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A B S T R A C T

To ensure a reliable operation over the life time of wave energy converters (WECs), a number of load cases need
to be considered according to international standards for marine structures to determine an optimal design.
This paper outlines the procedure of obtaining an environmental design load for the line force of a 1:30 scaled
point-absorber WEC using an environmental contour with a 50-year return period for the Dowsing site in
the North Sea. To obtain the response of the WEC during extreme conditions, a numerical WEC-Sim model
is developed and calibrated with experimental wave tank tests to augment the data required for such design
load analysis. The design load for the line force is estimated based on the full long-term extreme response
computed from the full sea state approach by considering 180, 360, and 720 sea state samples as well as the
contour approach for the sea state that gives the most extreme response. Further, a probabilistic approach is
used to quantify the probability of failure for a critical mechanical component of the system such as shackle.
The result shows that the numerical WEC-Sim model is able to sufficiently replicate the real response of the
system during extreme irregular waves. The Bayesian theory with Monte-Carlo algorithm is found to be an
excellent tool for identifying the degree of belief in the statistical models used for the short-term extreme
response analysis. Considering the ultimate limit state, the design load for the 1:30 scaled system is calculated
as 670.95 N (i.e. 18.11 MN for a full-scale system) after applying the partial load safety factor of 1.35 on
the full long-term extreme response of the system for the 9.1 years return period (i.e. 50 years in a full-scale
model).
1. Introduction

To assess the survivability of marine structures, the design load
cases (DLCs) are required to be determined for the highest expected
loads over the life time of a device. There are a few international
standards for marine structures (DNV, 2014; IEC, 2016; Commission
et al., 2019) outlining the best practices to determine the design load
cases. The international standards recommend to obtain the design load
for each load type (i.e. hydrostatic, hydrodynamics, and aerodynamic
loads) and environmental load conditions (i.e. normal, survival under
extreme, and abnormal environmental conditions). The 50-year sea
states characterized by significant wave height (𝐻𝑠) and peak period
(𝑇𝑝) are advocated by the International Electrotechnical Commission
(IEC) to model the extreme wave conditions and the response of the
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wave energy converters (WECs) during their survival mode (Neary
et al., 2021).

The question of finding the best framework to define the design load
for offshore structures is addressed by many authors by looking through
different aspects such as data augmentation, environmental contour
methods, short-term and long-term extreme response methods, and
more. van Rij et al. (2019a) approximated the design load for a two-
body point-absorber (RM3) considering three different computational
fidelity: a potential flow boundary-element method (WAMIT) in the fre-
quency domain, a modified version of the linear-based WEC-Sim model
in the time domain, and a computational fluid dynamics (CFD) model
coupled with the finite element method (FEM) in time domain for
both focused and regular waves. Through comparison of the numerical
data with the experimental, the authors found that: WAMIT could not
vailable online 10 September 2022
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accurately capture the nonlinear mooring force, the three-dimensional
structural moments were underestimated by their WEC-Sim model,
and high nonlinear responses were achieved by CFD coupled with
FEM to predict the linear-based most-likely extreme response (MLER)
design load for the focused waves. Edwards and Coe (2019) evaluated
five environmental contours, i.e. principal component analysis (PCA),
Rosenblatt, Gaussian, Gumbel, and Clayton, for the two-body floater
RM3 WEC. They observed that the PCA method predicted larger signif-
icant wave height for longer energy periods considering the given data
set. The authors further noted the importance of this finding and its
influence on the design decisions when assessing for instance mooring
tension that is a low frequency phenomenon. Neary et al. (2020)
compared different data sources (i.e. buoy measurements and wave
model outputs), and different methods (i.e. univariate and bivariate) to
estimate extreme sea states for several regions along the US East and
West Coasts. They concluded that for the same data, both univariate
and bivariate methods showed fair agreement on average with mostly
random discrepancies. When comparing the extreme significant wave
heights derived from two data sources, they detected a systematic bias
for which a simple linear correction could compensate for those from
buoy measurements, while such an approach was found insufficient
for those from the environmental contour. Vanem (2015) investigated
the uncertainty associated to the estimation of the extreme values for
three data sets for the North Atlantic Ocean. The summary of the
estimated 20-year and 100-year return values for various methods such
as GEV, Gumbel, Weibull, Frechet, GPD, and the average conditional
exceedance rate method (ACER) were presented. A large variability was
noticed depending on the extreme value analysis approach. Further, the
author inferred that it is not straightforward to select a single method
or approach that is entirely preferred for this sort of analysis. Coe et al.
(2018b) inspected the best-practice for predicting the design response
of a spheroid floater WEC using full sea state long-term approach.
Evidence showed that 50 sea states within the environmental contour
provided a stable result for the given WEC. Also, increasing the number
of sea states did not change the predicted response level notably,
however, it reduced the uncertainty in the response level.

The main objective of this study is to determine the design load for
the line force of a point-absorber WEC from an environmental contour
with 50-year return period for the Dowsing Site in the North Sea.
The novelties of the paper are to present: (1) a numerical WEC-Sim
model with inclusion of different friction sources that is calibrated for
extreme conditions based on the wave tank experimental data; (2) a
statistical approach based on the Bayesian theory and Markov chain
Monte-Carlo algorithm as a guideline to find the best model for the
short-term extreme response; (3) the design load for the line force and
the discussion on the probability of failure for a critical component of
the system based on a wave tank experiment performed for extreme
wave conditions.

The remainder of the paper is organized as follows: in Section 2,
the experimental wave tank setup, numerical WEC-Sim model, and
calibration for data augmentation are explained. Further, the theory
and method to determine the design load through short- and long-term
extreme analyses and the probabilistic failure using reliability analysis
are explicated. The results of the WEC-Sim model, statistical approaches
for computing the short- and long-term extreme response of the system,
and the probabilistic failure analysis of a critical component are pre-
sented in Section 3. The discussion of the results, the uncertainties in
the methods, and the possible future works are deliberated in Section 4.
Lastly, Section 5 summarizes the conclusion of the work.

2. Theory and method

2.1. Design load case strategy

The design load case is defined as a design situation during which
different loads are exerted on the structure. The design situations may
2

consist of: power production; start-up; normal shutdown; emergency
shut down; parked or idling; transport, maintenance, and repair. The
strategy to define the environmental design load (DL) for the line
force of a point-absorber WEC in this study is summarized as: First
the environmental condition is obtained by Wrang et al. (2021) for
a 50-year environmental contour for the Dowsing site. Second, the
physical 1:30 scaled wave tank experiment is conducted by Shahroozi
et al. (2022) where the sea states are chosen based on the 50-year
environmental contour obtained by Wrang et al. (2021). Third, the
WEC-Sim (Ruehl et al., 2021) numerical dynamic model is constructed
and validated against experimental data for further data augmentation.
Some information about the WEC-Sim model is given in Shahroozi
et al. (2021) and greater details are provided here. In this study,
the simulation time of 1 h with 20 seeds (i.e. the same as DNVGL,
2015) is used. Fourth, the short-term extreme response for the 1-hour
simulations is estimated through different statistical methods. Fifth, the
long-term extreme response of the point-absorber WEC considered in
this study is achieved for the Dowsing site in the North Sea. Sixth, the
design load is specified by considering the partial safety factor for the
load.

A limit state refers to a condition beyond which the structure and
structural components fail to fulfill their design requirements (DNVGL,
2015). The limit states may be divided into different categories such
as (1) ultimate limit state (ULS) that is associated to the maximum
capacity (resistance) of the load-carrying device and its subsystems; (2)
fatigue limit state (FLS) that corresponds to the failure of the system
resulted form cyclic loading; (3) accidental limit state (ALS) that is
related to the survival conditions after a damage or due to nonlinear
environmental conditions; (4) serviceability limit state (SLS) that refers
to tolerance criteria for the design usage purpose (DNVGL, 2015).
Depending on the operational condition, the design load cases need to
be considered for different limit states, i.e. ULS, FLS, ALS, and SLS,
and considering different load categories, i.e. permanent load, variable
functional load, environmental load, and deformation load. Here, we
focus on the ultimate limit state to identify the design load for the line
force based on the environmental loads.

Note that the computation for both short-term and long-term ex-
treme response analyses is conducted for the 1:30 scaled system. There-
fore, when considering 20 seeds of 1 h simulation time for a full-scale
model, it corresponds to 20 seeds of 0.18 h for a 1:30 scaled model. In
this study, the Froude scaling law is used to translate the parameters
between the full-scale and 1:30 scaled models.

2.2. Environmental contour and sea states

The best practices from international standards and various modern
design codes recommend to adapt the short-term environmental condi-
tions on the basis of the environmental contour using inverse first-order
reliability method (I-FORM) and the joint probability distribution of the
short-term environmental parameters to identify the sea states around
or inside the environmental contour with a certain return period. Later,
this identification of the short-term conditions will be used to calculate
the long-term extreme response of the system.

Here, the sea states are selected based on a 50-year environmental
contour using the I-FORM hybrid method for the Dowsing site situated
at 56 km from the west coast of the United Kingdom in the North Sea,
see Fig. 1. The focus of the analyses here is solely on irregular wave
representations, i.e. generated based on the JONSWAP spectrum (Ver-
itas, 2010). Along the contour line, only sea states 5a to 10, excluding
sea state 7 are tested in the wave tank experiment, see Table 1. Sea
state 7 was not experimentally tested due to the limitations of the
wavemaker in the wave tank of the Ocean and Coastal Engineering
Laboratory of Aalborg University to generate such an extreme sea
state. The reader is encouraged to refer to Shahroozi et al. (2022) to
further read about the extremity of the selected sea states and the

hydrodynamic nonlinearities they lead to.
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Fig. 1. The environmental contour for sea states with the 50-year return period for
the Dowsing site in the North Sea is illustrated for the full-scale system. X and Y
axes represent the peak period (𝑇𝑝) and significant wave height (𝐻𝑠), respectively.
In this paper, sea states 5a, 6, 7, 8, 9, 10 around the environmental contour using
I-FORM hybrid are studied for the contour approach. Applying the Froude-scaling law,
1:30 scaled sea states are acquired as the inputs to both experimental and numerical
investigations.
Source: Adapted from Katsidoniotaki et al. (2021)

Table 1
Sea state information for the 1:30 scaled model based on Fig. 1.

Sea states 5a 6 7 8 9 10

𝐻𝑠 [m] 0.18 0.22 0.24 0.18 0.12 0.07
𝑇𝑝 [s] 1.64 2.10 2.42 2.56 3.20 4.29

In Wrang et al. (2021), different methods for construction of the
environmental contour such as standard and hybrid I-FORM, modi-
fied version of principle component analysis (PCA), and 2-dimensional
peaks-over-threshold (2D POT) were described for four study sites,
one of which was the Dowsing site in the North Sea considering both
observation and hindcast model data. The authors found that the PCA
method did not properly improve the dependency for the given data
unlike the PCA application explained in Eckert-Gallup et al. (2016), and
the 2D-POT method underestimated the extreme sea states. However,
the I-FORM hybrid method with a slight modification provided superior
fit in comparison.

