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Abstract: Oscillating water column (OWC) wave energy converters (WECs) are very
popular types of wave energy converters due to their practical implementations, their
versatility in deployment in different marine environments, and their high reliability in
wave energy conversion. In development, different forms of OWCs have been proposed
and advanced, such as fixed OWCs (on the shoreline, on breakwaters, or bottom standing)
and floating OWCs (the spar and the backward-bent duct buoy, BBDB). In reality, a special
type of OWC, the cylindrical OWC, is the simplest OWC in terms of its structural design and
possible analytical/numerical solutions. However, such a simple OWC has not seen any
practical applications because a cylindrical OWC is inefficient in wave energy absorption
when compared to other types of OWC WECs. To study the simplest cylindric OWC, an
experiment was carried out in a wave tank, and the relevant results are presented in this
paper, with the aims of (i) analyzing the experimental data and exploring why such an OWC
is inefficient in terms of wave energy absorption; (ii) providing experimental data for those
who want experimental data to validate their numerical models; and (iii) establishing a
baseline model so that comparisons can be made for improvements to the simple cylindrical
OWC. As an example, an innovative solution was applied to the simple OWC such that
its hydrodynamics and energy extraction performance can be significantly improved (the
corresponding results will be presented in a separate paper).

Keywords: wave energy converter; oscillating water column; experimental study; cylindrical
OWC; power performance

1. Introduction
Wave energy has much higher energy density when compared to other renewable

resources, such as wind energy and solar energy. Thus, extracting wave energy from oceans is
a very desirable addition to the energy mix in the future. This is especially true for countries
that abound with wave energy resources [1]. However, wave energy production is very
difficult since it involves large forces and very low velocity in the energy conversion process.
Dealing with the large reciprocating forces and low reciprocating velocities in massive wave
energy production is a challenging issue since this energy-converting process is the exact
opposite of the conventional energy conversion process (i.e., electricity generation) in which a
very large and steady rotational speed (generally 3000 RPM rotational speed, compared to the
wave cycle at less than 10 RPM) and a low steady torque are applied for power conversion. In
such a manner, the energy-converting system must sustain a continuous large reciprocating
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force and address the inevitable issue of fatigue, which would inherently make wave energy
converters very unreliable in energy production.

In fact, reliability-related issues in wave energy production are critical for all wave
energy devices, and any successful wave energy devices must overcome these issues effec-
tively. In the past decade, we have seen the failures of advanced wave energy technologies,
such as the Pelamis and Oyster wave energy converters (WECs) [2,3], because of consistent
issues concerning the devices’ reliability. It should be noted that finding the root causes
of these failures is not an easy process (see [4]), and some information is available on the
website of Wave Energy Scotland (WES) [5].

Having been studied and developed for many years [6–9], and currently being an
interesting topic in wave energy technologies [10–15], oscillating water column (OWC) wave
energy converters (WECs) are well known to have the highest reliability in wave energy
production (when compared to other wave energy technologies) due to their unique wave
energy conversion processes. Their practical applications include the Land Installed Marine
Power Energy Transmitter (LIMPET) in Scotland [16], a wave plant that generated wave
energy power to the grid for more than 75,000 h in the period from 2001 to 2013. It was also
reported that its energy availability achieved 98% in the last 4 years of operation [4]. Another
example is the Mutriku wave energy plant, with OWCs built on breakwaters in Spain; the
plant accumulated 2 GWh of energy from waves to the grid in 2020 [17]. A bottom-standing
OWC plant, the Yongsoo plant in South Korea, is now used for generating hydrogen [18].
Another significant advancement is the OE buoy, a floating ‘BBDB’ (backward-bent duct
buoy) OWC, developed in Ireland, and this BBDB OWC has finished its ¼-model sea trial in
Galway Bay (Ireland), conducted for more than 4 years [19], and currently a full-scale, 35 m
long device (‘OE35’) is being sea-trialled at the US Navy Wave Energy Test Site, WETS [20].

In addition to their high reliability for OWC WECs, their versatility in being deployed
in different marine environments has attracted researchers and developers. OWCs can be
designed as fixed-form devices, such as on the shoreline [16,21], on breakwaters [22,23],
and in a bottom-standing form [18], or deployed as floating devices either in shallow waters
or deep waters, such as BBDB OWC WECs [20,24], spar-type OWCs [25–27], etc.

In one aspect, OWC WECs would absorb wave power in a similar manner, with a large
amplitude force and low velocity in the primary energy conversion stage. However, in
another aspect, OWC WECs have a very different energy transmission process from other
wave energy converters, in which energy transmission occurs in an indirect manner; that is,
by applying air passage contraction in the air chamber, the very slow air flow (driven by
waves) could be accelerated significantly, by 50–100 times, when the air flow reaches the
air turbine. In summary, the energy transmission and conversion process in OWC WECs
occurs in the following manner:

(1) The air flow near the water surface in the air chamber is initially driven by water body
motion in the water column, and the corresponding air velocity is the same as the
very slow velocity of the water body. This is the primary wave energy conversion.

(2) The air chamber is then contracted such that the air flow can be accelerated due to
the fact that the flow continuity equation must be satisfied. The air flow would be
accelerated by 50–100 times since the experimental results and numerical modelling
have both shown that the area ratio of the orifice to the water surface area would
ideally be about 1–2%.

(3) The much-accelerated, high-speed air flow can then drive an air turbine to rotate at
a high rotational speed for energy conversion. The air turbine’s rotational speed is
generally in the range of 500–3000 RPM [28,29] compared to the wave cycle <10 RPM.

(4) With the high rotating speed of the air turbine, a low torque/force may be only needed
for converting the required wave power in OWC WECs.
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(5) In a manner similar to the conventional energy conversion, with a high rotational
speed and a low torque in OWC energy conversion, the OWC wave energy converters
could generate wave power with a high reliability [8,9,30,31]. In this regard, OWCs
are different from other wave energy converters.

