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Abstract

The high variability and unpredictability of renewable energy resources require optimiza-
tion of the energy extraction, by operating at the best efficiency point, which can be
achieved through optimal control strategies. In particular, wave forecasting models can
be valuable for control strategies in wave energy converter devices. This work intends to
exploit the short-term wave forecasting potential on an oscillating water column equipped
with the innovative biradial turbine. A Least Squares Support Vector Machine (LS-SVM)
algorithm was developed to predict the air chamber pressure and compare it to the real
signal. Regressive linear algorithms were executed for reference. The experimental data
was obtained at the Mutriku wave power plant in the Basque Country, Spain. Results have
shown LS-SVM prediction errors varying from 9% to 25%, for horizons ranging from 1 to
3 s in the future. There is no need for extensive training data sets for which computational
effort is higher. However, best results were obtained for models with a relatively small
number of LS-SVM features. Regressive models have shown slightly better performance
(8–22%) at a significantly lower computational cost. Ultimately, these research findings may
play an essential role in model predictive control strategies for the wave power plant.

1 INTRODUCTION

The ocean waves are a relevant renewable energy resource that,
if largely exploited, can play a significant role in the clean energy
supply of countries with sea coasts [1]. Wave energy is clean,
abundant and extraordinarily powerful, especially offshore. In
comparison to wind power, wave energy is significantly less vari-
able, allowing for the accurate forecasting of the supply of elec-
tricity in advance, which is essential for energy planning strate-
gies [2].

The oscillating water column (OWC) is widely regarded as
the simplest and most reliable type of wave energy converter
(WEC) [1]. An OWC power plant consists of a fixed or float-
ing hollow structure with its bottom surface open below the
mean water level. The upper part of the structure forms an
air chamber where a turbine is installed and connected to the
outer atmosphere through a duct. The incident waves induces
the motion of the water column which compresses and expands
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the air inside the chamber. This creates a pressure difference
with the atmosphere that drives a self-rectifying air turbine cou-
pled to an electrical generator through a shaft, as part of the
power take-off (PTO) system.

Three main types of self-rectifying air turbines have been pro-
posed for this application: the Wells turbine, the axial impulse
turbine and the novel biradial turbine [3]. A comparison reveals
that the biradial turbine has the highest peak efficiency and the
wider range of operation of the three types of turbines [4].
Moreover, the biradial turbine damping is almost insensitive
to the rotational speed, given its near-quadratic relationship
between the flow rate and the pressure head. This feature can be
especially important for the pressure forecasting, as the control
action will not have a major impact on future values of pressure
in the air chamber. Besides, the air pressure signal is mostly clean
and easily measurable, as opposed to wave elevation or excita-
tion force. Under these assumptions, the pressure forecasting
is relevant for the subsequent model predictive control (MPC)
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FIGURE 1 (a) Shoreline view of the Mutriku wave power plant; (b) the biradial turbine during the commissioning tests of the EU H2020 OPERA project [6]
and (c) schematic cross section view of the Mutriku power plant [5]

of the wave power plant. For these reasons, the present work is
focused on short-term forecasting of the air chamber pressure
on an OWC operating with the biradial turbine.

As a case study, the Mutriku power plant is here presented.
Located in the Basque Country, Spain, the Mutriku power plant
was commissioned in 2011 and it consists of 16 fixed OWCs
(see Figure 1). Initially, each OWC was equipped with a Wells
turbine and an electrical generator with 18.5 kW of rated power.
In June 2017, a biradial turbine was installed on top of one
OWC’s air chamber with a 30-kW generator (see Figures 1b and
1c), within the framework of the EU H2020 OPERA project
(http://opera-h2020.eu/). A more detailed description of the
Mutriku power plant and performance comparison between the
Wells and biradial turbines can be found on [5]. The experimen-
tal data used in the current work was measured and obtained
in situ, and it is available at https://doi.org/10.5281/zenodo.
4926029.

This paper is subdivided in the following sections: the cur-
rent state of the art and the interest of this paper’s develop-
ments are discussed in Section 2; two linear regressive algo-
rithms are detailed in Section 3 to be subsequently examined
for comparison purposes; Section 4 describes support vec-
tor machines (SVM) as the primary forecasting method; Sec-
tion 5 presents the PTO dynamics of the biradial turbine;
Section 6 explains the forecasting simulation results; lastly,

Sections 7 and 8 allow space for final remarks and future course
of work.

2 LITERATURE REVIEW

The use of wave forecasting models is valuable for constructing
improved control strategies for WEC devices and can be found
in published literature for this purpose since 1998. It is useful to
classify forecast attempts in three different ways:

∙ As to the duration of the forecast; Mérigaud et al. have classi-
fied ocean forecasting for wave energy production [7]: short-
term (in the order of seconds); medium-term (hourly and
daily basis), useful for the wave energy market; and long-
term (several years), used to evaluate the viability of a WEC
project;

∙ As to the purpose of the forecast, there are distinctions
between the evolution with time of variables (e.g. wave ele-
vation, or excitation force acting upon a particular WEC),
and the evolution with time of statistical parameters of the
variables (e.g. significant height of the waves, peak period
or power available for extraction). Understandably, the first
option is usually connected with short-term forecasts, and the
latter with medium and long-term forecasts;
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MARQUES SILVA ET AL. 3487

TABLE 1 Wave energy forecasting published literature: Short term

Year Authors Topic Data Resolution Source Location Techniques

2019 Skene et al. [8] Short-term
forecasting

Wave elevation 0.031 s Simulated - FFT

2018 Fernandes et al.
[9]

Short-term
forecasting

Pressure; Turbine speed;
Wave elevation

0.5 s Real Mutriku, Basque Country,
Spain

ANN

2018 Peña-Sanchez
et al. [10]

Short-term
forecasting

Wave elevation 1 s (simulated);
0.78 s (real)

Real &
simulated

Belmullet, Ireland AR; GP

2018 Shi et al. [12] Short-term
forecasting

Wave elevation 0.78 s (real) Real Pacific Marine Energy Center ANN; AR; GP

2017 Garcia-Abril et al.
[13]

Short-term
forecasting

Excitation force 0.1 s Simulated - AR; KF

2017 Peña-Sanchez &
Ringwood [11]

Short-term
forecasting

Wave elevation 0.39 s; 0.5 s;
0.78 s

Real Belmullet & Galway Bay,
Ireland; Pico, Azores,
Portugal

AR; ARMA

2015 Monk et al. [14] Short-term
forecasting

Wave elevation; Wave
power

0.5 s Real Pico, Azores, Portugal AR

2014 Paparella et al.
[15]

Short-term
forecasting

Wave elevation 0.5 s Real Pico, Azores, Portugal AR; ARX; FIR

2014 Paparella et al.
[16]

Short-term
forecasting

Wave elevation 0.5 s Real Pico, Azores, Portugal ANN; AR; ARX;
FIR

2011 Sheng & Lewis
[18]

Short-term
forecasting

Airflow; OWC motions:
Surge, Sway, Heave,
Roll, Pitch and Yaw

- Real Hydraulics & Maritime
Research Centre, Ireland

ANN

2010 Fusco &
Ringwood [19]

Short-term
forecasting

Wave elevation 0.39 s; 0.78 s Real Galway Bay, Ireland; Pico,
Azores, Portugal

ANN; AR

2010 Fusco &
Ringwood [20]

Short-term
forecasting

Wave elevation 0.39 s; 0.78 s Real Galway Bay, Ireland; Pico,
Azores, Portugal

AR

2009 Fusco [21] Short-term
forecasting

Wave elevation 0.39 s; 0.78 s Real Galway Bay, Ireland; Pico,
Azores, Portugal

ANN; AR; EKF

∙ As to the forecast technique, there are distinctions between
linear and nonlinear methods; among the latter, the SVM
technique is particularly popular and especially appealing for
WEC applications.

