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ABSTRACT
This article presents a data-efficient learning approach for

the complex-conjugate control of a wave energy point absorber.
Particularly, the Bayesian Optimization algorithm is adopted for
maximizing the extracted energy from sea waves subject to phys-
ical constraints. The algorithm learns the optimal coefficients
of the causal controller. The simulation model of a Wavestar
Wave Energy Converter (WEC) is selected to validate the control
strategy for both the regular and irregular waves. The results
indicate the efficiency and feasibility of the proposed control sys-
tem. Less than 20 function evaluations are required to converge
towards the optimal performance of each sea state. Additionally,
this model-free controller can adapt to variations in the real sea
state and be insensitive and robust to the WEC modeling bias.

INTRODUCTION
Although the principles behind wave energy conversion

(WEC) have been unveiled, harnessing the wave energy from
irregular reciprocating sea motions is a far from trivial prob-
lem [1]. Despite the difficulties, extensive efforts have been ded-
icated to employ advanced control strategies [2] in an attempt to
make the Levelized Cost of Energy (LCoE) of WEC comparable
to other renewable sources.

The preliminary work on optimization of WEC efficiency
using control engineering through reactive control and latching
was proposed by Budal and Falnes in the mid-1970s [3]. How-
ever, implementing reactive control may exceed the physical

constraints of the power take-off (PTO) system, which is imprac-
tical due to the associated large motions, forces and power rat-
ing of the (PTO). In addition, maximizing the mechanical power
of the WEC requires bi-directional power flows, which can give
rise to the high peak PTO power tolerance [4] and lead to an in-
crease in the investment. By contrast, latching control eliminates
any negative energy flow through a mechanism, such as a fric-
tion coupling or a clutch [5]. The resonance condition has been
achieved by approximating the optimal time when the floater
should be locked. The floater motions are linearly damped dur-
ing the remaining part of the wave period [6].

The objective of WEC control is to minimize the LCoE
while satisfying technological constraints. Hence, researchers
naturally try to copy the success of Model Predictive Control
(MPC) from the process industries to the wave energy field.
MPC solves the on-line optimal control problems under path
constraints. Recently, several MPC algorithms have been specif-
ically developed for the WECs [7]. However, in contrast to
the traditional reference tracking control problem, the objective
function needs to be modified greatly in the wave energy case,
which may give rise to a possibly non-convex optimisation prob-
lem. In addition, in order to alleviate the heavy computational
burden of MPC, the spectral and pseudo-spectral based MPC-
like algorithms offer interesting alternatives [8].

However, the overwhelming majority of proposed WEC
control algorithms are based on linear model descriptions, which
tend to ignore the true nonlinear characteristics of the WEC
hydrodynamics, especially when including the control signal.
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Many WEC linear models are validated using tank testing with
no PTO force given. Under controlled conditions, the relative
device/fluid velocity and the wetted surface increases, resulting
in an increase of viscous forces and Foude-Krylov forces, which
are ignored by linear hydrodynamic theories [9]. Meanwhile, the
WEC control objective is to maximise the absorbed power from
the sea by exaggerating the motion. This contradicts the pop-
ular WEC small oscillation assumption of linear hydrodynamic
theory [10]. Furthermore, the device hydrodynamics can change
over time due to slow marine biofouling or non-critical failures.
Modelling errors arising from un-modelled dynamics, nonlinear-
ities, can result in poor control performance. However, a small
number of robust controllers have been proposed for the WEC
control studies [11]. Better description of the WEC dynamics
are adopted in the work [12], in which a nonlinear MPC algo-
rithm is implemented on a WEC device. A linear time-varying
model has been successfully tested experimentally under large
motions [13].

Data-driven and learning-based control methods provide in-
teresting alternatives due to their nonlinear function approxi-
mation and optimization abilities. Artificial Neural Networks
(ANNs) have been adopted to provide real-time system identifi-
cation for WEC hydrodynamics [14]. Furthermore, ANNs have
been successfully implemented on the control of an Archimedes
Swing (AWS) WEC device [15]. Recently, a robust adaptive op-
timal control strategy has been developed by using a critic neural
network to approximate the time-dependant optimal cost value
[16]. Reinforcement learning techniques such as Q-learning are
used to develop a model-free reactive control system for WECs
in the work [17].