It should be noted that the unique advantage for the OWC WEC is that in the OWC
technologies, the speed acceleration of the air flow is through a soft transmission, that is, the
air flow is accelerated simply through the contracted chamber, converting the energy due
to the pressure in the air chamber into the high-speed air flow, in which no hard connection
is required. This unique wave energy transmission process could make the OWC WECs
most reliable among the wave energy technologies.

As desirable as other wave energy technologies, an OWC WEC must be efficient in ex-
tracting energy from waves, and this is the primary topic in both research and development
for OWC technologies. Currently, researchers propose different ways for improving wave
energy conversion efficiency by the OWC WECs. Examples include the U-OWC [23,32,33],
which utilizes the interaction of the U channel and the water column for improving the
OWC’s energy absorption from waves. Included also are the dual- [12,34]/multi-chamber
OWCs [35–38], in which the favorable interactions among the multi-chambers can be used
for improving overall energy absorption from waves. For spar OWCs [25–27], they are de-
signed to have two very different natural periods for the device heave motion and the inter-
nal water body motion, while examining the different shapes of BBDB OWCs [24,34,39–41]
may improve the hydrodynamic performance of the BBDB OWCs for increasing their wave
energy extraction.

To understand OWCs better, we can take the spar OWC as an example, since we have
already seen the practical developments, such as the Marmok-A-5 in Spain [25] and the
model in Portugal [26]. A question may be asked: Why do we need a long tube for a
spar-OWC? Would a short tube be as efficient for the OWC?

To answer the question, we need to understand how the wave energy is extracted
by the spar OWC. For the spar OWC, the main motion mode for wave energy conversion
is the relative heave motion between the spar structure and the water body in the water
column. To make such an OWC efficient, a large relative motion between these two heave
motions in waves is very desirable. In design, the float of the spar OWC has a small mass
and a small draft; thus, the spar structure has a small natural period in heave. In contrast,
the long tube in the spar OWC means a long water body in the water column, thus a long
natural period of the water body in the column; see [42,43]. So the spar OWC is so designed
that a large difference between two natural periods of heave motions can be attained, and a
large relative motion could be generated for the wave period between these two natural
periods, since the two heave motions are in different phases under the wave excitation.

Having seen the special design for the spar OWCs, a major drawback for it is its
large draft. For deploying such a floating structure, deep water is needed, and for such
a large draft device, the installation/assembly, decommission and transportation will be
also difficult. To reduce the draft, a sloped OWC is proposed (see details in [44]). However,
there are no practical developments because such a solution may not benefit too much in
solving the main problems for the spar OWCs.

A better solution would be the BBDB OWC, which can be regarded as bending the water
column by 90◦ see the practical development by OceanEnergy Ltd. (Cork, Ireland) [20] and the
developments in China [24,39]. In reality, BBDB OWCs have the advantage of a reduced draft;
thus, the wave energy device can be fully assembled in harbors, and towed to the development
site for deployment (decommissioning would be easily carried out by reversing the procedure).
And the deployment of such an OWC device would be straightforward, by simple mooring
and cable connections. A good example is the OceanEnergy OE35 plant (35 m long BBDB



Energies 2025, 18, 500 4 of 28

device with a rated power of 1.0 MW). The wave power plant was manufactured and fully
assembled in a shipyard in Portland (US), and then towed to Hawaii via the Columbia River
and then across the East Pacific by a towboat in a journey of 43 days [45].

The BBDB OWC is generally efficient for extracting energy from waves, especially
when the wave is in the right direction, and when the wave direction is not right, the
wave energy extraction efficiency of the BBDB OWC would be reduced significantly. In
addition, despite having been bent by 90◦ for the BBDB OWC, its draft can still be large if
a large BBDB device is designed. For instance, the RM6 OWC has a draft of 17.5 m [46].
For manufacturing such a BBDB OWC device, a harbor of more than 17.5 m water depth is
required, which may be generally beyond the existing harbors around the world.

This research aims to experimentally investigate a very simple OWC device, a cylindri-
cal OWC with a small draft. From the experimental data, the simple OWCs are inefficient
in terms of wave energy extraction. However, our focus for this experimental investigation
is twofold: (1) to collect the experimental data for such a simple OWC so as to exploit
why the cylindrical OWCs are so inefficient and to make experimental data available to
the public for validating their numerical models, and (2) to make the simple cylindrical
OWC as a baseline technology, to which any innovative solution (and hence improvements)
applied to this simple OWC can be compared. In fact, an experimental study for improving
the performance on the cylindrical OWC WEC is presented in a separate paper [47].

The remaining sections will be arranged as follows. In Section 2, the cylindrical
OWC model in the experimental investigation is presented, and the relevant measurement
systems and assessment methods are introduced in Section 3. In Section 4, the test results
for the fixed cylindrical OWC are presented, while in Section 5, the test results for the
floating cylindrical OWC are given. In Section 6, the comparisons are made for the fixed
and floating OWCs, with a focus on their wave energy extraction capacities. Lastly, the
conclusions are summarized in Section 7.