Published literature on this subject is presented in a con-
densed form in Tables 1 and 2, using the classification
paradigms just presented, and described in detail in what
follows.

2.1 Short-term forecasting

Skene et al. have recently developed an algorithm that uses the
fast Fourier transform (FFT) to predict wave elevation in real
time, using simulated data [8]. The algorithm was capable of pre-
dicting times in the order of the peak wave period and distances
in the order of the peak wavelength.

Several other studies have implemented artificial neural net-
works (ANN) and other solutions, such as autoregressive (AR)
method and some of its variations: autoregressive exogenous
(ARX), autoregressive moving average (ARMA) and autoregres-
sive integrated moving average (ARIMA). In 2018, Fernandes
et al. formulated an ANN model to predict the air chamber

pressure of an OWC [9]. This study used real data from the
biradial turbine developed at Instituto Superior Técnico, Lisbon.
The model has shown good prediction accuracy for horizons
ranging from 1 to 3 steps ahead and worse above this threshold,
for a sampling period of 0.5 s.

Peña-Sanchez et al. have revisited the AR model and the
Gaussian process (GP) techniques to forecast sea surface ele-
vation, using simulated and real data [10]. Although both tech-
niques presented identical accuracies, the AR model was simpler
and delivered similar performance. Overall, predictions were
inaccurate and particularly worse for real data. The authors also
experimented the ARMA model which offered similar accura-
cies [11]. However since the ARMA algorithm was more com-
plex, the AR model was preferred. Shi et al. employed AR, ANN
and GP methods to forecast and optimally control a WEC [12].
On the one hand, a similar conclusion was drawn—the AR solu-
tion was simpler and presented similar prediction accuracy. On
the other hand, ANN models presented flexible learning struc-
tures. Garcia-Abril et al. have advocated that accurate excitation
force prediction was required for control strategies to optimize
energy capture using AR models [13]. Relevant features that
would contribute to the improvement of the excitation force
predictions were: the prediction method order, the time step, the
forecast horizon and potentially the application of a low-pass
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3488 MARQUES SILVA ET AL.

TABLE 2 Wave energy forecasting published literature: Medium term

Year Authors Topic Data Resolution Source Location Techniques

2018 James et al. [24] Medium-term
forecasting

Significant wave height;
Wave period

3 h Real California, United States ANN; SVM; SWAN

2017 Akhil P. & Deka
[25]

Medium-term
forecasting

Significant wave height - - - ANN; ANFIS; ELM;
GA; SVR

2017 Mérigaud et al.
[7]

Long, medium and
short-term
forecasting

Wave elevation; Wave
power

30 min
(medium)

Real &
simu-
lated

Galway Bay, Ireland; Pico Island,
Azores, Portugal

AR; ARX

2017 Zheng et al. [52] Long, medium
forecasting

Significant wave height;
Swell energy; Swell
index; Wave power
density

- Reviewed Indian Ocean; Java & Australia;
Clipperton Island, Pacific
Ocean

ANFIS; ANN;
ARIMA; ECMWF;
SVM; SWAN

2016 Gopinath &
Dwarakish
[45]

Medium and short-term
forecasting

Significant wave height 3 h Real New Mangalore Port, India ANN; FFBP; PSO

2015 Reikard et al.
[48]

Medium-term
forecasting

Significant wave height;
Wave period; Wave
power

1 h Real Washington & Oregon, United
States

AR; ECMWF

2015 Reikard et al.
[47]

Medium-term
forecasting

Significant wave height;
Wave period; Wave
energy flux; Wave
power

1 h Real British Columbia, Canada ARIMA; SWAN

2014 Hadadpour et al.
[50]

Medium-term
forecasting

Significant wave height;
Wave period; Wave
energy flux

1 to 12 h Real Anzali, Caspian Sea, Iran ANN

2011 Reikard et al.
[46]

Medium-term
forecasting

Significant wave height;
Wave period; Wave
energy flux

1 h Real National Data Buoy Centre,
United States; Integrated
Science Data Management,
Canada

ANN; AR; ECMWF

2009 Reikard [49] Medium-term
forecasting

Significant wave height;
Wave period; Wave
energy flux; Wind
speed

1 h; 1 d Real United States ANN; AR; KF; SW

1998 Deo & Sridhar
Naidu [51]

Medium-term
forecasting

Significant wave height 1 h; 3 h Real Yanam, India ANN; AR

filter. In the previously mentioned study, Mérigaud et al. have
tested short-term forecasts time series [7]: a simple AR model
offered an accurate prediction for up to two typical wave peri-
ods into the future (data from Galway Bay and Pico Island).
No real benefit in using ANN models, unless highly nonlin-
ear sea states were encountered, which were unlikely to per-
tain the power production operational region of WECs. Spatial
results have shown little accuracy advantage in making an up-
wave measurement (Pico Island).

Earlier in 2015, Monk et al. focused on optimizing Pico’s
OWC pneumatic power (in Azores archipelago, Portugal) by
controlling the pressure valve which regulates pressure variance,
based on AR forecasting [14]. An increase of 15% in power pro-
duction as well as significant reductions in the frequency of the
severest turbine stalls were observed, compared to the previ-
ous basic control strategy. Performance enhancements could be
achieved using short-term wave forecasting with basic equip-
ment and minimal investment. Paparella et al. have published
two studies on up-wave measurements to evaluate its relevance
on short-term wave forecasting [7, 15, 16]. A finite impulse

response (FIR) model was designed to study the up-wave mea-
surements. An ARX model was executed to predict the wave
elevation in the air chamber, combining its past values and the
up-wave elevation measurements. Equivalently, the ARX model
did not reasonably improve the AR model accuracy and, due to
the added complexity of ANNs, linear models were preferable.
In the cited studies, the authors initially concluded there was not
much benefit in making up-wave measurements and the pre-
diction of the excitation force should be considered. However,
Peña-Sanchez et al. confirmed that previous conclusions were
related with the use of filtered wave elevation signals, and up-
wave measurements could in fact improve the prediction accu-
racy [10]. Finally, this idea was reinforced in a recent study by
Mérigaud and Ringwood [17].