In this work, a more data-efficient algorithm is innovatively
adopted to develop the adaptive complex-conjugate control strat-
egy for WEC devices. The Bayesian Optimization (BO) ap-
proach directly searches optimal coefficients of the controller
by evaluating an objective function at the end of each simula-
tion episode. The data efficiency has been achieved by using
the uncertainty information provided by probabilistic Gaussian
Process (GP) models without exploring all the WEC dynamics.
The model-free property of proposed method makes WEC per-
formance more robust and practical than the linear model based
control methods. The proposed controller is predictionless (does
not need future wave force information), although it is shown
that it has a competitive performance to optimal control meth-
ods which usually need prediction. Numerical simulations are
evaluated in both the regular and irregular sea sates based on a
WEC-Sim model of the WaveStar device. More details on the
relevant dimensions and mechanical properties of the prototype
can be found [18].

1 Complex-conjugate control of target WEC system
1.1 Hydrodynamic modelling

The hydrodynamic model of the considered WEC is the
benchmark model provided by Wave Energy Conversion Con-
trol COMPetition (WECCCOMP), which is organized by Cen-
tre for Ocean Energy Research (COER) at Maynooth University,
Ireland in cooperation with Sandia National Laboratories, Na-
tional Renewable energy Laboratory (NREL), Centre for Marine
and Renewable Energy (MaREI), and Aalborg University, Den-
mark. The system to be used in the competition is available on
the WEC-Sim (Wave Energy Converter SIMulator)1. The floater-
wave dynamics in WEC-Sim are calculated by solving the Cum-
mins’ equation [19]:

(m+A∞)Ẍ(t) =−
∫ t

0
Kr(t− τ)Ẋ(t)(τ)dτ

+Fext(t)+Fvis(t)+Fhs(t)+Fpto(t)
(1)

where m is the floater mass, A∞ is added mass at infinite wave fre-
quency, Ẍ(t) is the acceleration vector of the floater, Kr is the ra-
diation impulse response function, Fext(t) is the wave-excitation
force, Fhs(t) is the hydrostatic restoring force, Fpto(t) is the force
exerted by PTO system, Fvis(t) is the viscous force.

In the frequency domain, this formulation can be defined as:

[iω(m+Aω)+Bv +R(ω)+
S

iω
]iωX(ω) = Fext(ω)+Fpto(ω)

(2)
where ω is the angular velocity, the operator iω indicates dif-
ferentiation, Bv and R(ω) are the viscous damping and radiation
damping respectively, S is the hydro-static restoring coefficient.

The intrinsic impedance of the WEC system is defined as:

Zi(ω) = iω(m+Aω)+Bv +R(ω)+
S

iω
(3)

1.2 Complex-conjugate control
Principally, if both the phase and amplitude optima of the

floater are satisfied, the optimal wave-body energy absorption of
the WEC can be achieved [1]. An ideal PTO can serve as an
extra inertia or a spring (as required) so to counteract the intrin-
sic WEC reactance. Then, the WEC is in phase with the wave
excitation force. If the PTO damping is further optimized, the
theoretical maximum of the extracted wave energy could be ob-
tained. The optimal PTO impedance is the complex-conjugate of
the intrinsic impedance:

Zpto(ω) = Z∗i (ω)

=−iω(m+Aω)+Bv +R(ω)− S
iω

(4)

1https://wec-sim.github.io/WEC-Sim/
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In complex-conjugate control, the sum of mass, damping
and spring terms yields the PTO force:

Fpto(t) = MptoẌ(t)+BptoẊ(t)+CptoX(t)

=−(m+A)Ẍ(t)+(Bv +R)Ẋ(t)−SX(t)
(5)

The PTO spring coefficient Cpto is constant for a given ge-
ometry, however values of Mpto and Bpto need to be adjusted with
different values of ω , Bpto = Bv +R and:

MptoẌ(t)+CptoX(t) =−(m+A)Ẍ(t)−SX(t) (6)

This is an equation with two unknown coefficients, Mpto and
Cpto, any arbitrary value can be given for one of these coeffi-
cients, and the other coefficient can then be calculated. When
Mpto = 0, this is known as the damping-spring reactive control:

Fpto(t) = BptoẊ(t)+CptoX(t) (7)

For a single frequency, the values of PTO damping and
spring coefficients remain constant. When applying complex-
conjugate control at every frequency of a polychromatic excita-
tion, the control is non-causal (future velocity information is re-
quired) [20]. Although the wave excitation force can be approx-
imated [21], perfect future knowledge is unavailable in real sea
states [22]. Alternatively, a causal controller can be developed
to approximate the response of the complex-conjugate controller
as closely as possible. The simple causal controller only requires
the device velocity as its input.