2. Wave Tank and Cylindrical OWC Model
2.1. Wave Tank

The model test was conducted in the ocean wave tank at Hydraulics and Maritime
Research Centre (HMRC, Cork, Ireland), and the wave tank has dimensions of 25 m long,
18 m wide and 1 m deep (see Figure 1), the OWC model tested in a regular wave). A total
of 40 flap-type wave makers installed in the tank are controlled independently for making
waves of different types in the tank, such as regular waves, long-crested irregular waves,
short-crested irregular waves, waves with an angle to the wave makers, focused waves, etc.
In this OWC test, regular waves and long-crested irregular waves are used.
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2.2. Cylindrical OWC Structure

The OWC wave energy converter for this experimental study is a simple cylindrical
OWC, which was originally designed as a research OWC device [48]. The cylindrical OWC
consists of a float of outer diameter 0.316 m, inner diameter 0.104 m (water column) and
overall height 0.4 m. Both the fixed and floating OWCs have a draft of 0.3 m (the floating
OWC has a weight of 20.98 kg). Figure 2 shows a fixed OWC in the wave tank, and Figure 3
is the floating OWC moored in the wave tank. Table 1 shows the relevant parameters of the
testing model.
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Table 1. Parameters for tank testing of the cylindrical OWC.

Parameter Value

Outer diameter (m) 0.316

Inner diameter (m) 0.104

Draft (m) 0.300
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Table 1. Cont.

Parameter Value

Mass (kg) 20.98 (for floating device)

COG (m) 0.115 (from the bottom of the cylinder, for floating)

Ixx (kg × m2) 0.65 (for floating)

Iyy (kg × m2) 0.65 (for floating)

Izz (kg × m2) 0.25 (for floating)

2.3. Orifices (For Modelling Nonlinear Air Turbines)

In modelling a nonlinear air turbine PTO for the OWC WECs, such as the popular
impulse air turbines [8], the nonlinear air turbines are simply modelled using orifices, and
using orifices of different sizes for representing different damping relations between the
pressure drop and the flow rate (as a reference, for a linear air turbine, it can be modelled
in a similar way by applying larger orifices, but with the porous membrane (the carpet like
texture) for damping the air flow through the orifices, such that the pressure drop and the
flow rate can be roughly linear; see details in [49]).

To model a nonlinear air turbine, on the top of the air chamber, a Perspex plate (5 mm
thick) with a large hole of 34.0 mm is fixed, and this large orifice represents an air passage
with an area ratio 10.69% over the water column area. Obviously, such a large orifice would
produce a very small damping to the air flow. To examine the different air damping levels
by the orifices, five smaller orifices can be mounted over the large orifice for modelling
larger damping levels to the air flow through the orifices. The diameters of the small orifices
are given in Table 2, together with the corresponding area ratios over the sectional area of
the water column.

Table 2. Orifice sizes and their ratios to the water column area (reduced by the rod of diameter 3 mm).

Orifice Diameter (mm) Area Ratio to Area of the Water Column

8.0 0.51%

12.0 1.22%

14.0 1.70%

16.0 2.28%

22.0 4.36%

2.4. Data Acquisition Systems
2.4.1. Qualisys

Qualisys, a non-contact system of measuring the positions of the markers on the
moving structures (the floating device in this case), consists of four cameras installed above
the tank, and a T-Frame (and markers) is fixed on the floating body; see Figure 4.

To measure the motion of the internal water surface (IWS) related to the device, a
small float (foam) is placed inside the water column, and it supports a small rod (3 mm in
diameter) and a fluorescent ball on top of it; see Figure 5 for an illustration. The internal
float is very light so it will follow the IWS motion accurately, as will the fluorescent ball for
measuring the IWS motion.
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2.4.2. LabVIEW System

In addition to the Qualisys system for measuring the motions of the structure and
IWS, a LabVIEW system is applied for collecting all other measurements in the model test,
such as the measurements of waves and the air chamber pressure.

The wave measurement is made via a wave probe which is placed 2 m away from
the model in Figure 6. Such an arrangement would make the wave measurement not
affected too much by the waves generated by the model (such as the scattered wave and
the radiated wave).

A pressure sensor is installed on the top of the water column for measuring the
air chamber pressure (see Figure 3). The measurement of the air chamber pressure is
important for calculating power converted by the OWC, and such a measurement would be
complementary to the measurement for the IWS motion, since both measurements can be
used for calculating the absorbed power of the OWC, either independently or collectively.
More details can be seen later in this paper.
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2.4.3. Data Acquisition and Synchronisation

In the model test, two applied data acquisition systems (Qualisys and LabVIEW) are
independent, but can be synchronized with a common trigger signal. The Qualisys has a
built-in data acquisition system for recording the motions of the fluorescent balls mounted
on the structure and a conversion software for converting the ball motions to the motions
of the target structure. LabVIEW is a generalized data acquisition system for recording
different signals via AD (analog–digital) conversion.

To synchronize the data acquisition, the LabVIEW system generates a trigger signal
for the Qualisys system, such that the data acquisitions can be synchronized for both
systems. However, this is the case if both systems were working well. It is found in the data
postprocessing that the synchronization for two systems might not be working in some
cases during the tank testing, that is, the aforementioned data acquisition systems were
not synchronized.

In data postprocessing, it would be more difficult if two data acquisition systems were
not synchronized. For instance, if the air chamber pressure (via LabVIEW) and the air flow
through the orifice (via Qualisys) are not synchronized, the calculation of the extracted
power by the OWC via both the measurements of air chamber pressure and the IWS motion
would not work. In such a case, an option is to use the air chamber pressure to calculate
the captured power. It should be noted that since the pressure and wave measurements
are via the LabVIEW system, it is possible to align the wave measurement and the power
conversion, while the extracted power calculation via the IWS only can be used to align the
extracted power vs. the structural motions, but it is impossible to line it up with the wave
measurement (see further details later).

3. Measurements and Data Processing
3.1. Qualisys and the Motion of the OWC Structure

The four cameras record the coordinates (motions) of each marker in a three-
dimensional manner (x, y, z). From these coordinates of the balls, it is possible to calculate
the motions of the rigid body (6-DOF motions: surge, sway, heave, roll, pitch and yaw).
The following principle is for converting Qualysis data into the structural motions.