The outline of the I-FORM hybrid method that was previously
described in Wrang et al. (2021) is summarized here: Assuming the
short-term extreme sea states, i.e. characterized by the significant wave
height (𝐻𝑠) and energy period (𝑇𝑝), are well-known, a joint probability
density function (PDF) can be utilized to determine the long-term
extreme sea states as (Haver, 1986, 2002; Haver and Winterstein, 2008;
Ronold et al., 2010; Berg, 2011):

𝑝𝐻𝑠 ,𝑇𝑝 (ℎ𝑠, 𝑡𝑝) = 𝑝𝐻𝑠
(ℎ𝑠)𝑝𝑇𝑝|𝐻𝑠

(𝑡𝑝|ℎ𝑠) (1)

where ℎ𝑠 and 𝑡𝑝 refer to certain values of 𝐻𝑠 and 𝑇𝑝. Note, that in
Eq. (1), the consideration of either zero-crossing period (𝑇𝑧), energy
period (𝑇𝑒), or peak period (𝑇𝑝) is valid. The procedure to compute
Eq. (1) can be broken down into the following steps:

i. Calculate the marginal probability density function of 𝐻𝑠 through
the hybrid model (Haver, 1986) as:

𝑝𝐻𝑠
(ℎ𝑠) =

⎧

⎪

⎨

⎪

⎩
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√
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exp
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− (lnℎ𝑠−�̃�)2

2�̃�2

}
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𝑑
𝑐

(

ℎ𝑠
𝑐

)𝑑−1
exp

{

−
(

ℎ𝑠
𝑐

)𝑑}
, for ℎ𝑠 > 𝜂

(2)

where 𝜂 is called the threshold or transition point. First, a log-
normal distribution is fitted to all observations of 𝐻𝑠 for ℎ𝑠 ≤
𝜂. The parameters �̃� and �̃� identify the mean and variance of
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the variable lnℎ𝑠, respectively. Then, the shape, 𝑑, and scale, 𝑐,
parameters of the Weibull tail distribution are achieved through
continuity requirement of the hybrid model in both density and
distribution functions at ℎ𝑠 = 𝜂. It is important to achieve an ap-
propriate fit for the most extreme values of 𝐻𝑠, therefore, Wrang
et al. (2021) considered only the upper 10% of the 𝐻𝑠 data to
determine the threshold, 𝜂. The authors noted that the Cramér–
von Mises goodness-of-fit (GOF) metric is used to define the value
of 𝜂 through considering only this upper 10% of the 𝐻𝑠 data.

ii. Calculate the marginal probability density function of 𝑇𝑝 condi-
tioned on 𝐻𝑠 using a log-normal model as (Haver and Winterstein,
2008; Berg, 2011):

𝑝𝑇𝑝|𝐻𝑠
(𝑡𝑝|ℎ𝑠) =

1
√

2𝜋𝜎(ℎ𝑠)𝑡𝑝
exp

{

−
(ln 𝑡𝑝 − 𝜇(ℎ𝑠))2

2𝜎(ℎ𝑠)2
}

(3)

where 𝜎(ℎ𝑠) and 𝜇(ℎ𝑠) denote the conditional standard deviation
and expected value of the variable ln 𝑡𝑝 given ℎ𝑠, respectively.
A smoothed function is used on parameters 𝜎(ℎ𝑠) and 𝜇(ℎ𝑠) to
extrapolate the data beyond the observation range, i.e. the same
as Eq. (7) and Eq. (8) in Haver and Winterstein (2008):

𝜇(ℎ𝑠) = 𝑎0 + 𝑎1ℎ
𝑎2
𝑠 (4)

𝜎(ℎ𝑠)2 = 𝑏0 + 𝑏1 exp{−𝑏2ℎ𝑠}.

One way to obtain the parameters 𝑎0, 𝑎1, 𝑎2, 𝑏0, 𝑏1, and 𝑏2 is to
split the 𝐻𝑠 data into bins, fit a log-normal distribution to 𝑇𝑝 data
in each bin to obtain 𝜇(ℎ𝑠) and 𝜎(ℎ𝑠), and finally estimate these
parameters by curve fitting to the calculated 𝜇(ℎ𝑠) and 𝜎(ℎ𝑠) for
various ℎ𝑠.

iii. Transform the cumulative distribution functions (CDF) into a u-
space of uncorrelated standard Gaussian variables, 𝑈1 and 𝑈2,
using the Rosenblatt transformation scheme (Rosenblatt, 1952;
Chang, 2015):

𝑃𝐻𝑠
(ℎ𝑠) = 𝛷(𝑢1) (5)

𝑃𝑇𝑝|𝐻𝑠
(𝑡𝑝|ℎ𝑠) = 𝛷(𝑢2)

where 𝛷() is defined as the standard Gaussian cumulative dis-
tribution function. This transformation removes the correlation
between 𝐻𝑠 and 𝑇𝑝.

iv. Define the 50-year contour line in the u-space along the circle
𝛽 =

√

𝑈2
1 + 𝑈2

2 where 𝛽 is the radius of the circle and can be
obtained as (Berg, 2011):

𝛽 = 𝛷−1
(

1 −
𝑇𝑠𝑠

8760 𝑇𝑟

)

(6)

where 𝑇𝑠𝑠 and 𝑇𝑟 are the sea state duration and return period, re-
spectively. The environmental contour here is constructed based
on the sea state duration (𝑇𝑠𝑠) of one hour. It used to be a
common practice to inflate the circle to achieve a satisfactory
environmental contour by compensating for the approximation
of the true stochastic response with its median value (Berg, 2011):
𝛽∗ = 𝛽∕

√

1 − 𝛼2 where 𝛼2 is usually given in the range of 0.1 to
0.2. Now, other alternatives may be used to obtain more accurate
environmental contour such as correcting the median response or
considering a higher percentile of 𝐻𝑠 data to define the threshold
value as it was considered for the hybrid model in Wrang et al.
(2021) and explained in Eq. (2). Hence, no inflation rate was
taken in the hybrid model by Wrang et al. (2021) which is used
here.

v. Transfer back the standard Gaussian variables, 𝑈1 and 𝑈2, into 𝐻𝑠
and 𝑇𝑝 to construct the 50-year environmental contour based on
the original coordinates:

ℎ𝑠 = 𝑃−1
𝐻𝑠

(𝛷(𝑢1)) (7)

𝑡 = 𝑃−1 (𝛷(𝑢 )|𝐻 = ℎ ).
𝑝 𝑇𝑝|𝐻𝑠 2 𝑠 𝑠
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Fig. 2. In (a), the wave tank sketch is shown. In (b), the section view and 3D view of the buoy is illustrated. In (c), the linear friction PTO is depicted.
Source: The sketches (a) and (b) are retrieved from Shahroozi (2021), Shahroozi et al. (2021), respectively.
The data to draw the environmental contour is based on 15.4 years
of observations between 2003 and 2019 with a network of wave buoy
measurements (WaveNet, 2022) located at the UK coastline (Wrang
et al., 2021). Note that the observational data set of 15.4 years can
be relatively short to construct a 50-year environmental contour. Often
in extreme value analysis (e.g. generalized extreme value model (GEV)
fit using annual maxima), it is more common to derive return levels
corresponding to about twice the length of the available record. How-
ever, there are very few observational sites that have about 25 years of
observations, and wave-modeled data sets often do not reproduce all
aspects of observations well enough to act as a substitute for the direct
observations.

2.3. Wave tank experiment

The small scale 1:30 wave tank experiment is conducted for extreme
wave conditions in the Ocean and Coastal Engineering Laboratory of
Aalborg University. The experimental setup consists of a linear friction
power take-off (PTO), an aluminum cylindrical buoy with ellipsoidal
bottom, and three pulleys which connect the buoy to the PTO via a
3 mm Dyneema rope, see Fig. 2. The wave tank experimental setup here
is a 1:30 scaled of the Uppsala University WEC. This scaling is chosen
to be large enough to represent a realistic system while being small
enough so that the extreme wave from the North Sea can be generated
in the wave tank test (Shahroozi et al., 2022).

The PTO applies a constant friction damping force in the vertical
movement of the rod that is rubbing against a spring-Teflon module.
The total PTO mass is 2.138 ± 0.001 kg including the translator and all
its attached equipment. In this study, we only focus on the PTO damp-
ing force of 7.4 N, i.e. corresponding to the damping configuration 𝐷1
in Shahroozi et al. (2022). The motion of the translator is constrained
only with an upper end-stop with a spring coefficient of 5.9 N/mm. The
stroke length is considered 220 mm.

The buoy has a diameter, height, and draft of 330 mm, 380 mm, and
230 mm, respectively, with a mass of 15.73 ± 0.001 kg. To minimize
the drag forces, an ellipsoidal bottom is considered in the design of
the buoy. The center of gravity is located at 118.6 mm directly above
the bottom center of the buoy. Considering a coordinate system at
the center of gravity with the Z axis pointing in the upright vertical
direction, the moments of inertia, i.e. 𝐼𝑥𝑥, 𝐼𝑦𝑦, and 𝐼𝑧𝑧, are 0.3537 kg
m2, 0.3536 kg m2, and 0.2918 kg m2, respectively. SolidWorks (CAD)
is used to compute both center of gravity and moments of inertia.

The measurement system is comprised of: a draw-wire position
sensor to measure the translator movement, a Qualisys system to track
4

the motion of the buoy in six degrees of freedom using four cameras,
two load cells to collect the force data with a capacity of 2000 𝑁 and
accuracy of ± 0.3%, and eight wave gauges to measure the surface
elevation. The data from the draw-wire position sensor and load cells
are logged and transmitted with two SG-Link-200-OEM which commu-
nicate with one LORD sensing WSDA with the same sampling frequency
as wave gauges, i.e. 256 Hz, while the Qualisys system has a sampling
frequency of 300 Hz. The buoy is positioned at 6.54 m and 6.477 m
from side walls, and 4.819 m from the wavemaker. The water depth of
0.73 ± 0.02 m is considered. The detailed information about the wave
tank experiment can be found in Shahroozi et al. (2022) and Shahroozi
et al. (2021).

2.4. WEC-Sim model

The WEC-Sim (Ruehl et al., 2021) model consists of a buoy that
is meshed by the Rhino software (Rhinoceros, 2021) and three one-
degree-of-freedom (1-DoF) WEC-Sim PTOs connected in series to mimic
the motion of the buoy in surge, heave, and pitch motion. To empha-
size, the physical PTO in the experiment is a linear friction PTO that is
moving only in the vertical direction (1-DoF), while, the three PTOs in
the WEC-Sim model are merely simulation blocks which both constrain
the motion of the buoy in three degrees of freedom, and provide the
feedback and actuation force, see Fig. 3.

The WEC-Sim simulation has been considered for 1-hour storms
with 20 seeds corresponding to 0.18-hour duration for the 1:30 scaled
model. This simulation length is chosen based on the 1-hour sea state
duration in the construction of the environmental contour, see Eq. (6).

2.4.1. Weakly nonlinear effects
To capture weakly nonlinear effects in the buoy’s dynamic, the

nonlinear buoyancy and Froude–Krylov forces (Lawson et al., 2014) are
considered using nlHydro = 2 in the WEC-Sim input file. This option
computes the Froude–Krylov and nonlinear hydrostatic forces through
the integration of the pressure owing to the instantaneous wave ele-
vation and instantaneous buoy position. Thereby, the buoyancy is no
longer assumed as a constant value, and in general, the equation of
motion is approximated with a higher accuracy.

2.4.2. Drag coefficients and force
The quadratic viscous drag force is computed as 𝐅𝐷 = −𝐹𝐷 �̂� in

vector form where 𝐹𝐷 is the magnitude of the drag force, and �̂�
is the unit vector in the direction of velocity. This implies that the
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Fig. 3. The WEC-Sim model showing the buoy and the three WEC-Sim PTOs connected
in series.
Source: Retrieved from Shahroozi et al. (2021)

drag force opposes the velocity of the buoy at all times. Further, the
magnitude of the drag force is given as 𝐹𝐷 = 1∕2𝜌𝐴𝐶𝐷𝜈2 in which 𝜌
is the water density, 𝐴 is the cross-sectional area of the buoy, and 𝜈
is the buoy’s velocity. The derivation of the viscous drag coefficient
𝐶𝐷 can be achieved either through numerical simulations (Todalshaug
et al., 2011; van Rij et al., 2017, 2019b), following the Reynolds
number and the device geometry (Tosdevin et al., 2020), or with some
experimental measurements (Bosma et al., 2016). The experimental
measurement technique uses the decay test to obtain 𝐶𝐷 in several
degrees of freedom. However, it is not straightforward to perform the
decay test in all degrees of freedom. In this study, the decay test is
experimentally performed only for the heave motion. Then, the drag
coefficient in heave is acquired through curve fitting of the decay
test response from experiment to the numerical (WEC-Sim) one by
means of least square method. The drag coefficient in surge is achieved
through tuning the amplitude response operator (RAO) in WEC-Sim to
the experimental one. The derivation of the drag coefficient in pitch
motion is somewhat more difficult and the experimental measurement
(i.e. performing the decay test in pitch motion) is more crucial to accu-
rately calculate this coefficient in pitch motion. Here, in the absence
of decay test in pitch motion, an alternative, but by no means the
best, solution is considered where the least square method is used to
calibrate the response of the buoy in pitch motion to the experimental
one that is captured by the Qualisys system, in a regular sea state.
Hence, the drag coefficient and characteristic area corresponding to
the surge, heave, and pitch are introduced using body(1).viscDrag.cd
and body(1).viscDrag.characteristicArea in the WEC-Sim input file, re-
spectively. Note that the WEC-Sim model implemented in this study
is more advanced and complex in comparison with the preliminary
model explained in Shahroozi et al. (2021) through consideration of a
more accurate way to simulate the end-stop spring and pulley friction
modules. Hereupon, the input parameters for the drag coefficient are
updated to 0.21, 0.21, and 0.01 for surge, heave, and pitch respectively.