In 2011, an ANN model was applied for short-term pre-
diction of relevant OWC variables: the airflow and OWC
motions (surge, sway, heave, roll, pitch and yaw) [18]. Sheng
and Lewis have trained a 3-layer ANN which presented very
good predictions. There was no need for large ANN percep-
trons to provide fast convergence. The network parameters
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MARQUES SILVA ET AL. 3489

could work over a broad data range for a good prediction.
Finally, Fusco and Ringwood used a simple AR model for wave
elevation forecasting for real-time optimal control [19, 20].
Research findings showed that the AR algorithm was able to
capture the cyclical wave behavior and offered a very accurate
prediction of the low-frequency swell waves, for up to two wave
periods. Once again, there was no real benefit in using ANN
models, unless on highly nonlinear sea states. As suggested,
the WEC controller may require the prediction of the wave
excitation force, which was practically a low-pass filtered form
of the wave elevation. A previous report by one of the authors
additionally considered an extended Kalman filter (EKF): a
computationally light and simple method has proven to be
significantly effective for sea states with narrow band (5- to
10-s predictions) but entirely ineffective for wider-banded wave
systems [21].

Regarding the relevance of prediction horizon, Faedo et al.
stated in [22] that state-of-the-art forecasting algorithms are
only able to provide an accurate prediction for horizons of a
couple seconds. As a contrast, Henriques et al. tested latch-
ing control on a OWC [23]—significant gains were only found
for receding horizon time intervals greater than the typical
energy period of the waves. Thus, the optimal prediction hori-
zon depends on the type of WEC device and the applied con-
trol strategy.

2.2 Medium-term forecasting

Other studies have been developed for medium-term forecast-
ing. This approach aims to forecast wave statistical parameters
such as the significant wave height Hs or the wave peak period
Tp. This can be useful to estimate the wave energy flux later. In
2018, James et al. have compared the physics-based simulating
waves nearshore (SWAN) model to machine learning (ML) tech-
niques such as ANN and SVM to forecast Hs and Tp [24]. ML
models were an accurate and computationally efficient surro-
gate for the SWAN model, running over 4000 times faster. The
predicted wave conditions could be used to estimate the power-
generation potential of WECs. The authors considered that a
convolutional neural network deep learning model with addi-
tional data (such as latitude, longitude and bathymetric depth)
should be implemented.

The application of ML techniques in wave height forecasting
was reviewed in 2017 by Akhil P. and Deka [25]. The authors
covered a broad range of methods, and here are a few take-
aways:

∙ The predictive efficiency of an ML approach depended upon
the size and quality of the available data set;

∙ The ANN model took more computational time [26–31] and
hybrid models provided better results [32–36];

∙ The following features had most to least impact on wave
height prediction: wind speed, air temperature, sea surface
temperature and wind direction [37];

∙ The adaptive neuro-fuzzy inference system (ANFIS) model
was adaptable to optimization, computationally efficient and

fast [37]. Hybrid fuzzy inference system and ANFIS could
remove the non-stationary character of wind-wave data [38];

∙ A genetic algorithm (GA) could work with discontinuous
data but required large data support and longer running
time [39–42];

∙ Extreme learning machine (ELM) was a highly fast-training
method with an excellent quality-based result [43];

∙ A support vector regression (SVR) algorithm removed cali-
bration need and could predict wave height accurately [44].

According to Mérigaud et al., medium-term forecasts were
useful for wave energy production for market participation [7].
Futhermore, basic sea state parameters were predicted: wave
energy flux, significant wave height and wave period. Anyhow,
more research was needed. Gopinath and Dwarakish used ANN
models trained by particle swarm optimization (PSO) for real-
time prediction of waves [45]. With conventional feed-forward
back propagation (FFBP) network, the accuracy depended on
data length used as input. In the case of the PSO-ANN net-
work, accurate training was possible with smaller input length.
Finally, the PSO-ANN network outperformed the conventional
FFBP network.

Reikard et al. have presented studies on wave energy medium-
term forecasting using time series, with an ARIMA model, and a
physics-based model—the European Centre for Medium-range
Weather Forecasts (ECMWF) [46, 47]. The authors have also
combined wave with wind and solar resources [48]. According
to these studies, the ECMWF model was well-suited to wave
farm simulation and was able to capture seasonality. The time
series models have predicted more accurately over short hori-
zons (1–5 h, higher frequency signals) while the physics models
have forecasted more accurately over longer horizons (above
6 h, lower frequency signals)—combining the two methods
leads to increased accuracy. Although wave energy flux could be
volatile, the wave farm power was smoother, more predictable
and easier to forecast when compared to wind or solar. Also,
wave reserves were far less expensive than others. As a conclu-
sion, the findings argued strongly for the development of wave
energy at coastal locations. On a previous publication, Reikard
has tested time-series models such as ANN, AR, Kalman fil-
ter (KF) and sliding window (SW) [49]. Regarding the forecast-
ing run frequency (hourly and daily), the higher the frequency,
the higher the forecast error of the wave energy flux; time-
varying parameter regression and hybrid models were preferred
for experiments at hourly frequency. For the ANN model, the
forecast accuracy was significantly influenced by the length of
the training data set. With high forecast errors, utilities would
need to use conventional power sources as a backup, in order to
compensate for the inherent variability of waves.

Hadadpour et al. used ANNs for wave energy forecasting
in a real study case in the Caspian Sea [50] (2014)—a sig-
moid transfer function and 1 hidden layer with 5 neurons
was employed using a lag time of 3 h. Increasing the fore-
casting horizon led to a decrease of the predictive accuracy:
average errors of 11% for 1 h forecasting and 41% for 12 h.
Also, forecasting the separate components performed better
than a direct forecast of the wave energy flux. Models used to
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3490 MARQUES SILVA ET AL.

forecast the significant wave and the peak wave period using its
past values were more appropriate than others. Lastly, Deo and
Sridhar Naidu [51] acknowledged the advantages of using the
ANN technique over typical deterministic or statistical models.
The cascade correlation scheme was the best training algorithm
in terms of convergence speed. The AR results have shown
lower covariation of the wave height predictions than the ANN
models.

2.3 Long-term forecasting

The assessment of future wave conditions in a time scale of
several years is essential for resource evaluation, site selection,
feasibility studies and project design. However, no actual mete-
orological forecast can be reasonably expected for such a long
horizon, which is relevant for WEC control. Instead, physical
models use past input data from a certain number of years,
assuming it is representative of the expectations in the following
years. Such studies are specifically referred to as hindcasts rather
than forecasts.

A number of hindcast studies have been carried out, and wave
hindcasting already presents a reasonable degree of standard-
ization. Mérigaud et al. reported that hindcasts tests that were
carried out in different wave climates offered good results [7]—
the methodology was robust and coherent. Zheng et al. pre-
sented an overview of a medium- to long-term predictions of
global wave energy resources [52]. The authors concluded that
long-term climate trends and predictability of wave energy still
remained scarce. Also, the overall capture efficiency and the
WEC’s lifespan had a relevant impact on the system’s stabil-
ity [52–55]. The utilization factor of wave energy was closely
related with the significant wave height [53, 56], whereas energy
quality was determined by the energy level occurrence [57].
Ultimately, Zheng et al. suggested several improvement oppor-
tunities for the wave energy prediction capacity, such as the
incorporation of climate prediction methods and the applica-
tion of numerical simulation methods and swell propagation
characteristics.