The 3-D camera data are recorded during the wave testing, with a global system being
defined in the Qualisys calibration in the tank. Suppose we have the coordinates of three
markers (note: three markers are the minimum for deciding the structure motions), given
by (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3), respectively.

For the floating rigid body, as a convention, 6-DOF motions can be used to describe
the motion of the rigid body: three translational motions: surge (ξ), sway (η) and heave (ζ),
and three rotational motions: roll (φ), pitch (θ) and yaw (ψ) [50].

The rotation matrix for each rotation is given as follows.
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Matrix for rolling:

Rx =

1 0 0
0 cosφ −sinφ

0 sinφ cosφ

 (1)

Matrix for pitching:

Ry =

 cosθ 0 sinθ

0 1 0
−sinθ 0 cosθ

 (2)

Matrix for yawing:

Rz =

cosψ −sinψ 0
sinψ cosψ 0

0 0 1

 (3)

According to Diebel [50], there may be a total of 12 different ways to obtain the overall
rotation matrix, depending on the order of the rotations. In Naval Architecture, three Euler
angles (φ, θ, ψ) are mostly used to represent the rotation motions of the floating structures,
i.e., rolling (around x-axis), pitching (around y-axis) and yawing (around z-axis). Following
the convention, the order of the rotation is rolling first, then pitching and yawing last
(Fossen and Smogeli 2004, [51]); therefore,

R = RxRyRz =

cosθcosψ sinφsinθcosψ − cosφsinψ cosφsinθcosψ + sinφsinψ

cosθsinψ cosφcosψ + sinφsinθsinψ cosφsinθsinψ − sinφcosψ

−sinθ sinφcosθ cosφcosθ

 (4)

Corresponding to a point
(
x′1, y′1, z′1

)
on the rigid body, the point in the global coordi-

nate system will be (x1, y1, z1). The motion of the point can be represented byx1

y1

z1

 = R

x′1
y′1
z′1

+

ξ

ζ

η

 (5)

where ξ is surge, ζ sway and η heave.
To simplify the problem, we can assume the angular motions are small, that is, φ, θ, ψ

are all small, so we have approximations:{
sinφ ≈ φ; sinθ ≈ θ; sinψ ≈ ψ

cos φ ≈ cosθ ≈ cosψ ≈ 1
(6)

By dropping the high-order terms, the total rotating matrix would be written as

R =

 1 −ψ θ

ψ 1 −φ

−θ φ 1

 (7)

Based on this simplified rotational matrix, it is possible to solve the structural motions:
the translational motions, (ξ, ζ, η), and rotational motions, (φ, θ, ψ). The following are the
methods for how to calculate the structural motions.

Consider another point on the structure, (x′2, y′2, z′2), and its coordinate is (x2, y2, z2)

under the same translation and rotational motions, based on the relation
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x2

y2

z2

 = R

x′2
y′2
z′2

+

ξ

ζ

η

 (8)

Subtracting Equation (8) with Equation (5), we havex2 − x1

y2 − y1

z2 − z1

 =

 1 −ψ θ

ψ 1 −φ

−θ φ 1


x′2 − x′1

y′2 − y′1
z′2 − z′1

 (9)

This is a linear simultaneous equation, and can be used to solve the rotational angles,
(φ, θ, ψ). In the tank test, the T-frame is such that a simplified calculation can be carried
out. For instance, we can consider two points on the T-frame: the ball on the starboard side
and the ball on the port side; thus, we could have x′2 − x′1 = 0 and z′2 − z′1 = 0, and using
Equation (9), we have ψ = − x2−x1

y′2−y′1
φ = z2−z1

y′2−y′1

(10)

Using a similar method, we can obtain θ. Once we have all three rotational motions,
we can easily calculate the translational motion by simply applying Equation (5):ξ

ζ

η

 =

x1

y1

z1

− R

x′1
y′1
z′1

 (11)

3.2. Motion of IWS

The measurement of the motion of the IWS can be used to calculate the flowrate
through the orifice, since the air can be considered as incompressible in such a small model
and the small pressure can be built up in the air chamber.

The IWS measurement is made by a float (a floating foam) on the IWS (see Figure 3)
and the supported marker (“IWS marker”). The IWS marker can move relative to the
T-frame. Hence, the relative motion of the IWS marker to the T-frame is actually the motion
of the IWS in the water column.

Suppose the relative IWS motion is given as a time series, x7(ti), (i = 1, . . . , N), by a
sampling time increment ∆t (in the tank test, ∆t = 1

32 s), where N is the samples.
The velocity of the IWS can be calculated as (see [52]):

V7(ti) =


−3x7(t1)+4x7(t2)−x7(t3)

2∆t , f or i = 1

x7(ti+1)−x7(ti−1)
2∆t , f or i = 2, . . . , N − 1

x7(tN−2)−4x7(tN−1)+3x7(tN)
2∆t , f or i = N

(12)

Here, Equation (12) for velocity calculation has an accuracy of second order.
For the incompressible air, the flow rate is calculated as

Q(ti) = V7(ti)A0 (13)

where A0 is the sectional area of the water column at the water surface.

3.3. Flow Through Orifice

The flow rate through the orifice is the same as in Equation (13) due to the flow
continuity for incompressible air. When the air flow is inhaled/exhaled through the orifice
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of a sectional area A1, with the reference flow velocity V70, the flow rate through the orifice
would be calculated as

Q = CqV70 A1 (14)

where Cq is the flow discharge coefficient, due to the non-uniform flow through the orifice.
In our case, Cq = 0.65.

The relation between the wave-driven air velocity at IWS and the reference velocity of
the air through the orifice is given as

V70 =
1

Cq

A0

A1
V7 (15)

3.4. Power Calculation
3.4.1. Power from the Measured Pressure and IWS Motions (P1)

The power through the orifice is simply calculated in time series as

P1(t) = p(t)Q(t) (16)

So the average power can be calculated as

P1 =
1
T

∫ T

0
p(t)Q(t)dt (17)

where T is the wave period in regular waves, and the sampling time period in irregu-
lar waves.