1.3 Causal realization
Although causal control has suboptimal performance due

to its memoryless definition, it can provide competitive perfor-
mance that rivals prediction-based controllers, which often unre-
alistically assumes perfect prediction on hand. Surprisingly, the
suboptimal causal controller using only device velocity as input
can achieve more than 90% of the theoretical maximum [23].

The most common causal controller may be the damping-
spring controller as shown in (7). This is a first-order representa-
tion, that can only match the response of complex-conjugate con-
troller in a narrow band. However, the causal controller can al-
most perfectly match the complex-conjugate response when us-
ing a second order system [23] [24]:

Fpto(s) =
Mptos2 +Bptos+Cpto

s2 +a1s+a0
Ẋ(s) (8)

where Fpto(s) and Ẋ(s) are the Laplace transform of the PTO
force and the velocity of the floater, respectively.

In the time domain, (8) can be rewritten as the following
integro-differential equation:

Ḟpto(t)+a1Fpto(t)+a0

∫
Fptodt =MptoẌ(t)+BptoẊ(t)+CptoX(t)

(9)
The term on the right hand side of (9) are together in exactly the
form of mass-damping-spring controller (5), a0 and a1 provide
extra flexibility to match the response of complex-conjugate con-
troller. However, this approach may suffer from issues related to
closed-loop stability. The gain becomes very large quickly with
increasing frequency, resulting in poor stability margins.

1.4 Limitation of complex-conjugate control
For some wave conditions, the complex-conjugate control

may result in large motions and unrealistic PTO forces of the
WEC. Additionally, the complex-conjugate control requires the
PTO to release partial energy back to the waves, that is, the PTO
acts as a motor during a short time of the wave period. This im-
plies that the PTO system should have high energy conversion
efficiency to absorb energy and feed energy back to the waves.
Finding the practical optima of these coefficients numerically is
non-trivial, especially when accurate non-linear hydrodynamic
models are usually not available. The proposed method in this
work is one of updating the controller coefficients at the end
of each simulation episode by evaluating the criterion used in
the WECCCOMP, which rewards absorbed power and penalises
large motions and PTO forces:

Score =
avg(P)

2+ |Fpto|98
Fmax

+
|X |98
Xmax
− avg|P|
|P|98

(10)

where the fraction term avg(P) is the average extracted power,
|Fpto|98 is the 98th percentile of the absolute force in a simula-
tion episode, Fmax is the PTO force constraint, |X |98 is the 98th

percentile of the absolute displacement in a simulation episode,
Xmax is the PTO displacement constraint, avg|P| is the mean ab-
solute electrical power output, |P|98 is the 98th percentile of the
absolute electrical power in a simulation episode.

The mechanical-to-electrical conversion efficiency of the
linear generator η has been set at 0.7, so that the extracted power
is:

P(t) =
{

ηFpto(t)Ẋ(t) i f Fpto(t)Ẋ(t)> 0
Fpto(t)Ẋ(t)/η i f Fpto(t)Ẋ(t)≤ 0 (11)

By evaluating this criterion, our proposed optimization method
can help the controller to converge iteratively to the practical op-
timal performance.

3 Copyright © 2019 ASME



2 Bayesian learning causal control
The optimization algorithm adopted in this work is BO,

which is a data-efficient method for computing the maximum of
expensive objective functions. For example, in this study the ob-
jective function is the above criterion, our purpose is to determine
the optimal controller coefficients to maximize this criterion. A
probabilistic model, such as GP model can be used to map the re-
lation between controller coefficients and objective function. The
probabilistic model shows the advantageous properties of provid-
ing both predictions and estimates of the uncertainty bounds with
respect to the objective functions. In the GP model, the uncer-
tainty is small near the observations, and becomes large when
further away from the observations. The trade-off between ex-
ploration (areas of high uncertainty) and exploitation (areas close
to the current best observation) has been made. Hence, the data-
efficiency is achieved by searching and fitting within the required
regions, rather than exploring all of the objective function spaces.
As shown in Fig. 1, a Bayesian optimization based on a proba-
bilistic model is used to update the controller with a high possi-
bility of increasing the rewards (criteria) and then collecting the
new data (controller coefficients and objective function evalua-
tions) to enhance the GP model. By repeating this process, the
GP model can iteratively approximate the real objective function
in regions with potentially optimal performance. Eventually, the
controller learns the optimal controller coefficients by interacting
directly with the real waves.