2.4 Concluding remarks

As reviewed previously in this section, a significant part of
short-to-medium-term forecasting studies has focused on wave
elevation, significant wave height or the wave period. For this
purpose, a considerable extent of approaches was put forward,
with the major spotlight not only on AR models (and its differ-
ent forms) and ANNs but also on physics-based models such as
ECMWF and SWAN. The majority of the short-term forecast-
ing studies favor the use of regressive algorithms over nonlin-
ear approaches, due to their low complexity and relatively sim-
ilar performances. As for medium-term, the inclusion of more
complex methods in combination with simpler ones can lead
to better results. Hindcasting is not especially important for the
control of WEC devices, since it is more related with the struc-
tural design of wave power plants.

Among ML models, SVM solutions are attracting increasing
attention, mostly because they require less configuration com-
plexity than ANN (e.g. the number of hidden layers, the num-
ber of hidden nodes, the learning rate, among others [58]) while
presenting a robust procedure for solving problems in nonlinear
classification, function estimation and density estimation. As an
example, the Least Squares Support Vector Machine (LS-SVM)
technique only involves two parameters [58]. Moreover, both
LS-SVM and SVR algorithms for dynamic models are capable
of outperforming ANN [58, 59]. LS-SVM has also been used
in recent studies for renewable energy forecasting, namely wind
power [60–63].

3 LINEAR MODELS

3.1 Autoregressive

An AR model is used to predict future values of a determined
time-variant signal, based on past behavior. Given the correla-
tion between the signal values, the forecasting model comprises
a linear regression of its data, that is, a linear combination of
the past values (called lags), hence the name autoregressive—the
prefix auto stands for ”self” [64]. The output of an AR model
of order p, AR(p), at instant t can be expressed as

yt (𝝓) = c +

p∑
i=1

𝜙i yt−i + 𝜀t , (1)

where c is a constant, 𝝓 = (𝜙1, … , 𝜙p)T is the model parametric
vector and 𝜀t is the white noise (or randomness). The constant
c is defined by the mean value of the time series 𝜇,

c =

(
1 −

p∑
i=1

𝜙i

)
𝜇. (2)

AR models are fairly flexible at handling a wide range of dif-
ferent time series patterns. Moreover, they consist of a stochas-
tic process with degrees of uncertainty or randomness. There-
fore, one can obtain high but not perfect prediction accuracy
(lower than 100%) [64, 65].

3.2 Moving average

Among the modeling approaches for time series forecasting, the
moving average (MA) model focuses on past prediction errors
rather than past data values. Each predicted value is seen as
a weighted average of the previous errors [65]. The predicted
value of an MA model of order q, MA(q), is described as

yt (𝜽 ) = 𝜇 +
q∑

i=1

𝜃i𝜀t−i + 𝜀t , (3)

where 𝜽 = (𝜃1, … , 𝜃q )T is the model parametric vector.
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MARQUES SILVA ET AL. 3491

For each forecasting cycle, the average is re-calculated to pre-
dict futures values—thus the term “moving average”. This tech-
nique is especially useful for forecasting long-term trends [66].

3.3 Autoregressive moving average

In the statistical analysis of a times series, an ARMA model
presents a combination of AR and MA polynomials and
describes a weakly stationary stochastic process. The ARMA
model comprises two order dimensions, p and q, for the AR and
MA models, respectively [67]. Accordingly, ARMA(p, q) yields

yt (𝝓, 𝜽 ) = c + 𝜀t +

p∑
i=1

𝜙i yt−i +

q∑
i=1

𝜃i𝜀t−i . (4)

4 SUPPORT VECTOR MACHINES

4.1 Overview

ML has experienced explosive growth in recent years fueled by
the emergence of advanced algorithms capable of identifying
complex patterns in data from a limited number of samples.
Among other ML techniques, SVM is a powerful methodol-
ogy for solving problems in nonlinear classification, function
estimation and density estimation. Originally proposed by Vap-
nik [68, 69], SVM is gaining popularity in the ML realm, due to
its attractive features and promising empirical performance [70].

4.2 Linear classification

At its core, SVM primarily performs classification tasks by con-
structing hyperplanes in a multidimensional space that sepa-
rates cases of different class labels. For the example of a linear
SVM problem, let us assume a training data set of M points of
the form (xi , yi ) where i = 1, … ,M , xi ∈ ℝ

N and yi = ±1. In
other words, each input vector xi with N dimensions is related
with the respective binary output yi , depending on the class xi

belongs. The algorithm intends to find the ”maximum-margin
hyperplane” that separates the group of points xi for which the
output is 1 from its counterpart group where the output equals
−1. The hyperplane is defined so that the distance between itself
and the nearest point xi from either group is maximized. It is a
set of points x satisfying

w ⋅ x + b = 0, (5)

where w is the normal vector to the hyperplane. The parameter
b‖w‖−1 determines the offset of the hyperplane from the origin
along the normal vector w.

4.3 Nonlinear classification

The original hyperplane algorithm proposed by Vapnik con-
sisted of a linear classifier. Although a linear problem may

seem simple to solve, most of the real-world data do not show
a linear relation, which makes it hard to separate different
classes. One way to solve a 2-dimensional nonlinear problem
would be to map the data to a 3-dimensional space. How-
ever, if a nonlinear problem involves a considerable amount
of dimensions, the algorithm computation also becomes more
expensive.

Bernhard Boser et al. suggested a way to create nonlin-
ear classifiers by applying the kernel trick [71]. The kernel
trick avoids the explicit mapping to higher dimensions, allow-
ing to operate in a transformed feature space with reduced
complexity—every dot product is replaced by a nonlinear ker-
nel function and the resulting algorithm is formally similar. As
the example described in [72], let us consider two data points in
a 3D space:

xa =
(
xa1
, xa2

, xa3

)T
, (6)

xb =
(
xb1
, xb2

, xb3

)T
. (7)

Assuming there is need to map this problem to a 9-dimensional
space, the resulting transforming functions, denoted as 𝜙(⋅),
would be:

𝜙(xa ) =
(
x2

a1
, xa1

xa2
, xa1

xa3
, xa2

xa1
, x2

a2
,

xa2
xa3
, xa3

xa1
, xa3

xa2
, x2

a3

)T
,

(8)

𝜙(xb ) =
(

x2
b1
, xb1

xb2
, xb1

xb3
, xb2

xb1
, x2

b2
,

xb2
xb3
, xb3

xb1
, xb3

xb2
, x2

b3

)T
.

(9)

The algorithm output is just a scalar determined by

𝜙(xa )T
𝜙(xb ) =

3∑
i, j=1

xai
xa j

xbi
xb j
, (10)

with a computational complexity of (N 2). Using the kernel
function k(xa,xb ) instead, it is possible to reach the same result
within the same space order, by

k(xa,xb ) =
(
xT

a xb

)2
=
(
xa1

xb1
+ xa2

xb2
+ xa3

xb3

)2

=

3∑
i, j=1

xai
xa j

xbi
xb j
.