2.4.3. WEC-Sim line force
The line force in the WEC-Sim model is determined through defining

the forces in the heave and surge motion, and the moment in pitch mo-
tion. First, a body-fixed coordinate system (i.e. WEC-Sim PTOs’ tracker)
5

Fig. 4. Buoy’s motion trajectory to derive the forces in heave and surge motion, and
the moment in pitch motion.
Source: Retrieved from Shahroozi et al. (2021).

is considered. This coordinate coincides with the global coordinate
system located at the water plane when the waves are undisturbed.
Then, given the free body diagram that is shown in Fig. 4, the forces
and moment for the buoy can be derived as:

𝐹surge = −𝐹line sin(𝜃 + 𝜙) (8)
𝐹heave = −𝐹line cos(𝜃 + 𝜙)

𝑀pitch = −𝐹surge𝐿0 cos(ℎ5) + 𝐹heave𝐿0 sin(ℎ5)

where the forces in heave and surge motion are 𝐹heave and 𝐹surge,
respectively, while the moment in pitch motion is defined as 𝑀pitch.
Further, 𝐹line is the line force seen from the buoy side. Looking at Fig. 4
again, the distance from the water plane to the loop connected to the
buoy is defined as 𝐿0. Moreover, ℎ5 is the pitch angle of the buoy,
and 𝜃 is the angle between the equilibrium position of the buoy and
its disturbed position considering the body-fixed coordinate system.
Further, 𝜙 is the angle between 𝐿2 and 𝑅2. Hence, the angles 𝜃 and
𝜙 are obtained as (Shahroozi et al., 2021):

𝜃 = tan−1
(

ℎ1
𝐿1 + ℎ3

)

(9)

𝜙 = sin−1
(

𝐿0 sin(𝜃 − ℎ5)
𝑅2

)

where the surge and heave displacements are defined by ℎ1 and ℎ3,
respectively, and 𝐿1 is the distance from the pulley at the basin to the
water plane. The distance between the pulley connected at the wave
basin to the load cell connected at the bottom of the buoy at its non-
equilibrium position is 𝑅2 and is computed as (Shahroozi et al., 2021):

𝑅2
2 = 𝐿2

2 + 𝐿2
0 − 2𝐿0𝐿2 cos(𝜃 − ℎ5) (10)

where 𝐿2 = ℎ21+(𝐿1+ℎ3)2 is the distance form the body-fixed coordinate
system of the buoy at non-equilibrium position to the pulley connected
at the basin.

Looking at the PTO from the buoy side, the line force can be derived
from the equation of motion (vector form) as:

𝑚PTO�̈�PTO = 𝐅line + 𝐅endstop + 𝐅𝑓PTO + 𝐅𝑓𝑝 + 𝑚PTO𝐠 (11)

where the translator mass including all the components connected to it
is 𝑚PTO, and 𝐅endstop, 𝐅𝑓PTO , and 𝐅𝑓𝑝 are the end-stop spring, PTO, and
pulley friction forces, respectively. Lastly, �̈�PTO and 𝐠 are the PTO and
gravitational accelerations, respectively.

2.4.4. WEC-Sim PTO friction model
Modeling a friction system to mimic the physical system accurately

is not a trivial task and rather involves large degrees of complexity.
Here, a concise explanation of various static and dynamical friction
models are presented. Thereafter, the choice of the friction model for
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the WEC-Sim system considered here is described. The readers are
encouraged to refer to Huang et al. (2019) for further information,
where the authors provided an excellent overview of different friction
models and compensation schemes.

A classical static friction model is one of the simplest and most well-
known models that is featured by its relation between the velocity and
frictional force, representing the Stribeck effect in friction (Armstrong-
Helouvry and Soom, 1992; Armstrong-Helouvry, 2012), and also in-
cludes the Coulomb and viscous frictions. In this model and in the
absence of viscous friction, when two objects are slipping against each
other, the frictional force stays constant until the direction of motion is
reversed (Fu et al., 2017; Tjahjowidodo et al., 2007). Then after, it has
been discovered experimentally that there is a memory effect owing
to the switch over from one state to another. Thereby another static
friction model called time-delay (Hess and Soom, 1990) is introduced
to capture this memory effect by considering a time lag. The challenge
with this model is that a large amount of experimental data should be
available to build up the model. Later, through a set of observations,
it has been realized that although the classical and time-delay models
represent the sliding phase, they do not reflect the friction at very low
velocities existing in the microscopic level, e.g. deformation of surface
asperities. Therefore, a dynamical friction named LuGre model (De Wit
et al., 1995) has been proposed to both account for slip and stick motion
as well as zero-slip displacement. However, the LuGre Model is not able
to capture pre-sliding hysteresis behavior properly. The elasto-force is
added in the LuGre model to resolve this drawback. Hence, the result
of this correction is called the Generalized Maxwell-slip (GMS) model,
i.e. a dynamical friction model (Swevers et al., 2000; Lampaert et al.,
2002).

Although the more advanced models can replicate the physical
behavior more accurately, more parameters are often required to be
estimated, and they are computationally more expensive. Therefore,
one must consider these when choosing between simple and advanced
models especially when the computational time is important.

In this work, the PTO friction is found to be best represented by
a static friction model considering the Stribeck, and Coulomb compo-
nents due to first and foremost: the necessity of high-speed simulation
runs for calculating the WEC response for different sea states, and
second, the absence of the experimental data for derivation of other
friction model parameters. The friction force in this study is modeled
as a function of the relative velocity (Armstrong and de Wit, 1995) as:

𝐹𝑓PTO =
√

2𝑒(𝐹brk − 𝐹𝐶 )exp
(

−
( �̇�PTO

𝑣St

)2
)

�̇�PTO
𝑣St

+ 𝐹𝐶 tanh(
�̇�PTO
𝑣Coul

) (12)

where the breakaway friction and Coulomb forces are denoted as 𝐹brk
and 𝐹𝐶 , respectively. Further, the Stribeck velocity threshold is defined
as 𝑣St = 𝑣brk

√

2, and the Coulomb velocity threshold is identified as
𝑣Coul = 𝑣brk∕10 where 𝑣brk is the breakaway friction velocity. The
relative velocity is identified as �̇�PTO. Moreover, 𝑒 is the Euler’s number
that is equal to 2.71828 approximately. Note that the viscous friction
is considered zero due to a dry contact between the surfaces (i.e. here
between Teflon and aluminum rod). To put the concept in perspective,
Fig. 5 illustrates the contribution of each frictional component, where
the sum of the Stribeck and Coulomb frictions at zero velocity presents
the breakaway friction force. The Coulomb friction is the friction that
occurs as a constant force by opposing the movement. The Stribeck
friction refers to the characteristic of the negative slope that occurs at
low velocities.

2.4.5. WEC-Sim pulley friction model
Similarly, the pulley friction is modeled as a function of the relative

velocity:

𝐹𝑓𝑝 = 𝜇𝑝𝐹line tanh
( �̇�PTO

)

(13)
6

𝑣Coul
Fig. 5. The contributions of the Stribeck, Coulomb, and viscous components for the
friction model that is adopted to simulate the WEC-Sim PTO friction.

where 𝜇𝑝 is the pulley friction coefficient. This coefficient is obtained
through a set of simple experiments where the translator is manually
moved downward with nearly constant velocity while measuring the
forces induced on the load cells from both PTO and buoy sides. The
pulley friction for such a quasi-static motion when the rope is in tension
is obtained by subtracting the forces gathered by the load cells attached
to the buoy and PTO translator. Then, the pulley friction coefficient
can be computed by considering the proportionality of the friction
force to the line force that is seen from the buoy side (measured by
the buoy load cell). Afterwards, tanh (�̇�PTO∕𝑣Coul) relates this friction to
the relative velocity. For the sake of simplicity, we neglect the effect
of the Stribeck friction as it has a minimal effect. Thereby, we only
model the Coulomb component where the Coulomb force in Eq. (12) is
𝐹𝐶 = 𝜇𝑝𝐹line. Note that the pulley friction introduced here is a closed
loop module in WEC-Sim due to its dependency to 𝐹line.

2.4.6. WEC-Sim end-stop module
The end-stop mechanism protects the structure from extreme mo-

tions and impact forces during extreme wave conditions, and therefore,
it reduces the mechanical failure to a great degree (Chen et al., 2021;
Eskilsson et al., 2021). For the experiment conducted for this study, a
spring with a coefficient of 5.9 N/mm is used for the end-stop so that
the experiment can replicate the extreme wave conditions where the
full compression of the end-stop spring is often observed. The readers
are encouraged to see Fig. 22 and section 4.4 in Shahroozi et al. (2022)
to have a further insight about the end-stop spring mechanism and
compression in extreme sea states. Thus, the involvement of the end-
stop spring leads to strong non-linearities which has a dominant effect
in the equation of motion.

It is common to model this module as a rigid or an elastic end-stop.
In the rigid end-stop, the momentum conservation theorem holds, and
the contact stop tries to replicate an ideal impact where an instanta-
neous change in the velocity occurs. It is not straightforward to model
a rigid end-stop in WEC-Sim since it results in an instantaneous infinite
force and acceleration in the system. On the other hand, the elastic
end-stop gives closer results to the actual behavior of the system where
the contact stop is often modeled as a spring-damper. In this study, the
end-stop is modeled as an elastic end-stop following:

𝐹endstop =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑘es(𝑙0 − 𝑙c) + 𝑘st

(

𝑧 − 𝑙s
2

)

+ 𝑐st�̇�, (𝑖)

𝑘es(𝑙0 − 𝑙c) + 𝑘st

(

𝑧 − 𝑙s
2

)

, (𝑖𝑖)

𝑘es

(

𝑧 −
(

𝑙s
2 − (𝑙0 − 𝑙c)

)

)

, (𝑖𝑖𝑖)

(14)

where (𝑖) is when 𝑧 > 𝑙s∕2, and �̇� > 0, (𝑖𝑖) is for 𝑧 > 𝑙s∕2, and
̇ ≤ 0, and (𝑖𝑖𝑖) is for 𝑙s∕2 − (𝑙0 − 𝑙c) < 𝑧 ≤ 𝑙s∕2. Here, the end-stop
spring coefficient is 𝑘es, and 𝑘st is the equivalent spring coefficient of
the structure. The stroke length is denoted as 𝑙𝑠, and the initial and
compressed lengths of the end-stop spring are 𝑙0 and 𝑙𝑐 , respectively.
The energy dissipation due to the impact after full spring compression
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is modeled as a viscous damper with the coefficient 𝑐st acting only when
the PTO is compressing the end-stop, i.e. �̇� > 0.

2.5. Short-term extreme response analysis

The short-term extreme response gives the answer to what will
be the largest response of the device (e.g. the bending moment, or
mooring line force) for a device operating in a particular sea state for
a specific time, i.e. usually equivalent to 1 to 3 h storm duration, and
it is assumed that during this time, the spectral density function of the
sea state remains constant (Michelen and Coe, 2015; Coe et al., 2018b).

The typical approaches to analyze the extreme value data are block-
maxima and peaks-over-threshold. In the block-maxima method, the
data is blocked into non-overlapping blocks of equal length, and a
generalized extreme value model (GEV) is used to be fitted to the
maximum of each block (Coles et al., 2001). The GEV cumulative
distribution function fitted to the maximum of each block is defined
as:

𝑃GEV(𝑥) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

exp

(

−
(

1 + 𝑘(𝑥−𝜇)
𝛼

)− 1
𝑘

)

, 𝑘 ≠ 0

exp

(

−exp
(

− (𝑥−𝜇)
𝛼

)

)

, 𝑘 = 0
(15)

or {𝑥 ∶ 1+𝑘(𝑥−𝜇)∕𝛼 > 0}, −∞ < 𝜇 < ∞, and 𝛼 > 0 where the location
nd scale parameters are introduced as 𝜇 and 𝛼, respectively. Further,
he shape parameter is 𝑘. For 𝑘 = 0, the distribution is called type I
r Gumbel distribution, while for 𝑘 > 0 and 𝑘 < 0, the distribution is
eferred to as the Frechet distribution (type II) and reversed Weibull
istribution (type III), respectively (Coles et al., 2001). Note that type
II extreme value distribution is in fact the mirror image or reversed
orm of the Weibull distribution. On the other hand, the Frechet and
on-reversed Weibull probability distribution functions are related with
Frechet(𝑥; 𝑘, 𝜇, 𝛼) = −𝑝Weibull(𝑥; −𝑘, 𝜇, 𝛼). In the peaks-over-threshold
ethod, a certain threshold is specified, and then a generalized Pareto
istribution (GPD) model is fitted to the exceedances that correspond
o the data above a chosen threshold less the threshold (𝑢): 𝑧 = 𝑥 − 𝑢
or 𝑥 > 𝑢 (Coles et al., 2001). The GPD cumulative distribution function
itted to the exceedances is given as:

GPD(𝑧) =

⎧

⎪

⎨

⎪

⎩

1 −
(

1 + 𝑘𝑧
𝛼

)− 1
𝑘 , 𝑘 ≠ 0, 1 + 𝑘𝑧

𝛼 > 0

1 − exp
(

− 𝑧
𝛼

)

, 𝑘 = 0, 𝑧 > 0
(16)

where the scale and shape parameters are denoted as 𝛼, and 𝑘, re-
spectively. In the special case of 𝑘 = 0, the distribution is reduced to
he exponential distribution (ED). For 𝑘 < 0, there is an upper bound
f 𝑢 − 𝛼∕𝑘 for the distribution of exceedances, while for 𝑘 > 0, the
istribution has no upper limit (Coles et al., 2001).