For the sampled data, the average power is given by

P1 =
1
N

N

∑
i=1

p(ti)Q(ti) (18)

3.4.2. Power from the Chamber Pressure Only (P2)

From the measured pressure, p, the reference velocity of air flow through the orifice
can be calculated based on the Bernoulli’s equation, as

V70 = ±

√
2|p|
ρa

(19)

where ρa is the air density.
The positive air flow velocity given in Equation (19) corresponds to positive air

chamber pressure (exhalation), and a negative air chamber pressure corresponds to a
negative velocity (inhalation). The corresponding flow rate through the orifice can be
given by

Q = CqV70 A1 = sgn(p) Cq A1

√
2|p|
ρa

(20)

where sgn(p) indicates a negative sign when the chamber pressure is negative and a
positive sign for a positive pressure. Using the flow discharge coefficient, Cq = 0.65,
the relation between the flowrate and the chamber pressure can be seen as in Figure 7.
Obviously, using the flow discharge coefficient Cq = 0.65, the flowrate and the pressure
have been well correlated.
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The power can be given as

P2(t) = |p|Cq A1

√
2|p|
ρa

= Cq A1

√
2
ρa

|p(t)|
3
2 (21)

3.4.3. Power from the IWS Motions Only (P3)

Based on the air flow velocity through the orifice, via Equation (15), applying
Bernoulli’s equation would lead to a pressure drop across the orifice:

p3 =
1
2

ρaV2
70 =

ρa

2C2
q

(
A0

A1

)2
V2

7 (22)

where p3 is the pressure drop across the orifice, based on the reference velocity through the
orifice, V70.

The power is calculated:

P3(t) = p3(t)Q(t) =
ρa A0

2C2
q

(
A0

A1

)2

|V7(t)|3 (23)

The power is a function of the IWS velocity, V7, which only depends on the IWS motion.
In theory, Equations (16), (21) and (23) should give the same powers if all mea-

surements and the flow discharge coefficient are accurate. However, in practice, due
to the errors in the measured data and in the flow discharge coefficient for different
test conditions, slight differences can be seen when the power calculations are made by
Equations (16), (21) and (23). Figures 8 and 9 show the comparisons for the calculated
powers through the three different approaches for regular and irregular wave tests: ‘P1’—
Equation (16) from both pressure and IWS measurement; ‘P2’—(21) from the pressure only;
‘P3’—Equation (23) from the IWS only. Generally, the three methods of power calculation
are very close. However, it can be seen that the power calculated with the air pressure
only is the smoothest, while the power calculations from the IWS only contain spikes. The
reason for this is that the chamber pressure is less affected by the uneven events in the air
chamber, while the IWS motion may be more affected by such uneven events.
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3.5. Capture Width and Efficiency

The average wave power per unit wave front length (a deep-water approximation is
assumed for the simplicity of the wave power) is given by the following two equations.

For a regular wave:

Ere =
ρwg2

32π
H2T (24)

where H is the regular wave height, and T the wave period.
For an irregular wave:

Eirr =
ρwg2

64π
H2

s Te (25)

where Hs is the significant wave height, and Te the wave energy period.
So the wave energy capture width for a regular wave is

W = P/Ere (26)

For an irregular wave:
W = P/Eirr (27)

The efficiency of the wave energy capture is given by

η =
W
B

× 100% (28)

where B is the overall width of the OWC buoy.
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3.6. Responses (The Response Amplitude Operators, RAOs) in Regular Wave

Device motions:
Hi = ξi/H(i = 1, . . . , 6) (29)

where Hi is the amplitude response operator (RAO) of the motions, i the index for the mode
of motions, and ξi the height of the motion in waves.

Internal water surface (IWS), H7:

H7 = ξ7/H (30)

where ξ7 is the height of the IWS motion.
Pressure response, Hp:

Hp = p/H (31)

where p is the height (from trough to peak) in the pressure signal.
Power capture response, HP:

HP =
P

H2 (32)

where P is the average converted power of the OWC from waves.

4. Results and Analysis: Fixed Cylindrical OWC
The fixed cylindrical OWC in Figure 2 is supported using three small rods on a bottom-

fixed frame, with a small plate being located at 0.3 m below the bottom of the OWC. Such
an arrangement allows the fixed OWC to be isolated from the effects of other structures.
Such an isolated OWC may be the simplest OWC structure, and its numerical modelling
should be the easiest.

4.1. Regular Wave Tests

In wave tanks, regular wave tests are frequently used to examine the device per-
formance of the marine structures in waves, generally given in the form of responses of
the structure motions (and other responses too). For wave energy converters, the power
capture response of a wave energy converter is a good indicator to show in what wave
periods/frequencies the device can convert wave energy efficiently.

To obtain the full responses for the marine structure in waves, a series of regular waves
must be used for testing. To achieve that, for a set of different chosen frequencies, the
regular waves are generated ideally to have the same wave height. In our experimental
investigation, 18 different frequencies/periods are used in the regular wave series test, and
different wave heights (20 mm, 40 mm and 60 mm) may be used in the test for testing
different series (the relevant experimental data are made available to the public in [53],
where both regular and irregular wave tests for fixed and floating cylindrical OWCs can be
downloaded for reference).