(11)

The computational complexity is reduced to (N ). Some com-
mon kernel functions include:

∙ Polynomial:

k
(
xi ,x j

)
=
(
xi ⋅ x j

)n
. (12)
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3492 MARQUES SILVA ET AL.

∙ Gaussian radial basis function (RBF):

k
(
xi ,x j

)
= exp

(
−𝛾‖xi − x j‖2

)
, (13)

with 𝛾 > 0. Sometimes parametrized using 𝛾 = (2𝜎2)−1.
∙ Hyperbolic tangent:

k
(
xi ,x j

)
= tanh

(
𝜅xi ⋅ x j + c

)
, (14)

for some (not every) 𝜅 > 0 and c < 0.

For further details, see [71, 72].

4.4 Support vector regression

4.4.1 Overview

As mentioned previously, SVM has been widely applied in clas-
sification problems (e.g. text and image classification or pat-
tern recognition), by formulating them as convex optimization
problems [73]. Drucker et al. have proposed a version of SVM
for regression [74], commonly known as SVR. This method
is a generalization of the classification problem, in which the
model returns a continuous-valued output (a model function),
as opposed to an output from a finite set [75]. The purpose
is to find the function f (x) that best describes the relation-
ship between the features and the target [68], while balancing
complexity and prediction error. This is done by first defining
a convex cost function to be minimized and finding an optimal
region around the function that contains most of the training
instances, known as 𝜖-tube [75]. In recent years, the SVR tech-
nique has proven successful for prediction tasks with promising
results [76, 77].

4.4.2 Definition

Considering a training data set of M points (xi , yi ) where i =
1, … ,M , xi ∈ ℝ

N and yi ∈ ℝ, where the N -dimensional vector
xi is the ith sample of the features and yi is the corresponding
target. The regression function f , prospectively used for predic-
tion, relates with the SVM classification components: a hyper-
plane vector w, a feature-space transformation 𝜙(⋅) and a bias
parameter b,

f (xi ) = wT𝜙(xi ) + b . (15)

Depending on the problem, an appropriate kernel function is
chosen for 𝜙(⋅) (see Section 4.3).

In a linear regression, the objective is to minimize a 𝜆-
regularized error function [78]:

1
2

M∑
i=1

(
f (xi ) − yi

)2
+

1
2
𝜆‖w‖2, (16)

FIGURE 2 𝜖-insensitive error function

with 𝜆 > 0. The quadratic error function is replaced by an
𝜖-insensitive error function, in order to obtain sparse solu-
tions [68], with 𝜖 > 0—if the absolute difference between the
target and the prediction is less than 𝜖 the function returns
zero. An example of an 𝜖-insensitive error function is given
by [78]

E𝜖
(

f (xi ) − yi

)
=

⎧⎪⎨⎪⎩
0, if || f (xi ) − yi

|| < 𝜖|| f (xi ) − yi
|| − 𝜖, otherwise

,

(17)
and is illustrated in Figure 2.

Introducing the 𝜖-insensitive error function, Equation (16)
becomes

C

M∑
i=1

E𝜖
(

f (xi ) − yi

)
+

1
2
‖w‖2, (18)

where 𝜆 is replaced by an inverse parameter C , with C > 0,
associated with the error term. Two slack variables are intro-
duced into the optimization problem, for each data point xi :

⎧⎪⎨⎪⎩
𝜉i > 0 ∧ 𝜉i = 0, if yi > f (xi ) + 𝜖

𝜉i = 0 ∧ 𝜉i > 0, if yi < f (xi ) − 𝜖

𝜉i = 𝜉i = 0, otherwise

, (19)

as illustrated in Figure 3. By virtue of the slack variables, only

points that lie outside the 𝜖-tube will be considered for the opti-
mization, provided the following conditions are verified:

𝜉i ≥ 0, (20)

𝜉i ≥ 0, (21)

yi ≤ f (xi ) + 𝜖 + 𝜉i , (22)

yi ≥ f (xi ) − 𝜖 − 𝜉i . (23)
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MARQUES SILVA ET AL. 3493

FIGURE 3 Illustration of an SVR problem, showing the regression
function together with the 𝜖-tube

Excluding data points inside the 𝜖-tube, Equation (18) can be
re-expressed as

C

M∑
i=1

(
𝜉i + 𝜉i

)
+

1
2
‖w‖2, (24)

which must be minimized subject to the constraints (20) to
(23). This can be achieved with a Lagrangian optimization func-
tion [78],

L
(
a, â, 𝝁, 𝝁

)
= C

M∑
i=1

(
𝜉i + 𝜉i

)
+

1
2
‖w‖2

−

M∑
i=1

(
𝜇i𝜉i + 𝜇i𝜉i

)

−

M∑
i=1

ai

(
𝜖 + 𝜉i + f (xi ) − yi

)
−

M∑
i=1

âi

(
𝜖 + 𝜉i − f (xi ) + yi

)
, (25)

with the non-negative Lagrange multipliers ai , âi , 𝜇i and 𝜇i . Sub-
stituting f (xi ) using Equation (15) and setting the Lagrangian
derivatives with respect to w, b, 𝜉i and 𝜉i to zero,

𝜕L

𝜕w
= 0 ⇒ w =

M∑
i=1

(
ai − âi

)
𝜙(xi ), (26)

𝜕L

𝜕b
= 0 ⇒

M∑
i=1

(
ai − âi

)
= 0, (27)

𝜕L

𝜕𝜉i

= 0 ⇒ ai + 𝜇i = C , (28)

𝜕L

𝜕𝜉i

= 0 ⇒ âi + 𝜇i = C . (29)

Applying these optimal solutions into Equation (25) to elim-
inate w, b, 𝜉i and 𝜉i and obtaining the dual Lagrangian function
L̃ [78], it follows

L̃
(
a, â

)
= −

1
2

M∑
i, j=1

(
ai − âi

)(
a j − â j

)
k
(
xi ,x j

)
− 𝜖

M∑
i=1

(
ai + âi

)
+

M∑
i=1

(
ai − âi

)
yi ,

(30)

where the vectors a = (a1, … , aM )T and â = (̂a1, … , âM )T col-
lect the Lagrangian multipliers. The kernel function,

k
(
xi ,x j

)
= 𝜙(xi )

T
𝜙
(
x j

)
, (31)

is here introduced as defined in Section 4.3.
The dual Lagrangian function needs to be maximized to

attain the optimal multipliers, under the following constraints:
Equation (27); since 𝜇i and 𝜇i are non-negative, Equations (28)
and (29) imply that

0 ≤ ai ≤ C , (32)

0 ≤ âi ≤ C . (33)

Many quadratic problem solvers can handle this problem.
Usually, only certain parts of the samples can satisfy the prop-
erty ai − âi ≠ 0, which are the sparse solutions. They are called
support vectors since only this subset of samples contribute to
the model [79].

