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Integrating energy storage with marine renewable energy (MRE) systems enhances
orid stability and reliability, addressing the variability of MRE sources. Despite
challenges, this synergy is crucial for advancing renewable energy, achieving energy
resilience, and mitigating climate change impacts.

Abstract

Marine renewable energy (MRE)
sources, including tidal, wave, and
ocean thermal energy, hold
significant promise for sustainable
power generation. However, their
intermittent and variable nature
presents challenges for  grid
integration and stability. Energy
storage systems (ESS) offer a
solution by mitigating this variability,
thus enhancing reliability, grid
stability, power quality, and grid
compatibility. Various ESS
technologies are evaluated based on
parameters such as energy density,
efficiency, response time, lifespan,
cost, scalability, and environmental
impact. Integration strategies and
operational considerations are
crucial, with power electronics
converters playing a key role in
facilitating integration by enabling
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bidirectional power flow, voltage
regulation, and synchronization. The
design and deployment of
converters tailored for MRE
applications aim to maximize system
efficiency and stability. Nonetheless,
significant challenges and barriers
remain, including technological
limitations, regulatory frameworks,
and economic viability.
Environmental and socioeconomic
considerations are also critical,
highlighting the importance of
holistic planning in project
development.  Current trends,
challenges, and future directions
emphasize the need for
interdisciplinary collaboration,
innovative technology development,
and supportive policy frameworks to
advance the integration of MRE
sources.
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