Both block-maxima and peaks-over-threshold methods can be ap-
lied for both stationary, i.e. the data series has stochastic properties
hich are constant over time or unfollowed by strong variation pat-

erns, and non-stationary sequences. The length of block size and the se-
ected threshold should be considered with caution. Too low a threshold
r block size leads to a bias in the model, whereas, too high of a thresh-
ld or block size results in a high variance. A pragmatic consideration
f the block size of 1 year is often taken when dealing with the block-
axima method. This means that a large amount of data is required for

tatistical modeling via the block maxima method. A common practice
o cope with the mutual dependency between exceedances in the peaks-
ver-threshold method is declustering, i.e. clustering the data through
n empirical strategy, and therefore, fitting the GPD distribution to
he maximum of each cluster. Hence, intermediate- to long-term data
s desired to achieve an appropriate fit with the peaks-over-threshold
ethod.

One important challenge from the reliability point of view in the
esign of WECs is to reliably identify the characteristic extreme value,
7

i.e. corresponding to the most probable value (MPV) or to a specific
fractile level of the short-term extreme distribution, for design checks
given the low/intermediate amount of data (Sagrilo et al., 2011). There
are several methods that can be applied to the low/intermediate time–
history of non-Gaussian data to assess the short-term extreme value
distribution. The simplest and most frequently used method is the
Weibull tail-fit distribution where the Weibull probability distribution
is fitted to the upper tail of the time-series peaks, and then, follow-
ing an asymptotic assumption (Ang and Tang, 1984), the short-term
extreme distribution can be achieved (Michelen and Coe, 2015). The
Winterstein’s method (Winterstein, 1988) is another well-established
approach which utilizes a memory-less transformation to convert the
standard Gaussian process according to the Hermite polynomials and
the first four statistical moments of the time-series. Another fairly
recent method is the average conditional exceedance rate (ACER) (Næss
and Gaidai, 2009). This model provides more flexibility in comparison
with the ones based on the asymptotic theory, and it considers the
cascade of conditioning approximations with the first one defined by
Markov-like approximation. Nevertheless, there is one limitation to this
model: it can be considered only for the cases where the Gumbel distri-
bution is considered as a proper asymptotic extreme value distribution.
The aforementioned methods may typically be applied when a long-
history of data is not available. However, the extreme response values
are still subjected to some statistical uncertainties depending on the
type of the data, the distribution model, and especially to the length
of the simulation (Sagrilo et al., 2012). Sagrilo et al. (2011) suggested
a straight-froward procedure to deal with uncertainties corresponding
to the simulation length considering a single short-time simulation
by introducing a safety factor that is adjusted to each extreme value
method. In this study, the short-term extreme response analysis has
been made considering the Weibull tail-fit, peaks-over-threshold, and
two-parameter Weibull distributions that are explained in the following
subsections. Note that the block-maxima analysis is the most straight-
forward method, however, as explained above and due to requiring a
large amount of data, it has not been considered here.

2.5.1. Weibull tail-fit distribution
The Weibull tail-fit method (Sagrilo et al., 2002) is fitted to the

upper tail of the parent distribution as it is the foremost important part
in the computation of the extreme statistics (Ang and Tang, 1984). The
following steps summarize the Weibull tail-fit approach:

i. Select the peaks of line force based on the zero up-crossings of
the surface elevation. In other words, choose the peaks of forces
in a time period between two consecutive zero up-crossings of the
surface elevation.

ii. Compute an approximate cumulative distribution function of the
peaks that are ordered in an ascending sequence (Sagrilo et al.,
2002):

𝑃 (𝑥𝑃𝑖 ) =
𝑖

𝑁 + 1
(17)

where 𝑁 is the total number of peaks, and 𝑖 represents the 𝑖th
order of peaks.

iii. Consider a set of limits for the CDF computed from the last step
as 𝐶lim𝑗

= 0.6+0.05𝑗 for 𝑗 = 1, 2,… , 7 (Sagrilo et al., 2002). Then,
for each CDF limit, fit a two-parameter Weibull distribution to the
following data set: (𝑥𝑃𝑖 , 𝑃 (𝑥𝑃𝑖 )) in which 𝑃 (𝑥𝑃𝑖 ) > 𝐶lim𝑗

(Sagrilo
et al., 2011; Michelen and Coe, 2015). The cumulative distri-
bution function of the two-parameter Weibull is considered as:

𝑃Weibull(𝑥𝑃 ) = 1 − exp

(

−
(𝑥𝑃

𝛼

)𝑘
)

(18)

where 𝛼 and 𝑘 are the scale and shape parameters, respectively.
iv. Calculate the shape and scale parameters of the final Weibull

distribution by taking the average of the estimated parameters
(shape and scale) obtained for all 𝐶 .
lim𝑗
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v. Compute the short-term extreme cumulative distribution function
based on the cumulative distribution of the peaks as (Coe et al.,
2016, 2018a; Michelen and Coe, 2015):

𝑃𝑠𝑡(𝑥) = 𝑃𝑃 (𝑥)𝑁𝑠𝑡 (19)

where the average number of peaks in each 1-hour short-term
extreme simulation is 𝑁𝑠𝑡 = 𝑁(𝛥𝑡𝑠𝑡∕𝛥𝑡), in which 𝛥𝑡𝑠𝑡 is the 1-hour
short-term extreme simulation period, and 𝛥𝑡 is the total 20 × 1
hours simulation length. In more detail, let 𝑥𝑃1 , 𝑥𝑃2 ,… , 𝑥𝑃𝑁𝑠𝑡

be
𝑁𝑠𝑡 number of independent peaks in the 1-hour short-term ex-
treme period, then the probability of 𝑥𝑃𝑖 ≤ 𝑥 for 𝑖 = 1, 2,… , 𝑁𝑠𝑡

is 𝑃𝑠𝑡(𝑥) =
∏𝑁𝑠𝑡

𝑖=1 𝑃𝑃𝑖 (𝑥).

.5.2. Peaks-over-threshold distribution
The peaks-over-threshold method (Coles et al., 2001) is also em-

loyed to investigate the upper tail of the line force distribution. The
utline of this method is presented through the following steps:

i. Specify the peaks of line force in the same way as explained in
the first step (i.) of the Weibull tail-fit method in the previous
subsection.

ii. Find an appropriate threshold for each sea state using the mean
residual life plot as well as the shape and scale parameters sta-
bility plots, i.e. illustrated in Section 3. The classical technique
to choose a proper threshold at which the generalized Pareto
distribution gives a valid and suitable model is first to look at
the mean residual plot from right to left and select the first point
(threshold) that the mean residual curve follows an approximately
linear trend. Then, for within the vicinity of the selected thresh-
old, the shape parameter should be approximately constant, while
the scale parameter should be linear (Coles et al., 2001).

iii. Fit the generalized Pareto distribution described in Eq. (16) to the
exceedances of the peaks of the line force: 𝑧𝑃 = 𝑥𝑃 −𝑢 for 𝑥𝑃 > 𝑢.

iv. Calculate the cumulative distribution of peaks based on the cu-
mulative distribution of exceedances through (Coe et al., 2016,
2018a; Michelen and Coe, 2015):

𝑃𝑃 ,GPD(𝑧𝑃 + 𝑢) = 1 −

(

𝑁pot

𝑁

(

1 − 𝑃GPD(𝑧𝑃 )
)

)

(20)

where 𝑁pot is the number of peaks above the threshold, and 𝑁 is
the total number of peaks.

v. Compute the short-term extreme cumulative distribution function
based on the cumulative distribution of the peaks in the same way
as described in the last step Eq. (19) of the Weibull tail-fit method.

.5.3. Bayesian theorem and Markov chain Monte-Carlo algorithm
The Bayesian theory and Markov chain Monte Carlo algorithm is

lso considered as another approach to calculate the short-term extreme
esponse for the two-parameter Weibull distribution and generalized
areto distribution.
Markov chain Monte Carlo (MCMC): The MCMC is a method to

sample from a distribution and to provide a sequence of the sample
data in a chain or the so-called parameter space, while, the Bayesian
theorem is a theory for interpreting the observed data. The combination
of MCMC method and Bayesian theory made a powerful tool that
revolutionized data analysis in all scientific domains (Sharma, 2017).

Let 𝑋𝑚1
, 𝑋𝑚2

,… , 𝑋𝑚𝑛
be random variables where the past, and

future states are independent, then a Markov chain sequence can be
written as (Sharma, 2017):

𝑝MCMC(𝑋𝑚𝑛+1
= 𝑥𝑚|𝑋𝑚1

= 𝑥𝑚1
, 𝑋𝑚2

= 𝑥𝑚2
,… , 𝑋𝑚𝑛

= 𝑥𝑚𝑛
) (21)

= 𝑝MCMC(𝑋𝑚𝑛+1
= 𝑥𝑚|𝑋𝑚𝑛

= 𝑥𝑚𝑛
)

where 𝑝MCMC refers to the probability density function. Predicting the
conditional distribution of 𝑋𝑚𝑛+1

depends only on the present state,
𝑋 , rather than on the future or the past. This feature particularly
8

𝑚𝑛
makes the MCMC method a strong tool for predicting the future perfor-
mances by requiring only a small data set Sharma (2017), and Hobson
et al. (2010). This chain is constructed by the transition probabilities
of one state to another which can be considered as both discrete
and continuous form. The transition probability density which can be
defined for a continuous state space is given as (Sharma, 2017):

𝐾(𝑥𝑚, 𝑦𝑚) = 𝑝MCMC(𝑋𝑚𝑛+1
= 𝑦𝑚|𝑋𝑚𝑛

= 𝑥𝑚) (22)

where 𝐾 is called the transition kernel.
Ensemble and affine invariant sampling : One way to construct the

proposal distribution for the transition kernel is the ensemble and affine
invariant sampling (i.e. the generalized case of the Gibbs sampling,
cf. Sharma (2017) sections 3.3 and 3.6). In this approach, multiple
chains work in parallel while interacting with each other to adapt the
proposal density. More importantly, the Markov chain property is not
violated by using the information available in the ensemble to adapt the
proposal distribution. The highlights of this method can be summarized
as:

• It enables a detail balance to be satisfied through conditional
sampling i.e. explained in detail in Sharma (2017).

• It results in fast convergence, although it requires the warm up
or burn-in, i.e excluding some of the iterations at the beginning
of the MCMC run. The computational cost of the warm-up grows
linearly with the number of walkers.