Finally, considering Equations (26) and (31) into Equa-
tion (15), the predictions for new inputs are determined by [78]

f (x) =
M∑

i=1

(
ai − âi

)
k(x,xi ) + b . (34)

The Karush–Kuhn–Tucker conditions, which state that at
the solution the product of the dual variables ai , âi , 𝜉i and 𝜉i

and the constraints (22), (23), (28) and (29) must vanish [78], are
given by

ai

(
𝜖 + 𝜉i + f (xi ) − yi

)
= 0, (35)

âi

(
𝜖 + 𝜉i − f (xi ) + yi

)
= 0, (36)

(C − ai )𝜉i = 0, (37)(
C − âi

)
𝜉i = 0 . (38)

From condition (35), ai is non-zero if yi = f (xi ) + 𝜖 + 𝜉i ,
which means the data point yi either lies on the upper bound-
ary of the 𝜖-tube (𝜉i = 0) or above (𝜉i > 0). Analogously from
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3494 MARQUES SILVA ET AL.

condition (36), if âi ≠ 0 implies yi = f (xi ) − 𝜖 − 𝜉i , such points
must lie either on (𝜉i = 0) or below (𝜉i > 0) the lower boundary
of the 𝜖-tube.

Furthermore, since 𝜖 is strictly positive, the two constraints
yi = f (xi ) + 𝜖 + 𝜉i and yi = f (xi ) − 𝜖 − 𝜉i are incompatible,
that is, a point yi cannot be simultaneously on both upper
boundary (or above) and lower boundary (or below). This
means for every data point xi , either ai or âi (or both) are zero.

The bias parameter b can be determined using a data
point which satisfies 0 < ai < C : the condition (37) requires
𝜉i = 0; and from condition (35), the outcome yi = f (xi ) +
𝜖 is observed. Solving Equation (15) for b and using
Equation (26),

b = yi − 𝜖 − wT𝜙(xi ) = yi − 𝜖 −

M∑
j=1

(
a j − â j

)
k
(
xi ,x j

)
.

(39)

4.5 Least squares support vector machines

4.5.1 Overview

SVM algorithms have been introduced within the context of
statistical learning theory and structural risk minimization. The
high computational complexity is among the main drawbacks
of standard SVM. Therefore a new technique—the LS-SVM—
has been developed by Suykens and Vandewalle [80, 81]. This
approach consists of a set of supervised learning methods that
analyze data and recognize patterns for classification and regres-
sion problems. An additional advantage of the LS-SVM solu-
tion is that model optimization can be performed relatively fast.
Finally, it is closely associated to regularization networks [82]
and Gaussian processes [83] but additionally include primal-
dual interpretations.

Some basic definitions about the LS-SVM method are pre-
sented here—further details in [84, 85]. Furthermore, the
LS-SVM learning process is presented in the flowchart in
Figure 4.

4.5.2 Definition

Similarly to the example in Equation (16) in Section 4.4.2,
the LS-SVM error function presented in [86] requires
minimization,

1
2
𝛾

M∑
i=1

e2
i +

1
2
‖w‖2, (40)

subject to

yi = f (xi ) + ei , (41)

FIGURE 4 LS-SVM learning process. In this flowchart, rectangles,
parallelograms and diamonds represent processes, input/outputs and decisions,
respectively. The model configuration entails the training data size, the feature
vector size and the forecast horizon. The relative error 𝜀 is the dimensionless
root mean squared error, and it is considered low for values under 25%

and where the regularization constant satisfies 𝛾 > 0. The
Lagrangian optimization function [86] is defined as

L(𝜶 ) =
1
2
𝛾

M∑
i=1

e2
i +

1
2
‖w‖2 −

M∑
i=1

𝛼i

(
ei + f (xi ) − yi

)
, (42)

with the non-negative Lagrange multipliers 𝛼i , also known as
support values. Substituting f (xi ) using Equation (15) and set-
ting the Lagrangian derivatives with respect to w, b and ei to
zero,

𝜕L

𝜕w
= 0 ⇒ w =

M∑
i=1

𝛼i𝜙(xi ), (43)

𝜕L

𝜕b
= 0 ⇒

M∑
i=1

𝛼i = 0, (44)

𝜕L

𝜕ei

= 0 ⇒ 𝛼i = 𝛾ei , (45)
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MARQUES SILVA ET AL. 3495

FIGURE 5 Sparseness comparison between regression methods: (a) SVR,
with the 𝜖-tube and (b) LS-SVM, with the values ei

𝜕L

𝜕𝛼i

= 0 ⇒ yi = f (xi ) + ei . (46)

These optimal conditions are similar to its SVR counter-
parts, shown in Equations (26)–(29), except for the condi-
tion (45), where the sparseness property is not applied, in the
LS-SVM model.

Merging Equations (43)–(45) with Equation (46), the optimal
support vector 𝜶 and parameter bias b are found by solving the
following equation system [86]:[

K + 𝛾−1IM 1M×1

11×M 0

][
𝜶

b

]
=

[
y

0

]
, (47)

where the kernel matrix K ∈ ℝM×M has the elements Ki j =

k(xi ,x j ). The target vector is y = (y1, … , yM )T, the vectors

1M×1 = 1
T
1×M = (1, … , 1)T and IM is the identity matrix.

The resulting LS-SVM regression model for prediction, from
Equations (43), (31) and (15), becomes

f (x) =
M∑

i=1

𝛼ik(x,xi ) + b . (48)

Comparing Equations (40) and (24), Wang et al. conclude that
LS-SVM is a reformulation of the SVR principle, using equality
constraints [86]. Furthermore, LS-SVM training uses the least
squares instead of the 𝜖-insensitive loss function, as illustrated in
Figure 5: Figure 5a presents SVR with a 𝜖-tube (excluding inte-
rior points) and the slack variables (𝜉i and 𝜉i , corresponding to

the support vectors for sparse solutions); while in the LS-SVM
model (Figure 5b) those features are replaced by error variables
ei (distances from each point to the regression function)—all
the samples in LS-SVM are support vectors, meaning that all
training data is used for regression [86].

Nevertheless, despite lack of sparseness, the LS-SVM algo-
rithm has a great benefit: unlike the complex SVR problem
which requires a computationally hard quadratic programming
solver, the LS-SVM model is determined from a linear system
solution (see Equation (47)), making it easier and faster to opti-
mize [86]. Therefore LS-SVM model is preferred for this study.