In principle, if the dynamic system is fully linear, then the responses (in the frequency
domain) will be the same under the different wave heights. However, in the test of the
simple OWC, since the orifices are used for the nonlinear PTO modelling in the OWC
device, the corresponding dynamic systems are not linear. Therefore, the different wave
heights can be used to examine the system’s responses to different wave heights, that is,
the nonlinearities in the dynamic system. Figure 10 show the responses of the IWS (motion)
in different wave heights (H = 20 mm and H = 40 mm) for an orifice = 12 mm. Obviously,
in the larger wave height, the orifice could produce a larger damping to the IWS motion,
because the IWS responses for H = 40 mm have no obvious peak responses at the resonance
period (T0 = 1.25 s, see below) unlike the responses in the smaller waves, H = 20 mm. The
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reason for this is that the IWS responses have more damping due to the orifice in a wave
height of 40 mm compared to a wave height of 20 mm.
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Motions of IWS

The IWS responses with different orifices can be seen in Figure 11 and the calculated
natural periods of the IWS are also indicated. The natural period is calculated as T0 = 1.177
s, following a semi-empirical formula, given in [43]:

T0 = 2π

√
D + 0.848R

g
(33)

where D is the draft of the water column, and R is the radius of the water column.
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For a comparison, the natural period of the IWS from the experimental data is about
1.25 s, indicated by the maximal IWS responses, specially for the case of an orifice diameter
of 16 mm. It can be seen that there is some difference between the calculated natural period
and the one from the experimental data, but they are quite close.

From the experimental results, it can be seen that the IWS responses are very dependent
on the sizes of the orifices. This is understandable, because a smaller orifice means a larger
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damping level to the IWS motions, and it is more evident for the IWS responses near the
natural period.

It should be noted that for a nonlinear dynamic system, the response amplitude
operators (RAOs) are given for reference, because of its wave amplitude dependence. This
is different from the linear dynamic system, where the RAOs are independent of the wave
amplitude. To make such an RAO more sensible, the wave heights in the regular wave tests
are set to be the same or similar. For instance, for the case of H = 40 mm, the corresponding
series tests should all have a wave height around H= 40 mm.

Figure 12 shows the comparison of the pressure responses with different sizes of
orifices. Obviously, the smaller the orifice, the larger of the chamber pressure. This is
evident at the larger wave periods, because the smaller orifices will create more damping to
the air flow through the orifice; thus, a higher pressure can be built up in the air chamber.
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Figure 13 shows the wave energy extraction responses of different orifices. For a
smaller orifice, more extracted power is seen in the long waves, while with the larger
orifices, more wave energy is extracted in the waves of small periods.
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The wave energy extraction efficiency is seen in Figure 14 For such a simple fixed
cylindrical OWC, the maximal energy conversion efficiency is about 4.2%. Indeed, this
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cylindrical OWC has a very low energy efficiency in absorbing energy from waves. After
all, this is a simple cylindrical OWC designed for a research project, simply aiming to un-
derstand OWC conversion of wave energy and to validate the established numerical model
for the OWC; see [48,54]. For this experimental investigation, the relevant experimental
data can be downloaded from the reference [53].
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4.2. Irregular Wave Test: Long-Crested Waves

Real ocean waves are random waves, that is, each wave cycle of the ocean wave would
have different wave height and wave frequency (period) (see the recorded irregular wave
in the wave tank in Figure 15). The irregular wave generated in the wave tank generally
lasts for more than 4 min, allowing for a total 8192 sampling points at a sampling frequency
of 32 Hz. Such series could guarantee more than 100 wave cycles in the record, even for the
longest waves in this study, and it could ensure that the relevant statistical values from the
irregular wave test would be meaningful.
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The irregular wave test is used for examining the real performances of the marine
structure in real ocean waves. To achieve that, the random irregular wave has been
generated in the wave tank based on the wave statistical parameters, such as the significant
wave height (Hs), wave spectral peak frequency (Tp) and spectrum type (Bretschneider or
JONSWAP). Figure 16 shows a comparison of the target wave spectrum and the generated
wave spectrum; the generated wave spectrum is very close to the target wave spectrum.

Table 3 lists the wave energy extraction efficiencies in different waves. From the table,
it can be seen that the fixed OWC extracts most wave energy from the period Te = 1.08 s.
Also, with the orifice Φ = 12 mm, the wave energy extraction is better than the case with
the orifice Φ = 14 mm.
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Figure 16. The spectrum of long-crested (2D) wave generated in the tank (‘black line’), compared to
the theoretical spectrum (Bretschneider, Hs = 49.20 mm, Tp = 1.507 s, ‘red dashed line’).

Table 3. Power extractions for different orifices.

Te (s)
Energy Extraction Efficiency (%) The Change for Φ = 14 mm

(Compared to Φ = 12 mm)Φ = 12 mm Φ = 14 mm

0.89 0.867 0.770 −11.3%

1.08 3.690 2.526 −31.5%

1.30 2.826 1.804 −36.2%

1.70 1.104 0.809 −26.8%

5. Results and Analysis: Floating Cylindrical OWC (Original Form)
5.1. Mooring Setting

For the floating cylindrical OWC tests, three catenary mooring lines are used to moor
the device in the wave tank. The mooring lines are evenly distributed 120◦ apart; see
Figure 17 Each mooring line has a length of 4.0 m, the unit weight of the mooring line in
water is 0.896 N/m, and the diameter of the mooring is 8 mm. The hanging points and the
anchor points can be seen in Table 4.

Energies 2025, 18, x FOR PEER REVIEW 19 of 29 
 

 

 

Figure 17. Catenary mooring line arrangement. 

Table 4. Mooring connection points. 

Mooring Line Index Hanging Point (m) Anchor Point (m) 

Line 1 
x 0.084 1.934 
y −0.145 −3.350 
z −0.150 −1.000 

Line 2 
x 0.084 1.934 
y 0.145 3.350 
z −0.150 −1.000 

Line 3 
x −0.158 −3.868 
y 0.000 0.000 
z −0.150 −1.000 

5.2. Decay Test 

Table 5 lists the natural periods of the motions for the floating OWC moored in the 
tank under the catenary mooring connection. From the table, due to the asymmetry in the 
surge and sway, their natural periods are very close, and for the same reason, the natural 
periods of roll and pitch motion are almost identical. 