Likelihood function: To establish the Bayesian theory and MCMC
method, the likelihood function of the distribution of interest should
be defined. To apply this methodology, we only focus on the two-
parameter Weibull and GPD models. Note that here we consider the
two-parameter Weibull and not the Weibull tail-fit model. The likeli-
hood functions for the two-parameter Weibull given the line force peaks
(𝑥𝑃𝑖 ), and the GPD considering exceedances of the line force peaks (𝑧𝑃𝑖 )
are identified as:

𝐿Weibull(𝛼, 𝑘) =
𝑛
∏

𝑖=1

(𝑘
𝛼

)(𝑥𝑃𝑖
𝛼

)𝑘−1
exp

[

−
(𝑥𝑃𝑖

𝛼

)𝑘
]

, (23)

𝐿GPD(𝛼, 𝑘) =
𝑛
∏

𝑖=1

1
𝛼

(

1 + 𝑘𝑧𝑃𝑖
)−(1∕𝑘+1)

. (24)

Then, the log-likelihood function of the two-parameter Weibull and
GPD are defined as:

ln (𝐿Weibull) = 𝑛 ln 𝑘 − 𝑛𝑘 ln 𝛼 + (𝑘 − 1) (25)
𝑛
∑

𝑖=1
ln 𝑥𝑃𝑖 −

𝑛
∑

𝑖=1
(𝑥𝑃𝑖∕𝛼)

𝑘,

ln (𝐿GPD) = −𝑛 ln 𝛼 − (1 + 1∕𝑘)
𝑛
∑

𝑖=1
ln(1 + 𝑘𝑧𝑃𝑖∕𝛼). (26)

For the case of 𝑘 = 0 in the GPD model, the log-likelihood function is
computed as:

ln (𝐿GPD) = −𝑛 ln 𝛼 − 𝛼−1
𝑛
∑

𝑖=1
𝑧𝑃𝑖 . (27)

Prior probability: The present knowledge about the parameters of
interest is expressed by the priors. In case the prior knowledge about
the parameters of interest is not available or cannot be obtained, a
non-informative prior may be used. For the two-parameter Weibull
model, the non-informative Jeffreys prior is used for both parameters
(i.e. shape and scale) following theorem (Jaynes, 1968; Sun, 1997;
Guure et al., 2012; Erto and Giorgio, 2013):

a. Jeffrey’s prior is defined as the squared root of the determinant
of the Fisher information matrix, 𝛱𝑅(𝛼, 𝑘) ∝

√

𝐷𝑒𝑡(𝛴).
b. The reference prior is the same for 𝛼 and 𝑘 parameters, and can

be assumed as 𝛱 (𝛼, 𝑘) ∝ 1∕(𝛼𝑘).
𝑅
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For the GPD model, the Jeffreys prior for the scale parameter is
considered, while for the shape parameter, a log-normal distribution
on exp(𝑘) is considered as follows:

𝑅(𝑘) =
1

exp(𝑘)
√

2𝜋
exp

(

−𝑘2

2

)

. (28)

he parameters of this log-normal distribution are chosen so that the
rior becomes almost non-informative for a common range of the shape
arameter, i.e. −0.5 < 𝑘 < 0.5.

Note that one might have to check different prior distributions and
bserve the convergence of the model before finalizing the choice of
he prior for the GPD model. For instance, Martín et al. (2022) used
he type I Pareto for the shape parameter. Also note that in this study
or the GPD model, we do not consider the threshold (𝑢) as a variable
o be estimated, and simply we identify the threshold from observing
he mean residual life plot as explained in Section 2.5.2, the same
s Castellanos and Cabras (2007) who used a fixed threshold.
Posterior probability: The posterior describes the degree of belief

n the parameters of interest and is defined as Hobson et al. (2010):

(𝜃|𝑥𝑃 ) =
𝑝(𝑥𝑃 |𝜃)𝑝(𝜃)

𝑝(𝑥𝑃 )
(29)

where 𝜃 represents the parameters of the distribution. Further, 𝑝(𝜃|𝑥𝑃 )
depicts the posterior probability of 𝜃, and 𝑝(𝑥𝑃 |𝜃) corresponds to the
likelihood function. Moreover, 𝑝(𝜃) is the prior probability distribu-
tion that presents the degree of belief from primary knowledge about
the data. Finally, 𝑝(𝑥𝑃 ) is a normalizing constant, i.e. also named as
‘‘marginal likelihood’’ or ‘‘the evidence’’, that ensures the posterior nor-
malization to unity and can be computed as: 𝑝(𝑥𝑃 ) = ∫ 𝑝(𝑥𝑃 |𝜃)𝑝(𝜃)𝑑𝜃.
This equation is usually difficult to be analytically solved, and thereby,
numerical methods are applied.

Bayesian evidence: An estimation of the Bayesian evidence based
on the Laplace approximation is defined according to Gelman et al.
(1995) as:

𝑔(𝜃) ≡ 𝑝(𝑥𝑃 |𝜃)𝑝(𝜃) (30)

𝑝(𝑥𝑃 |) = (2𝜋)
𝑁
2
𝑝(𝑥𝑃 |𝜃∗,)𝑝(𝜃∗,)

|𝑔𝜃𝜃(𝜃∗)|
1
2

(31)

where 𝜃∗ are the parameter values for which 𝑔𝜃𝜃(𝜃) is maximum, and
is the number of data points. Also, 𝑔𝜃𝜃 is:

𝜃𝜃(𝜃∗) = −
𝜕2 ln(𝑝(𝑥𝑃 |𝜃∗,)𝑝(𝜃∗,))

𝜕𝜃2
|𝜃=𝜃∗ (32)

which for the two-parameter Weibull and GPD model is a 2 × 2 matrix.
This approximation is especially useful when the posterior can be
approximated as a Gaussian distribution around 𝜃∗. Then, the Bayes
factor is derived as, Sharma (2017), and Trotta (2017):

𝐵01 =
𝑝(𝑥𝑃 |0)
𝑝(𝑥𝑃 |1)

(33)

where 𝑝(𝑥𝑃 |0) is the marginal likelihood for the initial model, and
𝑝(𝑥𝑃 |1) is the marginal likelihood for the secondary one. Here, the
Bayesian evidence is computed to investigate the appropriateness of
each model.

Implementation and Python emcee package: In this work, Python
with emcee package is used to perform this analysis. The implementa-
tion is summarized as the following steps:

i. The peaks of line force are considered the same as the first step
(i.) of the Weibull tail-fit method.

ii. The log-likelihood function, prior probability, and posterior
probability are defined to be used in the affine ensemble sampler
for both two-parameter Weibull and GPD models.

iii. The number of walkers is chosen as 100. The sensitivity to the
number of walkers in the analysis has been studied and 100
number of walkers is concluded to be sufficient for both models.
9
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iv. Random starting values are generated around the first guess for
all parameters for different chains. Note that the initial guesses
for the inference on parameters do not require to be accurate,
since the model should be able to converge and find the posterior
probability regardless of accurate starting positions.

v. Next, the length of the chains is set to be 800. The mini-
mum acceptable number of independent samples is estimated
as 𝑁𝑡∕2𝜏 (Sharma, 2017) for each parameter in each model,
where 𝑁𝑡 is the total number of samples and 𝜏 is the auto-
correlation time. The stretch move and the differential evolution
move within emcee package are defined for the Weibull and GPD
model, respectively.

vi. The length of the burn-in for each parameter is chosen through
visual inspection of the burn-in plot. In this approach, the MCMC
sampler is run following the steps explained above, then each
parameter value is plotted for all chains as a function of the
position in the chain to find the length of burn-in.

vii. After setting the burn-in length value, the iteration is continued
until it reaches the convergence based on the auto-correlation
time under the condition that the minimum number of indepen-
dent samples is reached for each parameter.

viii. In order to compute the parameters mean, median, and cre-
dence region of 68% from the quantiles, a flattened chain is
constructed by dismissing the burn-in section of the chains.

ix. The corner plots showing the marginalized posterior probabil-
ity of the parameters are plotted in one and two dimensional
parameter space. The GOF plots are also constructed to assess
the appropriateness of the fitted model based on the parameters
mean value.

x. The Bayesian evidence, i.e. showing which model is preferred
by the data and how significant the preference is, is computed
as a metric to compare the models. For this purpose, the Laplace
approximation is chosen and the posterior is approximated with
a second order Taylor expansion around the parameter values
with the maximum probability.

.6. Long-term extreme response analysis

The long-term extreme response analysis gives an understanding of
he design response for an offshore system according to the expected
oads and response of the system during its deployment life for a
articular environmental condition. The long-term analysis may be
ccomplished by the two well-known methods of full sea state and
ontour approach to predict the design response.

The long-term full sea state approach provides an accurate and
igorous long-term response at the cost of onerous and extremely
xpensive computational time. This approach represents the expected
ong-term response distribution that requires a large number of sea
tates (𝐻𝑠 and 𝑇𝑝) obtained from both inside and around the environ-
ental contour line, and the long-term response distribution can then

e computed as (Muliawan et al., 2013; DNV, 2014; Coe et al., 2016):

�̄�𝑡(𝑥) = ∫ℎ𝑠 ∫𝑡𝑝
𝑃𝑠𝑡|𝐻𝑠 ,𝑇𝑝 (𝑥|ℎ𝑠, 𝑡𝑝)𝑝𝐻𝑠 ,𝑇 𝑝(ℎ𝑠, 𝑡𝑝)𝑑𝑡𝑝𝑑ℎ𝑠 (34)

here 𝑝𝐻𝑠 ,𝑇 𝑝 expresses the occurrence probability distribution of a
pecific sea state. Further, 𝑃𝑠𝑡|𝐻𝑠 ,𝑇𝑝 is the short-term survival function
f the response (𝑋) (e.g. mooring line, or bending moment) or the so-
alled complimentary cumulative distribution function (CCDF), and it
s defined as:

̄𝑠𝑡(𝑥) = 𝑝(𝑋 > 𝑥) = 1 − 𝑃𝑠𝑡(𝑥) (35)

n which 𝑃𝑠𝑡(𝑥) is the short-term cumulative distribution function for
-hour sea states. This analysis may be carried on considering the
ea states with different return periods of 1, 25, 50, or 100 years,
epending on the engineering design interest for various environmental

oad conditions.
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On the other hand, the contour approach (DNV, 2014; Coe et al.,
2018b,a) seeks along the environmental contour for sea states that con-
tribute to the maximum characteristic responses. The process may be
explained as: first to compute the short-term extreme response distribu-
tion for sea states along the environmental contour; and then taking the
expected value (mean) of the distributions to find the sea state which
gives the largest response; and finally considering the distribution with
the maximum expected value and using a percentile of this distribution
as the long-term response. Taking only a few sea states for this analysis
makes this approach significantly faster than the full sea state method.
However, this approach is prone to some uncertainties and may un-
derestimate the response level variability owing to neglecting various
short-term realizations within the environmental contour (DNV, 2014).
To account for this variability, a correction factor may be applied in
this method. For instance, Ren et al. (2015), Muliawan et al. (2013)
suggested multiplying the expected (mean) value from the short-term
extreme distribution by a correction factor of 1.3 that is computed
based on comparing the long-term full sea state responses with the
corresponding ones from the contour approach. Alternatively, one may
only consider a higher percentile of the selected short-term extreme
distribution to compensate for this uncertainty (DNV, 2014; Coe et al.,
2018b).

The design sea state approach and the design wave approach are
two other examples for obtaining the design response of a system.
For instance, unlike the contour approach that utilizes the joint prob-
ability distribution, the design sea state approach uses a single one-
dimensional distribution, i.e. typically the significant wave height dis-
tribution. Following that, given the return period of interest (e.g. 50 or
100 years) the expected significant wave height for the desired return
period is computed (e.g. 𝐻𝑠,50,𝐻𝑠,100). Further, the spectral periods
(e.g. peak period, 𝑇𝑝, zero-crossing period, 𝑇𝑧, or energy period, 𝑇𝑒)
are achieved from the spectral moment equation, 𝑚𝑛 = ∫ ∞

0 𝑓 𝑛�̃�(𝑓 )𝑑𝑓 ,
by knowing the data gathered for the site of interest and the empir-
ical relation for the spectral density function, �̃�(𝑓 ), (e.g. JONSWAP,
Pierson–Moskowitz, or Bretschneider spectrum). Finally, the design
response of the system is acquired through a set of simulations for
the related sea state realizations (e.g. 𝐻𝑠,50, 𝑇𝑝min < 𝑇𝑝 < 𝑇𝑝max ) (DNV,
2014). The design wave approach expands the previous approach by
squeezing the wave conditions to either a single regular (monochro-
matic, harmonic) wave, or a focused wave. The wave height for the
regular wave is taken as e.g. 𝐻𝑠,100 = 1.9𝐻𝑠, knowing the significant

ave height of interest for a particular return period. The value 1.9
omes from the assumption that the wave height follows the Rayleigh
istribution during storm conditions (Veritas, 2010; Yu et al., 2015).
ventually, the spectral density and consequently the largest response
f the device is attained similar to the design sea state approach.

Here, only the full sea state approach and the contour approach
ave been studied.

.7. Probabilistic failure

In the deterministic design approach, the load safety factor sug-
ested by the international standards is to be multiplied with the
alculated load from the long-term extreme response. Three environ-
ental load factors (𝛾𝑓 ) of 1.35, 1.0, and 1.1 are suggested for the

nalysis of the ultimate limit states (ULS) by intentional standards
orresponding to the extreme, accidental, and abnormal environmental
oad conditions, respectively, (DNVGL, 2015; Buckland et al., 2021).
o acquire the total load safety factor, the environmental load factors
hould be multiplied with the site factor (𝛾𝑠) ranging from 1.0 to 1.25.
afety factor of 1.0 is considered when several years of measurements
re available for the deployment site. Whereas, the site factor of 1.05
s for one month of measurement, and safety factor of 1.25 is for an
ncomplete measurements at the site (DNVGL, 2015). Note that instead
f considering the site factor (𝛾𝑠), one can directly consider different
10

evel of uncertainties for each environmental parameter such as wave,
water level, etc. to compensate for the site data inaccuracies (DNVGL,
2015). Here, the 50-year environmental contour is constructed based
on 15.4 years of available data. Therefore, the site factor of 1.0 is
adopted for this study. Note that for the simplicity of the analysis, the
uncertainties within the simulations are neglected.

