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Waves to Electricity
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(Right) Adapted from: Costello et al., 2011, “Comparison of two alternative hydraulic PTO concepts
for wave energy conversion,” Proceedings of the 9t European wave and tidal energy
conference (EWTEC).
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Conventional Reverse Osmosis (RO)

« Constant operating pressure RO module
and flow rate

\
* Requires slow start-up permeate
— 70 kPa/s ramp in |1 | outlet
pressure i
O~

* Powered by electric power

or IC engine .
feed water brine

intake | | | || | outlet

* Energy recovered from
high-pressure brine stream
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Approaches to Wave-Powered RO
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Hydraulic PTOs for RO: Folley et al.

Folley et al., 2008

— production rate as function of:
* Membrane area

e Accumulator volume

Folley and Whitaker, 2009
— cost of water as function of plant capacity
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Folley et al., 2008, “An autonomous wave-powered desalination system,” Desalination

(Left and Right) Folley and Whittaker, 2009, “The cost of water from an autonomous wave-powered
desalination plant,” Renewable Energy

6 M UNIVERSITY OF MINNESOTA

Driven to Discover™




Hydraulic PTOs for RO: Yu et al.

*  Yu and Jenne, 2017
— cost of water as function of plant capacity
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*  Yu and Jenne, 2018
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Yu and Jenne, 2017, “Analysis of a wave-powered, reverse-osmosis system and its economic availability
in the United States,” International Conference on Offshore Mechanics and Arctic Engineering

Yu et al., 2018, “Numerical analysis on hydraulic power take-off for wave energy converter and power
smoothing methods,” International Conference on Offshore Mechanics and Arctic Engineering
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Hydraulic PTOs for RO: Brodersen et al., 2022

* Brodersen et al., 2022

— Efficiency vs.
recovery ratio of
batch RO process

— Estimate for cost of
water
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(Above) Brodersen, et al., 2022,*“Direct-drive ocean wave-powered batch reverse osmosis,”
Desalination, 523, p. 115393.
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Overview

* Challenge of a direct seawater intake without a charge pump
* Analysis of pressure losses and risk of cavitation

 How component sizes (needed to avoid cavitation) compare to the overall
system scale

* Design analysis with charge pump included

* Take-aways
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Baseline PTO Architecture
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Need for a Charge Pump

* Pressure losses present a risk of
cavitation

* Loss sources:
— Intake filter (Sum filter)
— Check valves
— Major and minor piping losses

* High peak-to-mean ratio in WEC
velocity (e.g., 4:1 - 10:1)
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A Barebones Circuit
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Minor Losses
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Pressure Loss Sources Compared

Maximum Total Pressure Drop

» Peak velocity and acceleration conditions from 10% ¢ . . . . .
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Analysis of Cavitation

» Cavitation index, a measure of
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System Scale

* Drawing is to scale for Yu and Jenne 2017 and Brodersen
et al. 2022

*  Pump displacement from Simmons and Van de Ven 2023

Wave surface

WEC-driven

* 150-200 kW average power capture

...............

 18m wide, 13m tall

-«— WEC base

« 11m water depth Sea bed

» Internal diameter of cylinder pump is 0.6m

Yu and Jenne, 2017, “Analysis of a wave-powered, reverse-osmosis system and its economic availability

¢ Required pipe alld CheCk ValVe diameter (>30 Cm) in the United States,” International Conference on Offshore Mechanics and Arctic Engineering
are more than half the diametel‘ Of the pump Brodersen, et al., 2022,*“Direct-drive ocean wave-powered batch reverse osmosis,” Desalination, 523, p.
115393.

Simmons and Van de Ven, 2023, “A Comparison of Power Take-Off Architectures for Wave-Powered
Reverse Osmosis Desalination of Seawater with Co-Production of Electricity,” Energies
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Design Including Charge Pump

Design by grid search

Objectives:

Minimize power loss

Minimize accumulator volume

Constraints
— Minimum pressure in WEC-driven
pump
Variables
— Charge pump speed

— Accumulator volume
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Simmons, Jeremy W., 2024, “Modeling and Design of Power Take-Offs for Ocean Wave-Powered
Reverse Osmosis Desalination,” PhD Thesis, University of Minnesota
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Design Study 1

Take-Aways

Attempts to implement a direct seawater intake maybe costly

« Large piping and check valves that address extreme corner conditions

Adding a charge pump (and accumulator) allows for elevated pump intake pressure

» This is a practice typical of conventional hydraulic systems

A charge pump will account for approximately 5% of total system losses
» It does work that needs to be done anyway. It is just slightly less efficient (e.g., 70% vs 85%).

1000 liters of accumulator volume is used.
» This is significantly less than is needed in the high-pressure branch (4,000-18,000 liters*)

* Simmons, Jeremy W., and James D. Van de Ven. 2024 ”Design of Hydraulic Power Take-Offs for
Wave-Powered Reverse Osmosis Desalination: Meeting Constraints on Pressure Variation”, In 2024
Global Fluid Power Society PhD Symposium. (In print)
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