5 POWER TAKE-OFF SYSTEM

The biradial turbine was installed at the Mutriku power plant in
June 2017 and operated until July 2018 (see Figures 1b and 1c),
as a de-risk phase before the installation in the IDOM Marmok-
A5 OWC spar buoy that was deployed at the BiMEP test site
(Basque Country, Spain) in October 2018. The performance
characteristics of the Mutriku’s biradial turbine are usually pre-
sented in dimensionless form, where

Ψ =
p∗ pat

𝜌inΩ2d 2
, (49)

Φ =
Qturb

Ωd 3
, (50)

Π =
Tturb

𝜌inΩ2d 5
, (51)

𝜂turb =
Π

ΦΨ
, (52)

are the dimensionless pressure head, the dimensionless flow
rate, the dimensionless power coefficient and turbine efficiency.
In Equations (49), (50) and (51), p∗ is the dimensionless air
chamber pressure relative to the atmosphere, defined as

p∗ =
p

pat
− 1, (53)

where p is the instantaneous pressure inside the air chamber, and
pat is the atmospheric pressure. The turbine rotational speed,
rotor diameter, volumetric flow rate and turbine aerodynamic
torque are denoted byΩ (in radians per unit time), d , Qturb, and
Tturb, respectively. The reference density 𝜌in is defined in stag-
nation conditions at the turbine entrance.

For large Reynolds numbers (Retip > 106) and low Mach
numbers (Matip < 0.3), based on tip blade speed, the dimen-
sionless variablesΦ,Π and 𝜂turb can be plotted as simple curves
as function of Ψ, as shown in Figure 6. The curves for Φ and Π
were estimated by best fitting the turbine’s measured data points.
𝜂turb follows Equation (52).

Axial impulse turbines and the biradial turbine are theoretical
quadratic turbines. However, experimental tests of the biradial
turbine tested at Mutriku showed a relationship almost quadratic
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3496 MARQUES SILVA ET AL.

FIGURE 6 Turbine curves: dimensionless flow rate Φ, dimensionless
power coefficient Π and efficiency 𝜂turb, as functions of the dimensionless
pressure head Ψ, for the biradial turbine used in the numerical simulations,
based on [4]

between the flow rate coefficient and the dimensionless pres-
sure head, approximately defined as

Φ5∕3 = 𝜅Ψ, (54)

where 𝜅 is a dimensionless constant. Replacing Equations (50)
and (49), Equation (54) evolves into

Qturb =

(
𝜅p∗ pat

𝜌in

)3∕5
d 9∕5

Ω1∕5
, (55)

after algebraic manipulation. Equation (55) shows that the flow
rate is weakly affected by typical changes of the rotational speed
since Qturb it is proportional to Ω−1∕5.

As introduced in the Section 1, the PTO system for the OWC
consists of a biradial turbine and a generator [5]. The dynamics
of the turbine/generator set is described by

I Ω̇ = Tturb
(

p∗, Ω
)
− Tgen(Ω), (56)

where Tgen is the generator electromagnetic torque imposed by
the rotational speed control law. I represents the moment of
inertia of the turbine/generator set. The turbine aerodynamic
torque is computed from Equation (51),

Tturb = 𝜌inΩ
2d 5Π(Ψ) . (57)

As a conclusion, the opportunity to explore the biradial tur-
bine seems to be beneficial: the high-efficiency range and the
near-quadratic behavior that makes the hydrodynamics almost
decoupled from the turbine control. Consequently, the pressure
is a satisfying and important element for the MPC system to be
implemented at the wave power plant.

6 RESULTS

An LS-SVM algorithm was developed for the forecast of the
pressure signal p∗ inside the air chamber of the Mutriku WEC

for subsequent use as input in a future MPC controller. As men-
tioned in Section 1, the pressure data used for training this algo-
rithm was measured during sea trials of the biradial turbine at
the Mutriku power plant. However, there was no ondographic
buoy up-wave of the Mutriku power plant, thus it was not pos-
sible to measure wave elevation. With no sea state data available
and because the OWC is nonlinear—due to the air compressibil-
ity in the chamber and the air turbine behavior—the choice of
a nonlinear technique such as LS-SVM, presents the benefit of
describing both linear and nonlinear systems. Still, for compar-
ison purposes, both AR and ARMA linear models were devel-
oped and the respective forecasts were carried out in parallel.

The design of the LS-SVM forecasting model formulation
encompassed the definition of the training data set, the fea-
ture vector (or number of lags) and the forecast horizon. For
each forecasting cycle, the model was tuned and trained before
being tested—this impacted the computational effort, but deliv-
ered full prediction capability. Subsequently, the model hyper-
parameters were tuned. These are the regularization parameter
𝛾, which determines the trade-off between error minimization
and smoothness, and the squared bandwidth 𝜎2 of the Gaussian
RBF kernel. The simplex method was used to optimize, and
the performance was estimated with 10-fold cross validation,
using mean squared error as a cost measure. For each forecast-
ing horizon window, the model training employed a data set of
previously measured pressure values—in the form of a Hankel
matrix, defined by the numbers of training data and features—
to calculate the support values 𝛼i and the bias term b of the LS-
SVM model. Finally, the model was tested using recently mea-
sured data as input (distinct from the training set), resulting on
the forecast of the upcoming pressure values, within the defined
time window.

An exhaustive sensitivity study was carried out to evaluate the
best LS-SVM model configuration. The training data set size,
the feature vector size and forecast horizon were varied. The
same procedure was adopted to run the AR and ARMA algo-
rithms. For the specific case of the ARMA model, an additional
variable is introduced—the MA order, corresponding to the
lagged error values (see Section 3.2). Each model configuration
was ran for 5 min, using a time step of 0.25 s. The model perfor-
mance was evaluated based on the relative prediction error. This
error was determined by the root mean squared error (RMSE)
with M points, and the original signal standard deviation 𝜎,

𝜀[%] =
1
𝜎

RMSE
(

p∗, p̂∗
)
× 100%

=
1
𝜎

√√√√ 1
M

M∑
i=1

(
p∗i − p̂∗i

)2
× 100% .

(58)

Figure 7 show calculated prediction errors for forecasts of 1,
2 and 3 s ahead. The number of training data ranged from a hun-
dred to a thousand data points, and the number of lags varied
from 5 to 50 elements. Figure 7d maps the maximum forecast
horizon possible to attain with a prediction error smaller than
25%.
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MARQUES SILVA ET AL. 3497

FIGURE 7 LS-SVM relative prediction error (%) of pressure using a forecast horizon of: (a) 1, (b) 2 and (c) 3 s; (d) maximum LS-SVM forecast horizon (in
seconds) with relative error under 25%

In regard to the LS-SVM parameter sweep, there is a sig-
nificant increase in the relative prediction error as the forecast
horizon is increased, as expected. Interestingly, there generally
seems to be no need for large training data sets to achieve accu-
rate forecasts. However, the features size plays a relevant role—
the more features, the less accurate model is possible to obtain.
The best models offer errors of 8.74%, 17.27% and 24.98%
(average of 17%), depending on the forecasting horizon. The
maximum forecast horizon map shows a similar trend, where
the smaller horizons (from 0.5 to 1.75 s) represent the worst
cases. Figure 7d also shows a curious trend on high training
data configurations: the more features the smaller accurate hori-
zons. This is probably a consequence of unnecessary past data
training.