Nevertheless, the deterministic approach using a safety factor is not
adequate to quantify the safety and reliability of a device. With this
approach, one cannot simply answer how safe and reliable the design is,
or if the device will fail and if so, how often. To be able to answer these
questions, a probabilistic analysis is necessary. Here, we describe a
simple probabilistic approach considering only the stochastic properties
of the yield stress of the material. Note that we do not consider the
uncertainties within all design parameters, e.g. material surface quality,
geometrical dimension, and so on.

Here, the probability of failure is quantified using the statistical
yield stress properties of a shipbuilding high-strength steel. The log-
normal distribution is suggested by Veritas (1992) and Hess et al.
(2002) as an appropriate distribution for the yield stress of such mate-
rial. In this study, the mean (𝜇) and coefficient of variation (𝐶𝑉 = 𝜎∕𝜇
in which 𝜎 is the standard deviation) for the yield stress data of high-
strength steel are taken as 𝜇 = 1.1𝑠𝑦 and 𝐶𝑉 = 0.08, i.e. suggested
by VanDerHorn and Wang (2011), where 𝑠𝑦 is the nominal (ruled) value
of the yield stress. The probability density function of the log-normal
distribution is:

𝑝𝑦(𝑥𝑦) =
1

𝑥𝑦𝜎𝑙
√

2𝜋
exp

(

−

(

ln(𝑥𝑦) − 𝜇𝑙
)2

2𝜎2𝑙

)

(36)

for 𝑥𝑦 > 0, where 𝑥𝑦 is the yield stress, and 𝜇𝑙 and 𝜎𝑙 are respectively
the mean and standard deviation of logarithmic values and can be
expressed in terms of mean (𝜇) and standard deviation (𝜎) of the data
as:

𝜇𝑙 = ln
(

𝜇2∕
√

𝜎 + 𝜇2
)

(37)

𝜎𝑙 =
√

ln(𝜎∕𝜇2 + 1).

We adopt a traditional design approach by finding the minimum
cross sectional area required to withstand the design load of interest
given the nominal yield stress of the material. More specifically: 𝐴𝑐𝑠 =
𝐹DL∕𝑠𝑦, where 𝐹DL is the design load calculated based on the long-term
extreme response. Then, the probability density function of the yield
force is:

𝑝𝐹𝑦 (𝑥𝐹𝑦 ) = 𝑝𝑦
(𝑥𝐹𝑦
𝐴𝑐𝑠

)

∕𝐴𝑐𝑠 (38)

The geometry can represent the cross sectional area of for instance
shackle which is a component that has shown high tendency to failure
in the experimental observations as it is illustrated in Weller et al.
(2015) and Thies et al. (2013). Further, for the sake of simplicity, we
neglect stress concentration factors for the geometry and we consider
a uniform stress distribution across the cross section. Fig. 6 shows the
probability failure as the gray shadowed area that is a common area
under the PDF of the system response and yield force of the material
of interest (i.e. a shipbuilding high- strength steel).

2.8. Numerical and analytical implementation

All the numerical and analytical analyses in this paper are con-
ducted in a standard laptop computer except the full sea state approach
analysis which was performed using Uppsala Multidisciplinary Center
for Advanced Computational Science (UPPMAX). The following soft-
ware tools are used in this paper: The buoy and PTO are designed and
assessed by the computer-added design software (CAD). The mechani-
cal integrity is evaluated using a simple finite element method (FEM)
within the CAD software. The WEC-Sim code (Ruehl et al., 2021) in
MATLAB is used to simulate the WEC in three degrees of freedom,
i.e. surge, heave, and pitch motion. The WAMIT software (Lee and
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Fig. 6. The red curve represents the long-term extreme PDF of the system response,
while the black curve displays the PDF of the yield force for the material of the interest.
The shadow gray area demonstrates the probability of failure.

Newman, 2013) is utilized to derive the hydrodynamic coefficients
required for WEC-Sim. The outer surface of the buoy is meshed using
the Rhino 3D modeller software (Rhinoceros, 2021), to provide the
geometry file for the computation of the non-linear buoyancy and
Froude–Krylov wave excitation in WEC-Sim. For the contour approach,
one week of simulation is performed for the WEC-Sim model to run 120
sea state configurations (i.e. six sea states around the environmental
contour × 20 seeds each = 120 configurations). Each configuration
has a runtime of about 657 s (i.e. considering 1-hour storm time for
a full-scale system × 300.5 ≈ 657 s for the 1:30 scaled model using
Froude scaling). Whereas, for the full sea state approach, each sea state
configuration takes a significantly shorter time of 12 min using 20 cores
on UPPMAX cluster. Following this, to study the sensitivity of the full
sea state approach to the number of sea states, three different number of
configurations, i.e. 180, 360, and 720 sea states, are performed which
adds up to 1260 simulations in total. The statistical analysis is carried
out by both MATLAB and Python. The short- and long-term analyses are
heavily inspired from the WDRT code (Coe et al., 2018a) and adapted
for the analysis described in this study. The Bayesian theory and Monte-
Carlo algorithm for the short-term extreme response is implemented in
Python using the emcee package.

3. Results

3.1. Data realization

The force data is clustered based on the zero up-crossings of the
surface elevation. Each cluster contains the time period between two
consecutive zero up-crossings of the surface elevation, and then the
force peaks are chosen as the maximum of the force data in each cluster.
Fig. 7 shows a few seconds of the line force data for sea state 7 which
has the highest significant wave height (𝐻𝑠 = 0.24 m). When the WEC
is operating without the end-stop compression during a calm operation,
the line force varies between around 10 𝑁 and 30 𝑁 with a mean value
of around 20 𝑁 representing the weight of the PTO, and amplitude of
10 𝑁 representing the PTO, pulley, and other internal friction forces.
To keep the focus and obtain a better fit for the upper tail of the
distribution, only the force peaks above 39 𝑁 are considered for the
Weibull tail-fit and two-parameter Weibull models in the computation
of the long-term extreme response using the contour approach. This
value is chosen so to exclude the small force variations in all sea states
along the contour. Note that these assumptions are considered for the
Weibull models as well as the calibration of the WEC-Sim model, while
the Generalized Pareto model used in both contour and full sea state
approaches uses the whole force peak data to find the threshold for
each sea state. Fig. 8 shows the PDF histogram of the whole force data
for the sea state 7. The largest content is associated to the forces below
39 N, with two distinguished peaks indicating the frictional behavior of
the PTO during the downward and upward motions of the translator.
11
Fig. 7. Force data for sea state 7 from WEC-Sim model for a few seconds is shown
in (a). Further, (b) shows the zoomed data between 490 s to 510 s with the selected
peaks marked as red circles. The surface elevation with zero up-crossings are shown
in (c).

Fig. 8. The PDF histogram of the line force data obtained from the WEC-Sim model
for sea state 7.

3.2. WEC-Sim calibration

The wave tank experiments are prone to some uncertainties that
are not straightforwardly captured. For instance, although the stroke
length has been checked regularly during the experiment, extreme end-
stop compression and the existence of a friction PTO can cause gradual
deviations in the stroke length during the course of the experiment. In
addition, and even though difficult to measure, the energy dissipation
during the end-stop impact should be accounted for when modeling the
end-stop module. To this end, the WEC-Sim model is further calibrated
to achieve a similar response to the experiment by adjusting the end-
stop damping parameter which is modeling the dissipative losses during
the end-stop impact. A sensitivity study is performed to find the best
parameter value for the end-stop damping, see Fig. 9. The optimum
damping value is found to be 2500 Ns/m. Although increasing the
damping to 4500 Ns/m shows a closer fit to the experimental CDF,
observing the force data in the time domain shows that high end-stop
damping values produce unrealistic compressive line force after end-
stop engagement. By computing the critical damping of the system
(i.e. 𝑐𝑐 = 2

√

𝑘𝑚 where 𝑘 and 𝑚 are the spring stiffness and mass,
respectively) and damping ratio (i.e. 𝜁 = 𝑐∕𝑐𝑐 where 𝑐 is the vis-
cous damping) (Balachandran and Magrab, 2018), the end-stop viscous
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Fig. 9. (a) shows the sensitivity of the peak force CDF to the damping parameter of the
PTO end-stop, and (b) shows the line force during a few milliseconds in the event of
end-stop compression for different end-stop damping values for the 2-hour simulation
of sea state 6. As the damping value increases, the line force becomes unrealistically
negative (i.e. the flexible rope (line) cannot physically induce compressive forces).

damping value in the simulation represents an over-damped system.
Note that this damping value of 2500 Ns/m for the end-stop is rather a
simulation parameter to more accurately replicate the behavior of the
real system.

Fig. 10 compares the CDF of the force peaks from the experiment
and WEC-Sim model for sea states 5a, 6, and 8. In general, WEC-Sim
appears to replicate the experimental distribution fairly well, and since
the simulation duration (including all seeds) is longer than the exper-
iment, it is expected to encounter some larger peaks in the numerical
results. The exception is sea states 9 and 10 (see Appendix) where larger
peak forces are seen for the experimental results compared to the WEC-
Sim results. Nevertheless, we will later show that these sea states have
no influence in determining the long-term extreme response using the
contour approach. The fact that the force peaks CDFs for other sea
states are in good agreement with the experiment satisfies our purpose
with the numerical WEC-Sim model for this study.

3.3. Diagnostic plots for short-term extreme analysis

To assess the appropriateness of each statistical model and their
quality of fits, a set of goodness-of-fit plots (i.e. consisted of probability,
quantile, return level, and density plots) are considered. The probability
plot compares the CDF of the observations (i.e. the line force peaks)
to the CDF of the fitted model, while the quantile plot illustrates
how well the model estimates the empirical data. The quantile and
probability plots present the same information on a different scale,
and the perception of information attained from each scale can be
substantial. Hence, if an appropriate fit is seen on one scale, it may
appear poor on the other. If the suggested model is reasonable for
modeling the extreme forces (i.e. corresponding to the upper tail of
the data), the quantile and probability plots should follow the diagonal
line. The return level plot here demonstrates the return period of a
certain force peak value in terms of number of peaks. For instance, in
Fig. 11 for sea state 5a, the force peak around 200 𝑁 is expected after
10 number of peaks. This plot is often accompanied by showing the
return level confidence interval of 95%. This interval gives the range
in which the force peaks lie with 95% confidence. The adequateness of
the model is shown if the force peaks are located within this confidence
interval. The density plot compares the probability density function of
the fitted model with the histogram of the line force peaks. The form of
12
histogram may vary significantly depending on the choice of bins, and
this diagnostic plot is considered less informative in comparison with
the other ones.

3.3.1. Weibull tail fit distribution GOF
Fig. 11 shows overall a reasonable fit for the upper tail distribu-

tion of the force peaks where the quantile and probability plots offer
adequately linear trend. However, significant deviation between the
diagonal line and low force data points in quantile and probability plots
can be seen for almost all sea states. In particular, larger disagreement
for lower force data points in sea states 8, 9, and 10 is observed which
implicates that a larger fraction of data points for these sea states are
situated below the set of limits of Weibull tail-fit CDF, c.f. Section 2.5.1,
step (iii.). This indicates the inappropriateness of the Weibull tail-fit
method for modeling the lower tail of the force distribution as it should
be expected.

The curvature of the return level plot implies the existence of an
upper bound for the data. In other words, the return level does not
have an ever-increasing trend and will be limited by an upper bound.
Further, the narrow banded confidence intervals in the return level
plots imply a small error in the estimation of the return level for a
certain return period.

Looking at the density plots, one should note that the model is fitted
to the upper tail of the peaks distribution, i.e. ranging from 65% to 90%
of the CDF, which again aims for a proper fit to the upper tail while
being neglectful to the lower tail of the distribution.

The PDF and CDF of the peaks and extreme distributions are shown
in Fig. 12. The extreme distribution expresses the distribution of the
most extreme peaks in each 0.18-hour simulation (i.e. corresponding
to 1 h for the full-scale system) for all 20 seeds. Whereas, the peaks
distribution is the distribution of all force peaks in all simulation seeds,
see Section 2.5.1, step (v.). As sea states become calmer (e.g. sea
states 9 and 10), there would be less number of peaks above 39 N,
and thereby, the CDF and PDF of the extreme distribution become
more similar and closer to the peaks distribution. This figure implies
that the extreme distribution and the peak distribution contain similar
information for calm weather conditions.