BayesianBayesian

Optimization

WEC

subject to 

sea states

GP

probabilistic

model

Updated Controller

(Fpto)

Evaluation

(Criteria)

Augmented 

Model

FIGURE 1. Block diagram of the Bayesian learning reactive control

2.1 The Bayesian Optimization approach
BO is a state-of-the-art machine learning framework for op-

timizing expensive and possibly noisy black-box functions [25].
It is particularly applicable in situations: (i) where the closed-
form mathematical representation of the objective function is un-
known, although possibly noisy observations of this function can
be obtained, and (ii) when the objective functions are expensive
to evaluate, such as for robotics and WEC devices, (iii) when the
objective function derivatives are unavailable or the problem at
hand requires non-convex optimization.

The typical form of Bayesian optimization uses a GP model
to approximate the objective function f , where the GP model

is usually referred to as a surrogate f unction in BO. Then, the
acquisition function is used to determine the next controller coef-
ficients xk+1 to be evaluated based on the GP model. The promis-
ing regions of the xk+1 space are those with high GP mean and
high GP uncertainty. Hence, the decision represents an automatic
trade-off between exploration and exploitation. This also implies
that the BO can find the extrema of the objective functions have
multiple local maxima with only a few evaluations.

Formally, the GP is a stochastic process involving an infinite
set of variables, any finite subsets of which are jointly Gaussian
distributed. GP is widely used in both prediction and control
problems [26]. The priori statistics of a GP model f (x) can be
fully specified by a mean function m(x) and a covariance function
k(x,x′):

f (x)∼ G P(m(x),k(x,x′))

m(x) = E[ f (x)]
k(x,x′) = cov( f (x), f (x′))

(12)

where x ∈ RD is the input vector, D is the dimension of inputs,
f (x) and f (x′) are arbitrary Gaussian scalar variables indexed
by x and x′. Generally, k(x,x′) is also referred to as a kernel
function parametrized by some certain variables θ . The choice of
covariance function for Bayesian optimization implementation
is the rational quadratic (RQ) kernel with automatic relevance
determination (ARD):

k(x,x′)= h2
f [1+

1
2α

r2(x,x′)]−α , with r2(x,x′)=
D

∑
d=1

1
λ 2

d
(xd−x′d)

2

(13)
where h f governs the output scales and λd governs the input
scales in each d dimension. The λ serve to the covariance func-
tion’s smoothness. α > 0 is the shape parameter. Also, other
commonly used covariance functions can be found in the pa-
per [27], and even can be created for the specifical approxima-
tions, for example when the objective function has periodical
properties.

The hyperparameter vector values θ can be obtained by op-
timizing the following log marginal likelihood function:

log p(y|θ) =−1
2

log |K|− 1
2

yT K−1y− n
2

log(2π) (14)

The optimization of hyperparameters allows the standard
gradient-based non-convex optimization methods such as BFGS.
After the training, and in order to obtain the target prediction f ′

for a new given input X ′ from the posterior, the extended joint
distribution is illustrated by:[

f ′

y

]
∼
([

m(X ′)
m(X)

]
,

[
k(X ′,X ′) k(X ′,X)
k(X ,X ′) K +σ2I

])
(15)

4 Copyright © 2019 ASME



with k(X ′,X) = k(X ,X ′)T = [k(X1,X ′), · · · ,k(XN ,X ′)]. Based on
the theorem of joint Gaussian distributions [27], the forecasting
result for the target is represented as:

µ( f ′) = m(X ′)+ k(X ′,X)[K +σ
2I]−1(Y −m(X))

var( f ′) = k(X ′,X ′)− k(X ′,X)[K +σ
2I]−1k(X ,X ′)

(16)