Analogously, Figures 8 and 9 show the outcomes of both AR
and ARMA parameter sweeps, respectively. As for the ARMA
sweep, the additional variable of MA lags was equally varied
from 5 to 50 elements—along with this range and for each com-
bination of training data and AR lags, the lowest error config-
urations were selected for graphical representation. The black
squares in Figure 9 captioned as not a number (NaN) repre-
sent models that failed to simulate due to reduced training data
size for high AR and MA lags. Compared to LS-SVM, AR and
ARMA maps show more of a bluer trend, meaning there are
more AR and ARMA configuration models which would deliver
a lower prediction error and longer accurate horizons. This sug-
gests that both the variation of the training data and features
sizes would not impact the AR and ARMA outcomes as much

as it would in the case of LS-SVM solution. The regressive mod-
els outperformed the LS-SVM approach, with best model errors
of 8.51%, 15.57% and 22.01% for AR (average of 15.36%)
and 8.37%, 15.1% and 20.81% for ARMA (average of 14.76%),
depending on the forecasting horizon.

All three forecasting algorithms were reproduced in more
detail in order to assess their predicting potential. Considering
models with the best performances picked from Figures 7 to 9,
forecasts of the real pressure signal were put forward, consider-
ing horizons ranging from 1 to 3 s ahead. The lowest prediction
errors defined the best LS-SVM performances (900 for training
and 5-10 feature data points) and its AR and ARMA counter-
parts (training points: 600-700 for both AR and ARMA models;
feature data points: 30–40 for AR models; 5 and 30 for ARMA
models). For the purpose of these forecasts, the original signal
was subdivided into 10 distinct segments, each segment with
5 peak periods of the signal (see Figure 10a). The peak period
of the signal (12.5 s) was estimated from a power spectral den-
sity analysis of the original signal. Consequently, the total run
time of the forecasts was 625 s. The dimensionless relative pres-
sure signal fluctuated between the extreme values of -0.0489 and
0.0738 (−4957 Pa ≤ (p− pat ) ≤ 7481 Pa), with a mean value of
0.0005849 ( p̄− pat = 59 Pa) and a standard deviation of 0.0192
(𝜎p−pat

= 1948 Pa).
The prediction error 𝜀 was computed for each signal seg-

ment, and the respective values are mapped in Figure 10, con-
sidering different horizons. Real and forecasted pressure sig-
nals are shown in Figure 11—segment #2 from Figure 10a was
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FIGURE 8 AR relative prediction error (%) of pressure using a forecast horizon of: (a) 1, (b) 2 and (c) 3 s; (d) maximum AR forecast horizon (in seconds) with
relative error under 25%
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FIGURE 9 ARMA relative prediction error (%) of pressure using a forecast horizon of: (a) 1, (b) 2 and (c) 3 s; (d) maximum ARMA forecast horizon (in
seconds) with relative error under 25%

chosen to observe the forecasting performances. With respect
to the forecast horizon from 1 to 3 s, LS-SVM results exhibit
prediction errors ranging from 9.75% to 28.54%, while AR
and ARMA vary from 9.58% to 26.57%. The results on Fig-
ures 10 and 11 indicate an overall better performance for AR
and ARMA models, when compared to the LS-SVM model: for

shorter horizons AR and ARMA performances are only slightly
improved, whereas AR and ARMA behave significantly better
for longer ones.

In Figure 11, one can observe several jumps in the pressure
signal, more noticeably in Figure 11 c. These jumps are not
related to the measured pressure signal, they occur due to the
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MARQUES SILVA ET AL. 3499

FIGURE 10 (a) Real pressure signal subdivided into 10 distinct segments. Best prediction relative error [%]: (b) LS-SVM, (c) AR and (d) ARMA performances

change of forecasting horizon window. Since the error increases
with the horizon, we might observe jumps between the last and
the first predicted data points, belonging to different forecast-
ing cycles.

Figure 12 reports the computational effort demanded by the
different algorithms, in the form of the run time ratios, that is,
the elapsed run time divided by the real signal time span. LS-
SVM is by far the slowest option, taking a run time over 70 times
longer than the signal time span. This is due to the retuning and

retraining of the model every forecasting cycle, which could be
simplified. As far as AR and ARMA are concerned, the compu-
tational effort can be feasible and is sensible to forecast horizon:
the longer the horizon the less the computational expense. This
makes sense, since longer horizons imply wider time windows,
and consequently, the algorithm would need to run less cycles.
Categorically, ARMA models are found to be the most efficient.

The presented results seem to favor AR and ARMA models
for a future MPC control strategy.
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FIGURE 11 Pressure signals (segment #2): real, (a) 1-s, (b) 2-s and (c) 3-s ahead predictions
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FIGURE 12 Run time ratio: the elapsed run time divided by the signal
time span

7 CONCLUSION

This study was focused on the problem of short-term wave
forecasting, which is a key topic in the wave energy field, in

order to improve the economic viability of a WEC. Three algo-
rithms were developed to estimate future values of pressure
inside an OWC’s air chamber equipped with a biradial turbine,
at the Mutriku power plant, namely: LS-SVM, AR and ARMA.
The best LS-SVM performing models include fewer features—
consequently, with lower computational effort, there are no crit-
ical deviations from the real time series, with average errors in
the order of 19%. For the cases of AR and ARMA, the predic-
tion error is not significantly impacted by the inclusion of many
features, with average errors around 18%. With such low lev-
els of prediction error, these models suggest being valuable for
control formulation in the future. Nevertheless, the worst LS-
SVM models reveal a significant error increase slightly above
80% when extending the forecasting horizon, due to the scarcity
of data for training. As for the signal comparison, prediction
errors range from 6.8% to 38.33% and are sensible to the fore-
cast horizon. These show how unreliable the forecast can be
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if the model is not carefully tuned and trained. Yet, this is not
the case for both AR and ARMA models—the worst mod-
els present considerably low errors, in the same order as the
best ones.

Hence, in terms of the prediction capability, all three algo-
rithms seem to be good candidates for forecasting in the short
term. Still, AR and ARMA deliver better results for both lower
and longer forecast horizons. Therefore, the regressive models
are preferable for an MPC strategy in a real wave power plant.
Ultimately, when compared to LS-SVM, these models are sim-
pler and require less computational effort, with ARMA being
the fastest alternative.

8 FUTURE WORK

A robust strategy for this WEC control system is the main forth-
coming objective. As the controller will be implemented in the
generator in order to adjust the turbine rotational speed to its
optimal, there is a need to evaluate the generator efficiency as
well. This is a necessary step to quantify the real prediction
potential of the OWC predictive controller, in terms of the pre-
diction error, forecasting horizon and computational effort.

Preliminary tests implementing the described models are tak-
ing place to assess the improvement that can be achieved. The
tests suggest a potential 5% increase in mean turbine power
over time, with the biradial turbine. This is possible because the
controller acts in advance towards optimal turbine speed, vary-
ing the generator power between positive and negative values in
order to efficiently decelerate or accelerate the turbine, respec-
tively.

Besides the biradial turbine, further work includes extend-
ing the pressure forecasting models to the Wells turbine. In this
case, the rotational speed changes the flow rate and, as such, the
chamber pressure is affected by the control algorithm—this is
not the case for the biradial turbine, introduced in this paper.
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