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Floating Offshore Structure Design

Fig 1. Reference Model 1 (RM1), a floating marine energy 
turbine1

Fig 2. NREL Flatirons wave basin

1Wiley et al. (2023), 2NREL Wave Tank Team
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Small-Scale Testing Challenges

Reynolds-Froude Scaling 
Incompatibilities

Physical Limitations in 
Test Facilities
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Emulation of Aerodynamic Forces Using a Fan Based Actuation System

3Otter et al. (2020)

MPD used in this study to 
emulates the aerodynamic 
loads of the NREL 5 MW 
reference turbine at 1:37 

scale

Fig 3. Multi-Propellor Device (MPD) developed to simulate 

aerodynamic loads using fans3
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Emulation of Forces Using Cable Based Actuation

4Vilsen et al. (2017)

Three actuation lines (visible 
in Fig 5) connected to the 

floater applied the calculated 
load from a numerical 

simulation

Fig 4. Representation of the emulated system4

Fig 5. Model of floater in basin4



Hybrid Submodeling Strategy

Numerical 
Submodel

Physical Wave 
Loading

Required tensions to actuate 
the forces the platform 

would experience

Actual tensions in the 
cables and current position 

of the platform

Numerically Simulated 
Environmental Conditions

6

Physical 
Submodel
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Hybrid Submodeling Strategy

Fig 6. Overview of substructuring strategy
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Cable Tension Allocation

 

Wrench Matrix of Expected Forces = Structure Matrix from Cable Geometry x Cable Tensions
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Cable Tension Allocation

 

 

 



Cable Geometry Optimization

Objective: Find the optimal cable anchor points such that the cable tensions are as close to a mean reference 
tension value as possible
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Cable Geometry Optimization

 

Optimal Anchor Locations

Decision 
variables: 

pulley 
locations

Numerical Model

 

 

 

 

Objective: Find the optimal cable anchor points such that the cable tensions are as close to a mean reference 
tension value as possible



Cable Attachment Points on Platform

  Considerations
• Structural integrity of chosen attachment points
• Ease of access to limit crossing of cables and platform structure
• Efficient force actuation in the desired DOFs

Lower Attachment Point Candidates Upper Attachment Point Candidates

Fig 7. Possible cable attachment points on floating tidal energy convertor RM1



Optimization Results
Tension Ranges

Fig 8. Overall tension range for base geometry and each optimized geometry



Optimization Results
Geometries

Optimized GeometriesBase Geometry

Fig 10. Optimized Geometry 2 (G2)

Fig 11. Optimized Geometry 4 (G4)

Fig 9. Base Geometry



Optimization Results
Tension Time Series

Initial 
Configuration

Optimized 
Configuration

Base

G2

G4

Fig 12. Tension time series for three geometries

Upper Line Tension Range (N): 40.8 N
Lower Line Tension Range (N): 43.3 N

Upper Line Tension Range (N): 17.7 N
Lower Line Tension Range (N): 30.4 N

Upper Line Tension Range (N): 22.6 N
Lower Line Tension Range (N): 32.5 N



Optimization Conclusion

Identifying patterns and key features across multiple optimized geometries

Considering the tradeoff of added complexity vs improvement of tension allocation 

Takeaways

Implications

Eliminate the need for wave and wind generation capabilities in order to test floating structures

Testing of other offshore structures (i.e. floating wind turbines and wave energy convertors)

Model more complex flows in both wind and tidal scenarios



Conclusion

Future Work

Build Physical 
Actuation System and 
Supporting Structures

Summer 2024

Build Physical RM1 
Model

Summer 2024

Deploy and Begin Initial 
Wave Basin Testing

Fall 2024
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