For a given GP model, an acquisition function is used to
guide the search for a maximum of the objective function. Here,
the Gaussian process upper confidence bound (GP-UCB) algo-
rithm is considered as the acquisition function.

aUCB(x;{X ,y},θ) = µ(x)+
√

ηβKvar2(x),

βK = 2ln(DK2
π

2/(6δ ))
(17)

where K is the evaluation number, δ > 0 is the probabilistic tol-
erance, var is variance of GP predictions, η > 0 is an adjustable
conversion efficiency parameter, and βK is the learning rate to
achieve optimal regression [28]. As to which coefficient value of
the causal controller should be evaluated next is determined by
maximizing the acquisition function:

xk+1 = argmaxxaUCB(x) (18)

2.2 Practical Bayesian learning causal control
In this work, 3 forms of causal controller have been in-

troduced, namely damping-spring (7), mass-damping-spring (5)
and second order system controller (9). The damping-spring and
mass-damping-spring controller are chosen for regular wave and
irregular wave conditions, respectively. Actually, when consid-
ering that the WEC normally works over a relatively narrow-
band sea state, the controllers using simpler damping-spring
and mass-damping-spring controller present similar performance
compared with second order system controller, the capture width
is very close to optimal complex-conjugate control [23].

The optimal causal controller coefficients are obtained for
each sea state by using the hybrid BO algorithm [29]. However,
the algorithm may cause damage to the WEC device. In practice,
some combination of these coefficients may result in large mo-
tion and PTO force, especially in the case of using small damp-
ing value subject to big waves. Therefore, the upper and lower
bounds of the search range should be given to the BO algorithm.
For example, the WEC oscillation amplitude constraints can be
guaranteed by choosing larger lower bound for the damping co-
efficient [30]:

Bpto ≥ LBD = max(
|Fext |

ωXmax
,2R)−R (19)

where Xmax is the floater amplitude constraints, LBD is the mini-
mum value of damping coefficient, the value of other coefficients
should be considered for large waves in each sea state.

When the optimal coefficient value eventually converges to
the upper or lower bounds, the bound can be extended to a new
conservative setting according to the displacement observations
and real-time recording of the PTO force.

The flowchart of the practical BO algorithm for the reactive
control of WEC devices is shown in Fig. 2. In the initialization
stage, the objective function f , the initial value x0 of controller
coefficients, upper bound UB and lower bound LB of x0, PTO
force bound Fmax, and the number of iterations K are initialized.
Then x0 has been evaluated by the simulation model of WEC
subject to the sea state. Although the objective function could be
evaluated per wave period in a regular wave condition, here the
evaluation with a time range of at least 20 periods has been cho-
sen for both regular and irregular waves. However, for irregular
waves, even though keeping the value of controller coefficients
constant, the criteria score may vary with changing sea state con-
ditions. Fortunately, the criteria scores are linearly proportional
to the absolute mean elevation of the waves, then each criteria
score can be reformed as an assumed constant value for a given
sea state:

ˆScore = Score−avg(wave)ζ (20)

where the ˆScore is the reformed score, avg(wave) is the absolute
average elevation of 20 period waves, and the coefficient ζ can be
computed using a non-linear least-squares curve-fitting method.

After the first trial, data are collected to build the GP sur-
rogate function, followed by evaluating the new test points cal-
culated by the Bayesian optimization. This procedure has been
conducted repeatedly until the iteration number K exceeds the
stopping criterion, the algorithm then returns the optimal values
of controller coefficients.

3 Simulation Results
The practical BO algorithm is validated under both regu-

lar and irregular wave conditions. However, as mentioned ear-
lier, it is particularly hard to calculate the optimal references of
complex-conjugate control based on inaccurate numerical model
subject to physical constraints. Here, all combinations of con-
troller coefficients are tested for both regular and irregular sea
conditions. The global optimal coefficients are then compared
with the optimized coefficients of the BO algorithm. Then the
performance of proposed learning causal controller correspond-
ing to 6 irregular sea states is presented.