3.3.2. Generalized pareto distribution GOF
As explained in Section 2.5.2, step (ii.), the choice of the threshold

for defining the exceedances is made through assessing the mean
residual life, shape stability, and scale stability plots, see Fig. 13. These
thresholds are further confirmed by looking at the diagnostic plots for
a number of different threshold values. In Fig. 13, the 95% confidence
interval (i.e. 𝜇exc ± 1.96 𝜎exc in which 𝜇exc and 𝜎exc are the mean and
standard deviation of the exceedances, respectively) for mean residual
life plot is shown by dashed line, while the standard deviation of the
shape and scale parameters are displayed by the error bars. These
confidence intervals and standard errors provide us with the necessary
information to define a suitable threshold for the POT method. As
threshold increases in the mean residual life plots, the confidence
interval lines are slowly deviating from the mean residual line (i.e. the
solid line). This behavior is due to the increase in the variance of
the data owing to decrease in the number of exceedances when the
threshold is set at higher values. The same trend is seen for the shape
and scale parameters and their standard deviations which are computed
from ‘‘the observed information matrix’’ using the maximum likelihood
estimator (MLE). The detailed information about this computation can
be found in Coles et al. (2001), section 2.6.4.

Table 2 summarizes the selected thresholds for each sea state. The
generalized Pareto distribution (GPD) with a negative shape parameter
is appeared to be the best fit for all the sea states.

Fig. 14 shows the diagnostic plots for the POT method. In general,
the POT method shows a fairly good agreement for modeling the high
force data points, i.e. the large peaks lying on the diagonal line for the
probability and quantile plots. Also, the density plots show the model
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Fig. 10. Comparison of WEC-sim and experimental force peaks CDF.
Table 2
The choice of the threshold for the POT method for each sea state.

Sea state 5a 6 7 8 9 10

Threshold 168 200 234 165 54 48

PDF for each sea state that follows the PDF histogram of the force peaks
with great compatibility. Interesting difference between Weibull tail-fit
and POT methods is about their upper bound of the return level that
is seen to be smaller for the POT method. Note that the probability
plots show the CDF of the force peaks above the selected threshold.
Thereby, all data points are stacked close to the end of the diagonal
line corresponding to high force peaks above the threshold with the
CDF values close to one.

As an example, Fig. 15 shows the GPD fit to the upper tail distri-
bution of the force peaks and the extreme distribution for sea state
7 with the significant wave height (𝐻𝑠 = 0.2362 m). Since the GPD
is fitted to the exceedances above the threshold, only the very upper
tail of distribution of the data (i.e. corresponding to the highest forces
peaks) is illustrated which explains the near-zero values for the PDF
and the near-one values for the CDF of the GPD model.

3.3.3. GOF of distributions using Bayesian and MCMC
The Bayesian theory and MCMC is applied to mathematically iden-

tify the best statistical model that is preferred by the data. Here, we
just consider a two-parameter Weibull and a GPD model fitted for sea
state 7. The threshold value for the GPD model is taken according to
Table 2.

The results of initial burn-in sampling for the two-parameter Weibull
and GPD distribution parameters for all chains are presented in Fig. 16.
The burn-in length for the GPD model is considered 600 which is larger
than the one for the two-parameter Weibull at 150. The convergence of
the chains is investigated through auto-correlation analysis (Foreman-
Mackey, 2022), where the auto-correlation time is plotted for different
number of samples, see Fig. 17. The minimum number of independent
samples is estimated as explained in Section 2.5.3, and is chosen where
the convergence is approximately achieved, i.e. around 10,000 for the
two-parameter Weibull and 1,000,000 for the GPD model indicating a
much faster convergence for the two-parameter Weibull model. This
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relatively slower convergence of the GPD model is mainly due to the
large rejection of the steps that do not satisfy 1 + 𝑘𝑧∕𝛼 > 0 condition
in Eq. (16) when 𝑘 ≠ 0. The corner plots (see Fig. 18) demonstrate
the projection of the posterior probability density functions in one and
two dimensional space. This provides useful information regarding the
covariance between the parameters, and further shows the marginal-
ized two dimensional distribution of each parameter independently in
a histogram form. In the two-parameter Weibull model, the probability
distribution of the scale and shape parameter resembles the Gaussian
distribution for sea state 7. However, the posterior probability of
the shape parameter of the GPD model deviates from the normal
distribution which is in contrast to the underlying asymptotic normal-
ity assumption in the maximum likelihood estimation approach. The
Bayesian approach provides this extra information about the posterior
probability of the distribution parameters which could not be extracted
otherwise. Nevertheless, this deviation from the normality assumption
for the shape parameter here is small and therefore of no concern.
Moreover, the more distinguished inclined oval shape in the two
dimensional space of the GPD model implies more correlation between
the shape and scale parameter compared to the two-parameter Weibull
model.

3.3.4. Best method for short-term extreme response
The GPD model using Bayesian theory with MCMC for sea state 7

shows a similar GOF compared to the one obtained in Section 3.3.2.
The two-parameter Weibull model using Bayesian theory and MCMC
however shows a slightly better fit for the forces above 336 𝑁 by
looking at the quantile plot in Fig. 19 in comparison to the fit obtained
in Section 3.3.1.

The Bayesian evidence provides an excellent and quick way of
comparing different statistical models given the same data. This quan-
tifies the appropriateness of each model and minimizes the need for
visual investigation of the GOF plots. A number of methods can be
considered to perform the Bayesian model inference such as BIC, the
Savage–Dickey density ratio, Nested sampling, and Thermodynamic
integration, for which the details can be found in Trotta (2017). In this
study, the Laplace approximation is chosen for estimating the Bayes
evidence to study the model inference. This approach is especially
useful when the likelihood function is unimodal and approximately
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Fig. 11. Goodness-of-fit plots for the Weibull tail-fit method.
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Fig. 12. Probability density and cumulative distribution functions of peaks and extreme response from Weibull tail-fit method.
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Fig. 13. Mean residual life as well as scale and shape parameters stability plots for threshold selection in peaks-over-threshold method. The dashed lines in mean residual life
plots indicate the confidence interval of the 95%. The error bars in the shape and scale stability plots depict the standard deviation for each parameter.
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Fig. 14. Goodness-of-fit plots for peaks-over-threshold method.
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Fig. 15. Probability density and cumulative distribution functions of peaks and extreme
response from peaks-over-threshold method for sea state 7.

Table 3
Jeffreys’ scale, retrieved from Trotta (2017).
| ln𝐵01| Odds Probability Strength of evidence

<1.0 ≲3:1 <0.750 Inconclusive
1.0 ∼3:1 0.750 Weak evidence
2.5 ∼12:1 0.923 Moderate evidence
5.0 ∼150:1 0.993 Strong evidence

Gaussian, Trotta (2017), such as the one studied here. Moreover, this
method provides both robust and simple computation compared to
e.g. integration in Thermodynamic integration approach or sampling
in Nested sampling method which requires a fair number of samples to
obtain an accurate solution. Based on Jeffreys’ scale, Table 3, the Bayes
evidence is evaluated to find the best model.

Table 4 shows the Bayesian evidence in the last column. In order
to compare the two-parameter Weibull from Bayesian and tail-fit ap-
proaches, the same input data is given corresponding to the upper tail
of the data (i.e. above 85% quantile). The negative value of −31.95 for
the Bayesian evidence indicates that the second model (i.e. the two-
parameter Weibull tail-fit) is strongly preferred by the upper tail of
the data based on Jeffreys’ scale, Table 3. Note that here we consider
the data above 85% quantile to keep the focus on the very tail of the
data, however, the Bayesian evidence and hence the preferred model
can be affected depending on this limit for the upper tail (i.e. different
quantiles). On the other hand, the Bayesian evidence of +0.04, when
comparing the GPD model with Bayesian and MCMC (0) to the one
form MLE (1), there is no preference in either of the models. Note
that to keep the focus of the paper, we only present the results for sea
state 7 in Table 4. Finally, it is not straightforward to compare two
different models with two very different input data with the Bayesian
evidence metric. For instance, the GPD model that has the exceedances
as its input cannot easily be compared with the two-parameter Weibull
model which has force peaks as its input. However, comparing the
GOF plots for the two-parameter Weibull and GPD models shows an
indication for the preference of the GPD model over the others.

3.4. Long-term extreme response and design load

3.4.1. Full sea state approach
Here, the full sea state approach is studied for 180, 360, and 720

sea state samples. The samples are selected from the normal standard
space (u-space) between different return periods of 0.001, 0.01, 0.05,
18
Table 4
The estimated parameters for the distributions from different methods for sea state 7.
The Bayesian evidence for the two-parameter Weibull models is calculated using the
upper tail (i.e. above 85% quantile) of the data for sea state 7.

Shape Scale ln(𝐵01)

Two-parameter Weibull
from Section 3.3.3 (0)

1.93+0.024−0.024 144.26+1.34−1.32
−31.95

Two-parameter Weibull tail-fit
from Section 3.3.1(1)

1.56+0.021−0.021 134.73+1.47−1.47

GPD with Bayesian and
MCMC from Section 3.3.3(0)

−0.21+0.047−0.040 62.29+4.38−4.17
+0.04

GPD from Section 3.3.2 (1) −0.22+0.043−0.043 62.76+4.32−4.32

0.1, 0.5, 1, 5, 10, and 50 years. Fig. 20(a) shows the 180 selected sea
states in the u-space coordinate system. Between each return period, an
equal number of sea states is selected. For instance, when sampling 180
sea states, each ring is radially divided in 20 sections, and one sea state
is selected randomly with uniform distribution for each section. Hence,
having 9 rings (return periods) in total gives 20 × 9 = 180 number of
sea states. In the same way 40 and 80 number of sea states samples are
selected between each ring when considering 360 and 720 sea state
samples, respectively. The sampling strategy adopted here is similar
to Coe et al. (2018b). Following that, the sea states are transformed
to the 𝑇𝑝 and 𝐻𝑠 space using the Rosenblatt transformation as shown
in Fig. 20(b). Note that the different number of sea state samples are
considered to assess the stability of the results in respect to the number
of sea states.

The joint probability distribution (𝑝𝐻𝑠 ,𝑇 𝑝 in Eq. (34)) is integrated
over each section in each ring in the u-space coordinate system (looking
back at Fig. 20(a)) to compute the probability of each corresponding
sea state sample. The joint probability density in the 𝑇𝑝 and 𝐻𝑠 space
is shown in Fig. 21.

Then, the full long-term response is computed following Eq. (34)
where the short-term survival function or CCDF (𝑃𝑠𝑡|𝐻𝑠 ,𝑇𝑝 ) is derived
based on the GPD model for each short-term extreme distribution. The
threshold for all sea states is chosen as: 𝜇𝑥𝑝 + 1.4𝜎𝑥𝑝 , in which 𝜇𝑥𝑝
and 𝜎𝑥𝑝 are the mean and standard deviation of peak forces, with
the condition that the number of exceedances is larger than 20 and
the shape parameter is negative. If the condition is not fulfilled, the
threshold value is incrementally reduced to meet the criteria. Note that
although the threshold selection is not as meticulous as it is performed
for the contour approach, an extensive study is done to assess the
appropriateness of the models and their fits. The diagnostic studies
show that good to reasonable fits are achieved for the selected sea
states in our model. Note that the Weibull tail-fit model is also investi-
gated, however, the GPD model provides a better fit in comparison.
Fig. 22 displays the full sea state survival function where the long-
term response of 497 𝑁 can be expected after 9.1 years considering
the 1:30 scaled system (i.e. corresponding to 50 years in the full-scale
system). Since the threshold is different for each sea state, the full sea
state survival function can only be defined for the force values above
the maximum threshold of all sea states. The comparison of the full
sea state survival function for difference number of sea state samples
(i.e. 180, 360, and 720) is illustrated in Fig. 23. Coe et al. (2018b) also
investigated the full sea state approach and its sensitivity to the number
of sea state samples of 50, 100, 200, and 400. They concluded that
a higher number of sea state samples leads to a narrower confidence
interval, and therefore, the results will be presented more accurately.
Here, no significant difference is observed for the number of samples
above 180.

