supervision, Funding acquisition. Benjamin
S. Cazzolato: Writing — review & editing, Supervision, Funding acquisi-
tion.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgment

The authors acknowledge the funding support of the Australia-
China Science and Research Fund, Australian Department of Industry,
Innovation and Science (ACSRF66211). Author Sergiienko is the re-
cipient of an Australian Research Council Early Career Industry
Fellowship (project number IE230100545) funded by the Australian
Government. Author Xue acknowledges Shandong Provincial Natural
Science Foundation (Grant No. ZR2021ZD23), the Offshore Wind
Power Intelligent Measurement and Control Research Centre and
Laboratory Construction at the Ocean University of China (Grant No.
861901013159), and the financial support from the China Scholarship
Council.

Appendix A. Wave energy converter demonstrator projects

Table 2 provides data for the WEC demonstrator projects used to
generate Fig. la.

Table 2
Selected WEC demonstrator projects.
Year Project name Power (MW) References
2001 Limpet 0.25 [169]
2004 Pelamis 0.75 [170]
2006 Lysekil 0.01 [171]
2006 Wavebob 1 [172]
2009 WaveStar 0.6 [173]
2009 Wave Dragon 0.02 [174]
2009 Oyster 0.315 [175]
2011 Power Buoy 150 0.15 [176]
2011 Mutriku 0.296 [177]
2016 Azura 0.02 [178]
2016 CETO 5 0.24 [179]
2019 WaveRoller 0.35 [180]
2020 Sharp Eagle 0.5 [181]
2021 UniWave 0.2 [182]
2023 C4 0.6 [183]
2023 Nankun 1 [184]
2024 WavePiston 0.2 [185]
2024 OE35 1.25 [186]

Appendix B. FOWT projects

Table 3 summarises the FOWT demonstration projects and commer-
cial projects globally.
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Table 3
FOWT demonstration and commercial projects [187-190].
Project name Year (on water) Power [MW] Platform type Design company Country
Demonstration projects
Hywind 2009 2.3 Spar Equinor Norway
WindFloat 2011 2.0 Semi Principle Power Portugal
Goto 2013 2.0 Spar TODA Corporation Japan
Mirai 2013 2.0 Semi Fukushima Forward Japan
Shinpuu 2015 7.0 Semi Fukushima Forward Japan
Hamakaze 2016 5.0 Spar Fukushima Forward Japan
Floatgen 2017 2.0 Barge Ideol France
Hibiki 2018 3.2 Barge Ideol Japan
Sanxia Yinling Hao 2021 5.5 Semi China Three Gorges Corp China
TetraSpar 2021 3.6 Spar Stiesdal Denmark
Sath 2022 2.0 Barge Saitec Spain
FuYao 2022 6.2 Semi China State Shipbuilding Corp China
CNOOC Guanlan 2022 7.25 Semi China National Offshore Oil Corp China
Guoneng Sharing 2023 4.0 Semi China Energy Investment Corp China
OceanX 2024 16.6 Semi Mingyang Group China
Wind farms
Hywind Scotland 2017 30.0 Spar Equinor UK
WindFloat Atlantic 2019 25.0 Semi Principle Power Portugal
Kincardine 2021 50.0 Semi Principle Power UK
Hywind Tampen 2022 88.0 Spar Equinor Norway
Provence Grand Large 2024 25.0 TLP SBM Offshore France
Data availability [21] Dong X, Li Y, Li D, Cao F, Jiang X, Shi H. A state-of-the-art review of the hybrid
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