L iNREL

Transforming ENERGY

Cable-Based Actuation for Small-Scale Model Testing
of a Floating Offshore Structure

Anisha Sharma'?

Coauthored by Matthew Hall%, Hannah Ross?, Kathryn Johnson®?, Will Wiley?, Senu Sirnivas?
1Colorado School of Mines, °National Renewable Energy Lab (NREL)



Floating Offshore Structure Design
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Fig 1. Reference Model 1 (RM1), a floating marine energy Fig 2. NREL Flatirons wave basin
turbine’
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Small-Scale Testing Challenges
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Reynolds-Froude Scaling Physical Limitations in
Incompatibilities Test Facilities




Emulation of Aerodynamic Forces Using a Fan Based Actuation System

MPD used in this study to
emulates the aerodynamic
loads of the NREL 5 MW
reference turbine at 1:37
scale

Fig 3. Multi-Propellor Device (MPD) developed to simulate

aerodynamic loads using fans®

30tter et al. (2020)



Emulation of Forces Using Cable Based Actuation

. : Three actuation lines (visible
Fig 4. Representation of the emulated system?* N Flg 5) connected to the
floater applied the calculated
load from a numerical
simulation

Fig 5. Model of floater in basin®

“Vilsen et al. (2017) 5



Hybrid Submodeling Strategy
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Hybrid Submodeling Strategy

Numerical Submodel
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Fig 6. Overview of substructuring strategy
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Cable Tension Allocation
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Wrench Matrix of Expected Forces = Structure Matrix from Cable Geometry x Cable Tensions



Cable Tension Allocation

| Structure Matrix

|
— T |
W = _A T ! (from geometry of cables)
( _
AT = { U, Us }
Wrench Vector of Forces and Moment to be applied b, X u; .. b X us
(from numerical model) where
u,,is the unitary cable direction vector
Fx b, is the cable point of attachment vector
_)ry
W= Fz
My Tension Vector of Cables
where
Fx is force along x-axis (51\
. : 2
Fy is force along y-axis T={T,p
Fz is force along z-axis T,
My is moment around y-axis \T'5)
where

T, is line tension in cables 1-5



Cable Geometry Optimization

Objective: Find the optimal cable anchor points such that the cable tensions are as close to a mean reference
tension value as possible
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Cable Geometry Optimization

Objective: Find the optimal cable anchor points such that the cable tensions are as close to a mean reference
tension value as possible
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Cable Attachment Points on Platform

i e Structural integrity of chosen attachment points i
i Considerations * Ease of access to limit crossing of cables and platform structure |
i e Efficient force actuation in the desired DOFs |

Fig 7. Possible cable attachment points on floating tidal energy convertor RM1



tion Results
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Fig 8. Overall tension range for base geometry and each optimized geometry



Optimization Results
Geometries

Fig 10. Opt?'mized Geometry 2 (éZ)

Fig 9. Base Geometry

Fig 11. Optimized Geom;try 4+ G4Y)



Optimization Results

Tension Time Series
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Fig 12. Tension time series for three geometries



Optimization Conclusion

Eliminate the need for wave and wind generation capabilities in order to test floating structures

Testing of other offshore structures (i.e. floating wind turbines and wave energy convertors)

Model more complex flows in both wind and tidal scenarios




Conclusion

Future Work

Build Physical
Actuation System and Deploy and Begin Initial
Supporting Structures Wave Basin Testing

Summer 2024 Fall 2024
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Build Physical RM1
Model
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