3.4.2. Contour approach
The expected (mean) value of each sea state’s short-term extreme

distribution is illustrated as black circles in Fig. 24. Sea state 7 with
the highest significant wave height shows the maximum expected value
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Fig. 16. Burn-in sampling plots for parameters inference for sea state 7: (a) two-parameter Weibull model, and (b) GPD model.

Fig. 17. Convergence plots for sea state 7: (a) two-parameter Weibull model, and (b) GPD model.

Fig. 18. Corner plots for the parameters posterior PDF for sea state 7: (a) two-parameter Weibull model, and (b) GPD model.
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Fig. 19. GOF plots using Bayesian theory and MCMC for sea state 7: (a) two-parameter Weibull model, and (b) GPD model.
Fig. 20. (a) shows the sampled sea states in the normal standard space. In each ring, 20 sea states are selected which in total adds up to 180 sampled sea states. (b) shows the
180 sampled sea states in the 𝐻𝑠 and 𝑇𝑝 space. Both (a) and (b) are presented for the full-scale system.
among all sea states. When comparing sea states 5a and 8 with the same
significant wave height but different wave period (i.e. 𝑇𝑝 = 1.64 s for sea
state 5a and 𝑇𝑝 = 2.56 s for sea state 8), a slightly larger peak force (see
the last data point in Fig. 10) and expected value of the distribution (see
Fig. 24) is seen for sea state 5a compared to sea state 8. Shahroozi et al.
(2022) also observed that sea state 8 shows similar and slightly lower
maximum line force compared to sea state 5a in the two experimental
repetitions, see Fig. 12a therein. A similar trend for the expected values
among the sea states can be seen compared to the maximum line force
that was achieved during the experiment in Shahroozi et al. (2022),
see Fig. 12 therein, where sea states 9 and 10 show the lowest mean
values after sea states 5a and 8. Note that the expected values here are
computed with a relatively longer simulation time in comparison with
the line force obtained during 10-minute experiments.
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Following the contour approach explained in Section 2.6, sea state
7 that gives the largest expected value is chosen to find the long-
term extreme response. To compensate for the uncertainties for the
contour approach, the common practice is to select a higher percentile
of short-term distribution.

From the full sea state approach, the full long-term response for the
return periods of 1.8, 4.6, and 9.1 years for the 1:30 scaled system
(i.e. corresponding to 10, 25, and 50 years in the full-scale system)
are considered to compute the corresponding percentiles of each fitted
model from the short-term extreme analysis for the most extreme sea
state (i.e. sea state 7), see Table 5. Now, by obtaining these percentiles,
which are identified in Table 5, one can directly use them to compute
the design load only from the contour approach analysis without per-
forming the arduous full sea state analysis. The design load for the
return period of 1.8, 4.6 and 9.1 years are also presented in Table 5. For
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Fig. 21. Join probability density function together with the 0.2, 0.9, 1.8, 4.6, and
9.1 years contour lines in the 1:30 scaled system corresponding to 1, 5, 10, 25, and
50 years contours, respectively, in the full-scale system.

Fig. 22. The survival function for 720 sea states are shown as the solid red lines
and the full sea state survival is illustrated as the black line. The dashed red lines
represent the survival level for 0.2, 0.9, 1.8, 4.6, and 9.1 years in the 1:30 scaled system
corresponding to 1, 5, 10, 25, and 50 years, respectively, in the full-scale system.

Fig. 23. The full sea state survival function by comparing 180, 360, and 720 sea state
samples.

instance, considering the return period of 9.1 years (i.e. corresponding
to 50 years return period for the full-scale system), the design load is
21
Fig. 24. 3D plot showing the expected value of the extreme distribution for each sea
state in black circles from POT method.

670.95 that corresponds to 670.95 × 303 = 18.11 MN for the full-scale
system.

3.5. Probabilistic failure of shackle

The probability of failure is computed for a critical component such
as shackle, made of a shipbuilding high-strength steel material. This
probability of failure is obtained near zero (0.00012%) considering
the long-term extreme response PDF from the full sea state approach
together with the yield force PDF (c.f. Eq. (38)). The result represents
the probability of the line force exceeding the yield force. Note that
the result reported here does not change with the change in the
nominal (ruled) yield stress. Further, this result can be interpreted as
the probability of failure of a critical component if one considers the
design load for 9.1 years (i.e. 497 × 1.35 = 670.95) given a simple
design mindset, i.e. the minimum cross sectional area, 𝐴𝑐𝑠 = 𝐹DL∕𝑠𝑦.

4. Discussion and future work

In this study, the WEC-Sim PTO is modeled by a static friction model
considering the Stribeck, Coulomb, and viscous components, while the
WEC-Sim pulley friction is constructed based on only the Coulomb
component. Although the WEC-Sim model provides quite reasonable
results for the PTO forces, as aforementioned, it is not always straight-
forward to model and calibrate a friction-based system accurately. An
alternative approach is to utilize the model-free friction compensation
schemes using artificial intelligence tools such as neural network, fuzzy
logic, and support vector machine (Huang et al., 2019). The main
advantages with the model-free friction compensation are estimating
the friction more accurately, and relieving the model requirements.
Then, the extension of this study would be to develop a model-free
friction compensation scheme for the PTO and its implementation in
WEC-Sim.

Shahroozi et al. (2022) described different PTO damping cases
(i.e. zero to infinite damping) that were considered during the exper-
iment. The authors showed that the zero and infinite damping cases
result in the highest peak forces. The analysis performed here is based
on one of the damping cases in Shahroozi et al. (2022), i.e. 𝐷1 case
therein equivalent to the PTO damping force of 7.4 N. It is of great
interest to compute the design load based on other damping cases,
however, the zero and infinite damping cases showed strong non-
linearities during experiment due to occurrence of frequent end-stop
spring compression (i.e. observed for the zero damping case), overtop-
ping, and wave breaking slamming which are difficult to simulate using



Applied Ocean Research 128 (2022) 103305Z. Shahroozi et al.
Table 5
Full long-term extreme response (using the full sea state approach) and design load for 1.8, 4.6, and 9.1 years are reported
together with the corresponding percentiles from each model for the selected sea states from the contour approach. Note that
to compute the design load here, the full long-term extreme response (i.e. 440 N, 471 N and 497 N) should be multiplied
with load safety factor of 1.35.

Years return period 1.8 [years] 4.6 [years] 9.1 [years]

Full long-term response 440 [N] 471 [N] 497 [N]

Design load 594 [N] 635.85 [N] 670.95 [N]

Percentile for GPD model from
Bayesian and MCMC from
Section 3.3.3

95.48 99.55 99.99

Percentile for GPD model
from Section 3.3.2

95.49 99.55 99.99

Percentile for two-parameter Weibull
model from Section 3.3.3

96.70 98.99 99.65

Percentile for two-parameter Weibull
tail-fit model from Section 3.3.1

73.75 86.18 92.32
WEC-Sim. So far, the most accurate modeling technique that can cap-
ture most non-linear phenomena is the computational fluid dynamics
(CFD) numerical solution method. Despite its accuracy, this numerical
method is relatively slow with massive simulation time required for
such design load analysis. Other numerical methods are still immature
for modeling the non-linearities although they may be computationally
less expensive. This indicates a need for alternative methods, e.g. ad-
vancements in model-free schemes using artificial intelligence, to be
able to accurately model the system response in extreme conditions in
a short period of time.

The optimal design of WECs will be achieved when it both satisfies
the design requirements considering different limit states, and it is
economically viable. Given the fact that the zero and infinite damping
cases gave the highest peak line force in Shahroozi et al. (2022), it
is expected that a higher design load will be identified for these two
damping cases. One way to enhance the survivability and reliability of
for example mooring line when looking at line force, without putting
a higher demand on the design is to implement a control strategy to
adapt the PTO damping depending on the incoming waves to min-
imize the line force during extreme events. Shahroozi et al. (2022)
found that there exists an optimal PTO damping through which the
WEC experiences the minimum line force peak. Note that the scaled
experiment here is based on the full-scale Uppsala University WEC
consisting of a floater connected via rope to a direct-driven linear
generator located on the seabed. Hence, the mooring line is one of the
critical components in determining the optimal design and therefore
this study is dedicated to drive the design load for the line force. For the
WEC systems whose mechanical and electrical components are situated
in the buoy hull, perhaps even more special attention should be paid
for both line forces as well as overtopping forces inserted on the buoy
hull when determining the design load. In this case, an optimization
scheme may be needed to set a damping value that is neither too
high to increase the chance of overtopping phenomenon, nor too low
that magnifies other non-linear phenomena such as end-stop spring
compression leading to higher line forces.

Previously, first Cruz (2015) and then Neary et al. (2018) suggested
a wave energy classification scheme to serve as a tool in designing
the WEC considering both extreme load response and design scaling
factor. Cruz (2015) classified the site resources through consideration
of the significant wave height and energy period. Whereas, Neary et al.
(2018) performed the classification considering the annual available
energy (AAE) density as:

AAE(𝑇𝑝) = 𝑇year𝛴𝐽 (𝑇𝑝)𝑝(𝐽 , 𝑇𝑝) (39)

where 𝐽 and 𝑝(𝐽 , 𝑇𝑝) are the power transport and joint probability of
the power transport and wave peak period, respectively, for a distinct
partition period band class. Also, 𝑇year is the number of hours in a
year. Therefore, the total AAE density over all peak periods was given
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as AAE = 𝛴AAE(𝑇𝑝). Further, the resource classification considered
delineation of AAE density by different period bands corresponding
to the local sea states to allow designers to specify sites with a high
energy concentration. Moreover, different relative risk classes defined
by 𝐻𝑠50 (i.e. the significant wave height with a 50-year return pe-
riod) and 𝐻𝑠mean (i.e. the mean significant wave height), and the
ratio 𝐻𝑠50∕𝐻𝑠mean was also distinguished by their resource classification
scheme. As a future study of this work, it is of interest to investigate the
classification scheme suggested by Neary et al. (2018), and moreover,
to consider an adaptive partial safety factor instead of a unify safety
factor of 1.35 for all deployment sites, i.e. recommended by the inter-
national standards, for each resource class. This is expected to reduce
the design and manufacturing costs without jeopardizing the safety of
the design.

5. Conclusion

This paper rigorously explores the process of deriving the design
load case for the line force of a point-absorber WEC. For this purpose,
a numerical 1:30 scaled model (WEC-Sim) is developed and calibrated
based on the wave tank experiments for extreme wave conditions
derived from the environmental contour with a 50-year return period
constructed according to I-FORM hybrid method for the Dowsing site in
the North Sea. A simulation time of 1-hour and 20 seeds are considered
to generate the response of the system. The short- and long-term
extreme responses are obtained based on a set of statistical approaches.
The statistical method which provides the best goodness-of-fit in the
short-term extreme response analysis is selected for determination of
the long-term extreme response and design load case considering ULS
and partial load safety factor of 1.35 for extreme environmental condi-
tions. Then, through a probabilistic approach, the probability of failure
of a critical component subjected to the line force (such as shackle) for
the point-absorber studied here, is described.

The WEC-sim code is found to be a suitable numerical approach
to reproduce the system response for irregular waves in the absence
of strong non-linearities. It is especially a useful tool when there is a
demand for large amount of data augmentation for the analysis such
as the one here. However, large deviations between WEC-Sim and the
real physical model are expected when non-linearities are high.

The Bayesian theorem and Markov chain Monte-Carlo algorithm is a
fairly easy-to-implement approach which provides a mathematical way
to quantify the best preferred model by the data. The application of
the Bayesian theory and MCMC is particularly beneficial when a small
amount of the data is available. Although this aspect is not investigated
here, this method is widely used in other disciplines such as astronomy.

Lastly, the environmental design load for the line force considering
the partial load safety factor is computed as 497 × 1.35 = 670.95 𝑁
considering full long-term extreme response (i.e. computed from the
full sea state approach) for 9.1 years return period for the 1:30 scaled

system.
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Fig. 25. Comparison of the WEC-sim and experimental force peaks CDF for sea states
9 and 10.
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Appendix. Force peaks CDF for sea states 9 and 10

The comparison of the force peaks CDF obtained from the exper-
iment and WEC-Sim is shown in Fig. 25. It is observed that higher
surface elevation peaks are obtained in the experiment compared to the
simulations which can be a reason for this discrepancy. Another factor
that can result in this deviation particularly looking at sea state 9 is
the stroke length. If the stroke length is shortened, it leads to excessive
end-stop spring compression and therefore high forces. A thorough
investigation is made to understand these deviations, however, it is
rather difficult to precisely identify and illustrate this discrepancy from
the experimental data. Nonetheless, as it is mentioned before, these two
sea states do not influence the long-term extreme response from the
contour approach in determining the design load.
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