Table 5. Natural periods of the motions with moorings. 

Motion Mode Surge  Sway  Heave  Roll  Pitch  Yaw  
Natural frequency in rad/s 0.485 0.503 4.928 3.642 3.653 1.280 
Natural period in second 12.950 12.500 1.275 1.725 1.720 4.910 

For the floating cylindrical OWC, it extracts wave energy mainly via the relative mo-
tion between the heave motions of the water body in the water column and the heave 
motion of the structure, while other motion modes could contribute liĴle or nothing to the 
wave energy extraction for the OWC in terms of overall energy absorption. From the ex-
perimental results, we can see that the heave natural periods of the structure and the water 
body in the water column are very close, at 1.275 s (structure) vs. 1.250 s (water body), 
respectively. Such a small difference between these two natural periods means both the 
water body in the water column and the structure will move generally in phase, except 
the wave period is between these two natural periods of the heave motions (between 1.250 

Figure 17. Catenary mooring line arrangement.



Energies 2025, 18, 500 19 of 28

Table 4. Mooring connection points.

Mooring Line Index Hanging Point (m) Anchor Point (m)

Line 1

x 0.084 1.934

y −0.145 −3.350

z −0.150 −1.000

Line 2

x 0.084 1.934

y 0.145 3.350

z −0.150 −1.000

Line 3

x −0.158 −3.868

y 0.000 0.000

z −0.150 −1.000

5.2. Decay Test

Table 5 lists the natural periods of the motions for the floating OWC moored in the
tank under the catenary mooring connection. From the table, due to the asymmetry in the
surge and sway, their natural periods are very close, and for the same reason, the natural
periods of roll and pitch motion are almost identical.

Table 5. Natural periods of the motions with moorings.

Motion Mode Surge Sway Heave Roll Pitch Yaw

Natural frequency in rad/s 0.485 0.503 4.928 3.642 3.653 1.280

Natural period in second 12.950 12.500 1.275 1.725 1.720 4.910

For the floating cylindrical OWC, it extracts wave energy mainly via the relative
motion between the heave motions of the water body in the water column and the heave
motion of the structure, while other motion modes could contribute little or nothing to
the wave energy extraction for the OWC in terms of overall energy absorption. From the
experimental results, we can see that the heave natural periods of the structure and the
water body in the water column are very close, at 1.275 s (structure) vs. 1.250 s (water
body), respectively. Such a small difference between these two natural periods means
both the water body in the water column and the structure will move generally in phase,
except the wave period is between these two natural periods of the heave motions (between
1.250 s and 1.275 s). Hence, the simple OWC would be very narrowly banded and thus
very inefficient in terms of converting wave energy.

5.3. Regular Wave Tests

In a similar manner, the regular wave tests of the floating OWC include different
orifices and different wave heights, such as H = 20 mm, 40 mm and 60 mm. For a sensible
comparison, the responses presented in this section are for the regular waves with the wave
height set at 40 mm as the target wave height.

Figure 18a shows the response of surge motions of the moored floating OWC structure.
It can be seen that the response increases with the wave period. It should be noted that the
responses in this figure are for the first-order responses, with the second-order responses
excluded (the same for other motion modes). From the figure, we can see that the surge
responses are independent of the orifice sizes.
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Figure 18b shows the response of sway motions. Obviously, the sway motion is
very small (compare to the scale in Figure 18a). The responses are quite mixed under the
different orifices, probably in the range of the experimental errors, and they can be ignored
in the analysis.
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Figure 18c shows the response of heave motions with the different orifices. It can be
seen that the orifices have very small effects on the heave responses for this specific OWC,
and only very small differences can be discerned in the responses. From the figure, the
heave responses reach their maxima at its natural period (T0 = 1.275 s).

Figure 18d shows the response of roll motion with the different orifices, and generally,
some small roll responses from the experimental data can be seen when compared to the
pitch responses in Figure 18e. However, we can see the extraordinary response in a certain
period, and the analysis is given below.

In the regular wave tests, some extraordinary responses of roll motion can be seen in
certain periods of waves. In fact, such a large amplitude response of rolling motion can be
seen in other small devices, which is called instability of the rolling motion. It happens at
the Mathieu resonance frequency [55] when the incoming wave frequency is close to twice
the rolling resonance frequency, that is,

ωw = 2ωR (34)

or in periods, as

Tw =
1
2

TR (35)

where ωw (Tw) and ωR(TR) are the frequencies (periods) of incoming waves and the reso-
nance of the roll.

From the experimental results, the extraordinary roll responses happen at the wave
period T = 0.91 s, very close to half of the natural period of the roll motion (TR/2 = 1.725/2
= 0.863 s).

From Figure 18d, it can also be seen that the instability of roll motion happens for the
orifice of 12 mm only. But in reality, the instable roll does happen in other cases, mostly
depending on the wave heights; the larger the wave height, the more evident the instable
roll motion. In some cases, the instable roll motion is built up very quickly, and thus, it
can be seen easily from the experimental data, while in some other cases, the instable roll
motion is established in a very slow manner, so the instable motion has not been recorded
due to the experimental time (normally 1 min for a regular wave test). This explains why,
in Figure 18d, the instable roll responses may not be seen.

Figure 18e shows the response of pitch motions and it can be seen that the pitch
responses are not very affected by the orifice sizes. The responses reach their maxima at the
pitch natural period, TP = 1.72 s.

Figure 18f shows the response of yaw motions, and these responses are very small
when compared to pitch responses. It is understandable since, for such an axi-symmetrical
OWC, there should be no yaw motion; however, in some cases, the yaw motions may be
coupled with other motion modes, such as roll and pitch motions.