3.1 Learning reactive control in regular waves
The evaluation criteria for all possible configurations of the

damping and stiffness coefficients corresponding to regular wave
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FIGURE 2. Flowchart of the practical BO algorithm for the causal
control of WECs
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with wave height He = 0.0625(m) and wave period Te = 1.412(s)
is shown in Fig. 3. Every combination is evaluated on the
WaveStar WEC-Sim model, and the score is calculated by (2).
It is clear that the highest score area is quite small and close to
the unstable areas. The WEC unstable state is caused by using a
small PTO damping and large negative stiffness coefficients. It
is clear that the score landscape appears to be convex, but very
rough and noisy, due to non-linear WEC-Sim simulation envi-
ronment and different initial conditions, such as the floater dis-
placement. In real sea state (irregular sea conditions), the sen-

sors are noisy, which may hinder the use of many gradient based
optimization algorithms. By contrast, the complex noisy land-
scape and expensive function evaluation makes the BO particu-
larly suitable for the WEC complex-conjugate control problem.
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FIGURE 4. 2 Bayesian optimization trials and convergence of the
damping and stiffness coefficients in a regular wave

2 BO trials of the damping and stiffness coefficients are de-
picted on the contour map of actual evaluation distribution. As
can be seen in Fig. 4, according to these 2 BO algorithm imple-
mentations, the search points eventually converge to the vicin-
ity of the true global optima. It is noticeable that all the trials
are located on the right side of the line where damping value
Bpto = 4.5 units. This is the lower bound LB = 4.5 units setting
of the search range of the damping coefficient, which is used to
handle the amplitude constraint.

Additionally, an extra 3 independent implementations of the
BO algorithm with different initial values of Bpto and Cpto are
presented in Fig. 5. Impressively, although starting with dif-
ferent locations, the optimal Bpto and Cpto eventually converge
to the global optima. Less than 20 evaluations are required for
the BO algorithm to achieve the convergence. Small variances
in the values of Bpto and Cpto will not affect the criteria of the
objective function after 20 evaluations. This indicates that the
BO algorithm is capable of finding the optimal of PTO damping
and stiffness coefficients reliably and efficiently, when operating
under hypothetical regular wave conditions.

3.2 Learning reactive control in irregular waves
A similar efficient performance of the proposed method is

demonstrated for the irregular wave case, where a JONSWAP
spectrum with wave height He = 0.1042(m), wave period Te =
1.836(s) and γ = 3.3 is used. As shown in Fig.6, the mass-
damping-spring coefficients converge rapidly towards the true
global optima within 20 evaluation. This means that under real
(irregular) wave conditions, a typical range of wave period is
5− 15s, at most 2 hours, is required to finish the optimization
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FIGURE 6. 3 irregular wave Bayesian optimization trials with differ-
ent initial parameters

of WEC control system. This shows great practical potential for
real seas implementation.

An extra 5 sea states are used to evaluate the proposed con-
trol strategy, the criteria scores are listed in Table 1:

TABLE 1. Criteria scores of 6 wave states
JONSWAP Spectra (He, Te, γ) Score

S1(0.0208,0.988,1) 0.0119
S2(0.0625,1.412,1) 0.1274
S3(0.1042,1.836,1) 0.3035

S4(0.0208,0.988,3.3) 0.0150
S5(0.0625,1.412,3.3) 0.1554
S6(0.1042,1.836,3.3) 0.3453

4 Conclusions
In this work, a learning causal control method is developed.

The causal controller is predictionless and shows competitive
performance to optimal control methods, and (i) can adapt to
the different sea states, (ii) can avoid modelling errors, (iii) can
prevent device from damaging while keeping data-efficient char-
acteristics. The main contribution of this work is making the
complex-conjugate control of WEC practicable, reliable, and ef-
ficient by using a BO algorithm. Fast convergence and global
optimal performance of the BO algorithm is validated in both
regular and irregular waves, where only less than 20 function
evaluations are required to complete optimization. In practice,
the proposed control method can be implemented by using the
combination of a host computer and the Simulink Real Time
system (such as D-space, Speedgoat). Actually, only the host
computer is compulsory to run the BO algorithm, the Simlink
Real Time system can be replaced by other commercialized con-
trollers, as long as the controller can communicate with the host
computer and implement the varying-PID control algorithm. In-
terestingly, the mass-damping-spring controller can be regarded
as the PID controller, for which parameters are time-varying and
set by an external source. The inputs of the control system are
position,velocity,wave elevation,and PTO force, while the output
is only the PTO force reference, which can be used by the PTO
controller (such as motor controller).
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