Figure 19 shows the IWS responses for different orifices, and the IWS response
is obviously very dependent on the orifices; the larger the orifice, the larger the
IWS responses.

Figure 20 shows the pressure responses under the different orifices: a larger orifice, a
smaller pressure response, and Figure 21 shows the wave energy conversion efficiencies for
different orifices. It can be seen from these two figures that the maximal pressure response
and the maximal energy conversion efficiencies happen at the wave period T = 1.25 s.
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5.4. Irregular Wave Test

Table 6 lists the wave energy extraction efficiencies of the floating cylindrical OWC
from different wave states (long-crested wave). From the table, it can be seen that the
floating OWC extracts the most wave energy from the period, Te = 1.08 s.
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Table 6. Wave energy extraction efficiencies of the floating OWC using different orifices in long-
crested waves.

Te (s)
Wave Energy Extraction Efficiency (%)

Φ = 12 mm Φ = 14 mm Φ = 16 mm

0.935 0.245 0.210 0.232

1.080 0.458 0.454 0.483

1.308 0.409 0.383 0.458

1.715 0.144 0.119 0.125

It can also be seen that, unlike the fixed OWC, the wave energy extractions are not so
obvious for the small orifice, Φ = 12 mm. It looks like it is better than the case of Φ = 14 mm.
However, the case with Φ = 16 mm is generally better than the case of Φ = 12 mm, except
in the shortest waves in the list.

6. Comparisons Between the Fixed and Floating OWC
6.1. Responses

In this section, comparisons will be made for the responses for the fixed OWC and the
floating OWC, for an orifice with a diameter Φ = 12 mm.

Figure 22 shows the IWS responses for the fixed OWC and the floating OWC. It can
be seen that the IWS of the floating OWC is very narrowly banded, while the IWS in fixed
OWC seems to have good responses in the long wave periods (they should be very close to
unit, and the difference may be caused by the experimental errors).
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Figure 22. IWS responses.

Figure 23 shows the comparison of the responses of the air chamber pressure. It can
be seen that for the fixed OWC, its pressure response has a much wider bandwidth and
a much larger magnitude than for the floating OWC. For the floating OWC, the maximal
pressure responses are at the wave period T = 1.25 s.

Figure 24 shows the response comparison of the wave energy extractions by the fixed
and floating OWC, with Figure 25 showing the comparison of the efficiencies of wave
energy conversion for the fixed and floating OWCs in regular waves. It can be seen again,
in such a form, that the floating OWC is very inefficient and narrowly banded in terms of
energy extractions from waves, even though the fixed OWC is much more efficient.
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6.2. Efficiencies of Wave Energy Conversion in Irregular Waves

Table 7 lists the wave energy extraction efficiencies in different wave states for both
fixed and floating OWCs in irregular waves. From the table, it can be seen that the fixed
OWC extracts wave energy generally many times when compared to the floating OWC, at
3.54 to 8 times, depending on the wave states.

Table 7. Power extractions for fixed and floating cylindrical OWC (Φ = 12 mm).

Te (s)
Energy Extraction Efficiency (%)

Ratio (Fixed/Floating)
Fixed Floating

0.89 0.867 0.245 3.54

1.08 3.690 0.458 8.06

1.30 2.826 0.409 6.91

1.70 1.104 0.144 7.67

7. Conclusions
This experimental investigation is the first part of the work on studying the cylindrical

OWC WEC, with the hope of finding a solution for improving the performance of the
cylindrical OWC. This part of the work aims to (i) investigate why the conventional
cylindrical OWC is so inefficient in terms of wave energy extraction; (ii) provide the
experimental data for the simple OWC in both fixed and floating forms for public use (data
can be downloaded from [53]); and (iii) establish a baseline technology which provides the
data for comparing any innovative solution to this simple OWC in terms of wave energy
increment. A good solution has been presented in [47].

From the investigation, the following conclusions can be drawn:

(1) In the original simple form, the cylindrical OWC is inefficient in both fixed and floating
forms. In the fixed form, the inefficiency is mostly due to the small water column
(when compared to the overall size of the cylindrical OWC, 0.104 m vs. 0.316 m
in diameter), while in the floating form, the structural heave motion and the water
body in the cylindrical OWC have very close natural periods, which means that the
structure and the water body of this simple OWC would move in phase under the
wave excitation; hence, no large relative motion can be generated for the two heave
motions, so this is inefficient.

(2) For calculating the extracted power from waves, three different methods may be
applied: (i) via the combination of the pressure and the flowrate; (ii) via the pressure
only; (iii) via the flowrate only. The comparisons have shown consistency in the
calculation if the air discharge coefficient is taken appropriately. In this case, Cq = 0.65
has been taken.

(3) For practical purposes, measuring the air chamber pressure is a good approach in
experimental study, since the air chamber pressure is less affected by the uneven
events in the water column, such as the sloshing motions of the water surface in
the chamber.

(4) The responses of the pressure in the air chamber and the IWS are very dependent on
the orifice sizes; the larger the orifice, the smaller the pressure response and the larger
the IWS motion response.

(5) The motion responses of the floating structure are not affected by the orifice sizes.
This means that different damping levels of the airflow have no significant effects
on the motions for this specific OWC. The reason may be the relatively small water
column (when compared to the overall size of the OWC).
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(6) For the floating OWC, the instable roll motion may happen at the Mathieu resonance
frequency (ωw = 2ωR), mainly depending on the test conditions, such as the orifice
size and the wave height.

It should be noted that the original cylindrical OWC WEC is a simple OWC for a
research project, which is not designed or optimized to have a high efficiency in wave
energy absorption. Having shown the inefficiency of the original OWC, especially in the
floating form, an innovative solution has been applied to the simple OWC for increasing its
energy conversion capacity significantly (see details in [47]).
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